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Abstract  24 

Background: Data errors, including sample swapping and mis-labeling are inevitable in the 25 

process of large-scale omics data generation. Data errors need to be identified and corrected 26 

before integrative data analyses where different types of data are merged based on the 27 

annotated labels. Data with labeling errors dampen true biological signals. More importantly, 28 

data analysis with sample errors could lead to wrong scientific conclusions. We developed a 29 

robust probabilistic multi-omics data matching procedure, proMODMatcher, to curate data, 30 

identify and correct data annotation and errors in large databases.  31 

Results: Application to simulated datasets suggests that proMODMatcher achieved robust 32 

statistical power even when the number of cis-associations was small and/or the number of 33 

samples was large. Application of our proMODMatcher to multi-omics datasets in The Cancer 34 

Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) identified sample 35 

errors in multiple cancer datasets. Our procedure was not only able to identify sample labeling 36 

errors but also to unambiguously identify the source of the errors. Our results demonstrate that 37 

these errors should be identified and corrected before integrative analysis.  38 

Conclusions: Our results indicate that sample labeling errors were common in large multi-39 

omics datasets. These errors should be corrected before integrative analysis.  40 

 41 

 42 
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Background 47 

With advances in high throughput technologies in the past two decades, diverse types of omics 48 

data at multiple layers of regulation have been generated to survey complex human diseases 49 

[1-3],  which arise from dysregulations of  interplays among these multiple layers of regulations 50 

including genetics, epigenetics, transcriptomics, metabolomics, glycomics, and proteomics. 51 

Therefore, integration of multi-omics data at multiple layers of regulation is essential to derive a 52 

holistic view of molecular mechanisms underlying complex human disease. Previous studies 53 

have shown that simultaneously considering diverse types of biological data result in more 54 

complete understandings of biological systems [4-6].  55 

 Recently, many large projects, such as The Cancer Genome Atlas (TCGA) and 56 

International Cancer Genome Consortium (ICGC), have generated diverse types of omics data 57 

for public use. However, data errors, including sample swapping, mis-labeling, and improper 58 

data entry are almost inevitable in the process of large-scale data generation and management. 59 

Westra et al. [7] showed that there is about 20% of mis-matched samples between genotype 60 

and gene expression data. Yoo et al. [8] demonstrated that sample labeling errors occurred in 61 

almost every database examined. Also, there are studies to identify cross-individual 62 

contamination in next-generation sequencing data from TCGA samples [9, 10].  63 

 Identifying and ultimately correcting these sample errors are critical for statistical data 64 

analysis, especially for integrative analysis. Data errors need to be identified and corrected 65 

before extensive efforts being devoted to data analysis. Analyzing data with sample errors is a 66 

waste of limited public resources. More importantly, data analysis with sample errors could lead 67 

to wrong scientific conclusions. Furthermore, sample errors have more significant effect on 68 

integrative data analysis where different types of data are merged based on the annotated 69 

labels. Some types of sample errors can be detected during data quality control (QC) on each 70 
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individual type of data, whereas sample errors including sample swapping, or mis-labeling are 71 

elusive to be detected by data QC on individual type of data alone.   72 

 Previously, we developed sample mapping procedure called MODMatcher (Multi-Omics 73 

Data matcher) [8], which is not only able to identify mis-matched omics profile pairs, but also to 74 

properly map them to correct samples based on other omics data. The main idea is first to 75 

identify “biological cis-associations” between two types of omics data, and then to use these 76 

“biological cis-associations” as intrinsic barcodes to match different types of omics data. The 77 

types of “biological cis-associations” are different when different pairs of omics data are mapped, 78 

but they all reflect general biological regulations. For example, when mapping genotype and 79 

gene expression data, the method is based on cis-genetic regulation of expression traits (or 80 

expression quantitative trait loci—cis-eQTLs), where a genetic polymorphism at a gene’s 81 

promotor or regulatory region affects transcription factors or co-factors binding, which in turn 82 

affects the abundance of the gene’s transcript [11]. Similarly, when mapping methylation and 83 

gene expression data, the method leverages on cis-methylation regulation of expression traits 84 

(or cis-methyls), where high DNA methylation level of CpGs at a gene’s promotor or regulatory 85 

region hinders transcription factors or co-factors binding, which in turn represses the gene’s 86 

transcription [12].  More on “biological cis-associations” are detailed in the Methods section.  87 

We demonstrated that the statistical power to identify biological signals increases after 88 

database cleaning by applying the MODMatcher procedure to multiple large-scale public multi-89 

omics datasets from LGRC and TCGA. The power of MODMatcher depends on the number of 90 

intrinsic biological cis-associations that can be identified.   The power of MODMatcher 91 

decreases when the number of cis-associations between two omics profiles is small. However, 92 

in some cases (a few examples are detailed in the Results), the number of possible intrinsic 93 

biological cis-associations is small, new methods are needed for these types of applications. 94 
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 In this study, we extended MODMatcher and developed a robust probabilistic multi-95 

omics data matching procedure, proMODMatcher, to curate data, identify and unambiguously 96 

correct data annotation and metadata attribute errors in large databases. First, we applied the 97 

proMODMatcher to simulated datasets to assess the statistical power of our procedure. Results 98 

suggest that proMODMatcher achieved robust statistical power even when the number of cis-99 

associations was small and/or the number of samples was large. Next, we applied the 100 

proMODMatcher procedure to multiple large-scale publicly available multi-omics datasets from 101 

TCGA, and in particular, focused on the omics profiles that have small numbers of intrinsic cis-102 

associations including miRNA expression and Reverse Phase Protein Array (RPPA). 103 

Additionally, we applied proMODMatcher to large-scale publicly available multi-omics datasets 104 

in ICGC. Our results indicate that sample labeling errors were common in large multi-omics 105 

datasets.  These errors should be corrected before integrative analysis. 106 

 107 

Data Description  108 

TCGA datasets 109 

For the TCGA breast invasive carcinoma (BRCA) dataset, level 3 data of gene expression, DNA 110 

methylation, miRNA expression and CNV was downloaded from Genomic Data Commons 111 

(GDC) data portal (https://portal.gdc.cancer.gov/). For gene expression profiles, 112 

IlluminaHiSeq_RNASeqV2 and AgilentG4502A platform were used. Illumina 113 

HumanMethylation27 (HM27) and HumanMethylation450 (HM450) Beadchip were used for 114 

DNA methylation bisulfide sequencing. IlluminaHiSeq_miRNASeq and IlluminaGA_miRNASeq 115 

platforms were used to profile miRNA expression. Affymetrix Genome-Wide Human SNP Array 116 

6.0 was used for copy number variation. The protein expression levels were measured in 117 

Reverse Phase Protein Array (RPPA), and downloaded. Each of level 3 profiles was 118 
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reformatted for matrix of row with gene (or probes) and column with barcodes of samples. For 119 

methylation profiles and CNV, the probes or segments were mapped to hg19 gene symbols. 120 

Different profiles were initially matched according to their barcodes. The mapping files of 121 

HM450, RPPA, and miRNA are available in the source code.       122 

 For other types of cancers in TCGA, we downloaded gene expression, miRNA 123 

expression, CNV, DNA methylation, and RPPA data from firehose database 124 

https://gdac.broadinstitute.org/. For RPPA data, we filtered genes with more than 25% of 125 

samples with not-assigned measurements. 126 

 127 

ICGC datasets  128 

For the ICGC datasets, the pre-processed data were downloaded from ICGC data portal 129 

(https://dcc.icgc.org/). We selected datasets with more than one available types of omics data 130 

including mRNA expression profiles (i.e. RNAseq and Array), DNA methylation profiles based 131 

on Illumina HumanMethylation450 (HM450), miRNA expression profiles, and copy number 132 

somatic mutation profiles. Each of profiles was reformatted into a matrix with genes (or probes) 133 

as rows and  barcodes of samples as columns. The gene and miRNA expression profiles were 134 

log2 transformed and normalized by quantile normalization[13]. For copy number somatic 135 

mutation profiles, the segments were mapped to hg19 gene symbols. Some datasets contain 136 

very sparse segment information for copy number somatic mutation profiles such as CLLE-ES. 137 

We excluded these copy number profiles for further analysis. For methylation profiles, the 138 

probes were mapped to hg19 gene symbols.  139 

 140 

Simulation study   141 

Simulated data sets for testing alignment between a pair of omics profiles were generated. 142 

https://gdac.broadinstitute.org/
https://dcc.icgc.org/
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Given a set of N cis-associations and each of correlation coefficient rn, we can simulate omics 143 

profiles Υ  based on omics profiles Χ  for M samples as following: 𝑋𝑖 = 𝑁(0,1)  is a standard 144 

normal distribution, and 𝛾𝑖 =
𝑟𝑛

√1−𝑟𝑛
2

𝑋𝑖 + 𝜖 , where 𝜖 is standard normal distribution,  𝑁(0,1). For 145 

each N and M combination, we simulated N significant sets with rn  drawn from a truncated 146 

normal distribution with a cutoff value corresponding to correlation coefficients q-value < 0.05, 147 

as well as 2000 sets of random rn drawn from a normal distribution. We considered N significant 148 

cis-associations from 75 through 1000, and M samples from 100 through 1000. The simulated 149 

data with label error were generated by permuting the labels of one type of data. We considered 150 

0, 2, .. 10% label error rates. We measured sensitivity (i.e. recall) =
#𝑡𝑟𝑢𝑙𝑦 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

 #𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑎𝑖𝑟𝑠
, specificity 151 

(i.e. precision) = #𝑡𝑟𝑢𝑒𝑙𝑦 𝑎𝑙𝑖𝑔𝑛𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

#𝑎𝑙𝑖𝑔𝑛 𝑝𝑎𝑖𝑟𝑠
, false positive rate (FPR)=1-specificity, and F measures (= 2 ×152 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)   for assessment. Additionally, because a pair of omics profiles mostly has 153 

unbalanced samples, we mimics this by adding 10% of M samples for type A and type B omics 154 

profiles.  155 

 156 

Analyses  157 

Overview of proMODMatcher  procedure 158 

proMODMatcher followed the general framework of multi-omics data matching of the previous 159 

study [8]. Two types of data (or profiles) (i.e. Type A and Type B in Figure 1) were matched 160 

based on their cis-associations. Samples were initially matched based on annotated sample ID 161 

and potential cis-associations (Figure 1A). The significant cis-associations from two different 162 

data types were identified by the Spearman correlations (Figure 1B). The data for each cis-163 

association was normal rank-transformed (Figure 1B). The profile similarity between the two 164 
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types of data 𝑆(𝐴𝑖, 𝐵𝑗) is defined as the correlation between profile i of type A and profile j of 165 

type B (Figure 1C). The probability of a match between profile i of type A and profile j of type B 166 

is estimated by evaluating a similarity score in a bivariate normal distribution (Figure 1D). 167 

Based on probability of a match, proMODMatcher determines self- or cross-alignments for each 168 

match. First, profile pairs matched by annotated sample IDs were checked whether their 169 

similarity scores were high (Figure 1D) to be annotated as “self-aligned”. If not, additional steps 170 

were applied to find any potential matches among other unmatched profiles (Figure 1E). The 171 

matched profile pairs were then used to update significant cis-associations. We iteratively 172 

refined profile alignment and rounds of alignments were repeated until there were no further 173 

updates (Figure 1F).  174 

 175 

Simulation studies 176 

Numbers of significant cis-associations and samples are two important deterministic factors of 177 

similarity scores as well as the accuracy of omics profile alignment results. To investigate the 178 

effect of numbers of samples and cis-associations, we simulated data sets with different 179 

numbers of samples and significant cis-associations and applied MODMatcher and 180 

proMODMatcher to the simulated data sets.  For MODMatcher, when the number of cis-181 

associations was >200, almost all profile pairs could be aligned at high accuracy (false positive 182 

rate vs. sensitivity) (Figure 2). The similarity scores of matched pairs based on a low number of 183 

cis-associations were more variable resulting in lower accuracies (Supplementary Figure S1). 184 

This result indicates that the MODMatcher can be applied to align the omics profile pairs with 185 

>200 cis-associations, such as methylation-mRNA profiles with over 7000 intrinsic cis-186 

associations and mRNA-CNV profiles with over 10,000 intrinsic cis-associations [8]. On the 187 

other hand, when the number of cis-associations was around 200 or below, the accuracy of 188 
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sample alignments dropped as the number of samples increased (Figure 2). When aligning 189 

gene expression profiles with miRNA or RPPA profiles, the number of candidate intrinsic cis-190 

associations was small (detailed below). Thus, MODMatcher was not powered to accurately 191 

align these types of profile pairs.  192 

 The proMODMatcher was applied to the same simulated datasets and was able to 193 

achieve high sensitivities and low FPRs across a wide range of numbers of cis-associations and 194 

samples (Figure 3A).  When compared with MODMatcher’s results, proMODMatcher resulted in 195 

better accuracies (F measure in Figure 3B), similar sensitivities (Figure 3C), and better 196 

specificities (Figure 3D). 197 

 We further investigated their performances when there were labeling errors. Datasets 198 

with sample labeling errors (i.e. 4% and 6%) were simulated by randomly assigning some 199 

samples’ labels, then proMODMatcher and MODMatcher were applied to identify aligned profile 200 

pairs.  As expected, when a larger number of cis-associations was available, proMODMatcher 201 

achieved a high sensitivity and low FPR (Figure 3A).  Across all tested combinations of 202 

numbers of cis-associations and samples, proMODMatcher resulted in >99% accuracy with 4-203 

6% input labeling error rates, consistently outperformed MODMatcher (Figure 3B). The top goal 204 

of MODMatcher  and proMODMatcher is to identify sample labeling errors without introducing 205 

any errors. Thus, we optimized the specificity of proMODMatcher over its sensitivity. In terms of 206 

sensitivity and specificity’s contribution to F scores, proMODMatcher achieved a similar 207 

sensitivity as MODMatcher (Figure 3C) but better specificities in all cases (Figure 3D).  These 208 

simulation results suggest that proMODMatcher is applicable for identifying and correcting 209 

labeling errors even when the number of cis-associations is small such as paring mRNA-miRNA 210 

or mRNA-RPPA profiles.  211 

 212 
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Application to TCGA breast cancer dataset: mRNA and miRNA profiles  213 

Multiple omics data, including profiles of mRNA, miRNA, protein, DNA methylation, and CNV, 214 

were available in TCGA.  The proMODMatcher was applied to align methylation and/or CNV 215 

profiles to mRNA profiles similar to what we did previously [8].  Here we focused on alignment of 216 

miRNA expression profiles to mRNA expression data because the number of candidate intrinsic 217 

cis-associations between miRNA and mRNA profiles was small.  We used the TCGA breast 218 

cancer (BRCA) dataset as an example to illustrate the profile alignment results in detail.  There 219 

were mRNA expression profiles based on two different platforms, Agilent microarray and 220 

RNAseq technology. There were 519 tumor samples with both mRNA expression measured in 221 

Agilent microarray and miRNA expression measured by small-RNA sequencing method, and 222 

1041 tumor samples with both mRNA expression measured in RNAseq and miRNA measured 223 

by small-RNA sequencing method. A small portion of miRNAs are embedded in gene regions 224 

(i.e. host genes) and frequently co-transcribed with host genes [14, 15] (Figure 4A), embedded 225 

miRNA-host gene pairs were candidate intrinsic cis-associations. Total 1222 miRNAs were 226 

profiled, and 227 and 271 of them were mapped to host genes, for Agilent microarray and 227 

RNAseq data, respectively.  Among them, 138 out of 227 and 175 out of 271 miRNA-host genes 228 

pairs were significantly associated with each other at q-value<0.05, for Agilent microarray and 229 

RNAseq data, respectively. For example, miR-452 located in the gene body of GABRE, its 230 

expression was highly associated with mRNA expression of GABRE (Figure 4B). Based on 231 

these intrinsic cis-associations between expression levels of miRNAs and host genes, we 232 

aligned the two types of omics data.  233 

 234 

Aligning gene expression profiles by RNAseq and miRNAseq data  235 
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The similarity scores of self-aligned gene expression-miRNA expression profiles were much 236 

higher than other possible pairings in general (Figure 4C): 898 out of 1041 (86.2%) the 237 

similarity scores for self-self RNAseq-miRNAseq profiles were ranked at top 2%. For example, 238 

the similarity score for the self-aligned profiles of TCGA−D8−A1JH-01 was top ranked among 239 

other possible pairings (Figure 4D). Total 143 miRNA profiles that were not matched to the 240 

corresponding mRNA profiles of the same sample names based on MODMatcher (e.g. 241 

TCGA−B6−A0X7-01 shown in Figure 4E). Among profile pairs that were not self-aligned, 5 for 242 

RNAseq profiles were cross-aligned to other samples’ miRNA profiles (Supplementary Table 243 

S1). The rate of alignment was low compared to alignments of other types of profile pairs. For 244 

example,  >99% profile pairs of DNA methylation and mRNA expression profiles were aligned 245 

for the TCGA BRCA data set.   246 

Table 1. Application of proMODMatcher to mRNA and miRNA profiles of TCGA BRCA data.  247 
Data 
types 

Data types # 
samp
les1 

# cis 
pair 2 

# of self-
aligned  

# of 
cross  

Cross-aligned  
pairs 

Self-aligned in 
RNA-CNV3 

Cross-aligned 
pairs 

By 
MODMa
tcher4 

Type1  Type 2     Type 1  Type 2  

RNAseq miRNAseq 1041 175/2
15 

989 
(95.0%) 

1  TCGA-BH-
A0BZ-01 

Y TCGA-E2-
A15K-01 

Y 

Agilent miRNAseq 519 138/1
78 

466 
(89.7%) 

9  TCGA-A8-
A07U-01 

Y TCGA-A2-
A3XY-01 

Y 

      TCGA-BH-
A0H9-01 

Y TCGA-EW-
A423-01 

N 

      TCGA-AO-
A128-01 

Y TCGA-BH-
A18V-06 

Y 

      TCGA-A1-
A0SD-01 

No: TCGA-
BH-A0EI-01 

TCGA-BH-
A0EI-01 

Y 

      TCGA-BH-
A18K-01 

No: TCGA-
BH-A18T-01 

TCGA-BH-
A18T-01 

Y 

      TCGA-BH-
A18T-01 

No: TCGA-
BH-A18K-01 

TCGA-BH-
A18K-01 

Y 

      TCGA-BH-
A0BZ-01 

Y TCGA-E2-
A15K-01 

Y 

      TCGA-BH-
A0BS-01 

No: TCGA-
BH-A0BT-01 

TCGA-BH-
A0BT-01 

Y 

      TCGA-AR-
A0U0-01 

Y TCGA-AR-
A256-01 

Y 

The bold indicates cross-alignments supported by other data and underlines indicates sample swaps.  248 
1The number of common sample with both type1 and type2 profiles. 249 
2The number of significant cis-pairs at q-value <0.05 at final iteration and the number of cis-pairs investigated.  250 
3Indicating the RNA samples of cross-aligned pairs were self-aligned or not in alignment between RNA profile (Agilent 251 
array or RNAseq) and CNV profile. The aligned pairs were also shown if there was a cross-aligned sample.  252 
4Indicating whether the cross-aligned pairs were cross-aligned by MODMatcher. 253 

Applying proMODMatcher to TCGA BRCA RNAseq-miRNAseq datasets, the 254 
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probabilities of similarity scores (before multiplying prior probability) for self-aligned RNAseq-255 

miRNA profiles were much higher than other possible pairs in general (Figure 4F). An example 256 

of similarity scores of a self-aligned RNAseq-miRNA profile pair and other possible pairs is 257 

shown in Figure 4G. There were multiple self-self pairs with low probabilities for self-alignment 258 

(Figure 4F and Figure 4H), suggesting potential labeling errors in RNAseq and/or miRNA 259 

profiles. Overall, 989 out of 1041 candidate matching pairs (i.e. 95.0%) (Table 1) were self-260 

aligned compared to 86.2% for MODMatcher. Among profiles that were not self-aligned, 1 261 

profile pair (i.e. TCGA-BH-A0BZ-01 and TCGA-E2-A15K-01) was cross-aligned to each other 262 

(Table 1).  263 

Comparing MODMatcher and proMODMatcher, the proMODMatcher identified additional 264 

91 self-aligned profile pairs that were missed by MODMatcher. For example, the similarity score 265 

of self-alignment for TCGA-AO-A0JF-01 was among the highest one when the miRNA profile 266 

compared to RNAseq profiles of other samples (y-axis in Figure 5A). However, the RNAseq 267 

profile of TCGA-AO-A0JF-01 was highly similar with multiple miRNA profiles of other samples 268 

(x-axis in Figure 5A).  As a result, the rank-based MODMatcher rejected the self-alignment, but 269 

proMODMatcher identified self-alignment for TCGA-AO-A0JF-01 with p-value of 7.3x10-6. 270 

 One cross-aligned pair, RNAseq of TCGA-BH-A0BZ-01 and miRNA of TCGA-E2-A15K-271 

01, was identified by both proMODMatcher and MODMatcher. The similarity score of the cross-272 

aligned pair is shown in Figure 5B. The similarity scores of self-self alignments were low (red 273 

dots in Figure 5B); on the other hand, the similarity score of the cross-aligned pair was 274 

significantly higher compared to other similarity scores (Figure 5B), indicating high confidence 275 

of cross-alignment. On the other hand, the cross-aligned pairs detected only by MODMatcher 276 

showed relatively marginal similarity scores even though the similarity scores of cross-aligned 277 

pairs were the highest (Supplementary Figure S2). Furthermore, we compared significance 278 
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levels of cis-associations based on profile pairs aligned by MODMatcher and proMODMatcher. 279 

They were comparable in general with a few highly significant cis-associations more significant 280 

based on proMODMatcher compared to MODMatcher (Figure 5C). 281 

  282 

Aligning gene expression profiles by Agilent microarray and miRNAseq data 283 

MODMatcher and proMODMatcher were also applied to align mRNA expression profiles based 284 

Agilent microarray and miRNA profiles. There were 138 cis-associations identified based on 285 

Agilent microarray data and miRNAseq data.  Based on these cis-associations, 87% of 286 

candidate profile pairs were identified as self-aligned by MODMatcher (Supplementary Table 287 

S1) while 89.7% of candidate profile pairs were self-aligned by proMODMatcher (Table 1).  288 

Among profiles that were not self-aligned, 9 cross-aligned profile pairs were identified by 289 

proMODMatcher (Table 1, Supplementary Figure S3B), 8 out of 9 pairs were also detected by 290 

MODMatcher (Table 1). MODMatcher detected additional cross-aligned pairs including several 291 

questionable cross-aligned pairs (i.e. TCGA−E2−A153−01 and TCGA−E9−A1NG−01, TCGA-292 

AR-A1AL−01 and TCGA−AR−A1AN−01 in Supplementary Figure S4). The cross-aligned pairs 293 

by proMODMatcher included a possible swap between TCGA-BH-A18K-01 and TCGA-BH-294 

A18T-01 (Figure 6A and Table 1).  To determine the source of labeling errors (due to mRNA 295 

Agilent profiles or miRNA profiles) other omics profiles were compared with each other and 296 

results were summarized into a patient-centric view (Figure 6B).   For patient/sample TCGA-297 

BH-A18K, the RNAseq and miRNAseq profiles were self-aligned and the RNAseq and CNV 298 

profiles were self-aligned as well (Figure 6B). Similarly, for patient/sample TCGA-BH-A18T, the 299 

RNAseq profile was self-aligned to the miRNA, CNV, and DNA methylation profiles as well as 300 

the RPPA profile (detailed below) (Figure 6B).  The cross-alignments of TCGA-BH-A18K-01 301 

and TCGA-BH-A18T-01 mRNA Agilent profiles with their miRNA profiles (Figure 6B) indicate 302 
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sample swapping occurred in mRNA Agilent array profiles. After swapping the corresponding 303 

mRNA Agilent array profiles, multiple-omics profiles of TCGA-BH-A18K and TCGA-BH-A18T 304 

were aligned to each other consistently (Figure 6C). Our previous study based on pairwise 305 

profile alignments of gene expression, DNA methylation and CNV also identified the sample 306 

swaps in mRNA Agilent array profiles of TCGA-BH-A18K-01 and TCGA-BH-A18T-01 [8] 307 

(Figure 6B-C). In addition, proMODMatch identified a cross-alignment of the mRNA Agilent 308 

array profile of TCGA-A1-A0SD-01 and the miRNA profile of TCGA-BH-A0EI-01 (Table 1, 309 

Figure 6D), consistent with potential sample swaps of mRNA Agilent array profiles of TCGA-A1-310 

A0SD-01 and TCGA-BH-A0EI-01 when alignments of other omics profiles were included. 311 

Similarly, the cross-alignment between the Agilent array profile of TCGA-BH-A0BS-01 and the 312 

miRNA profile of TCGA-BH-A0BT-01 was likely a result of a swap between the Agilent array 313 

profiles of the two samples when adding all available omics data into the comparison (Figure 314 

6E).  315 

The proMODMatcher identified a cross-aligned pair between the mRNA Agilent array 316 

profile of TCGA-BH-A0BZ-01 and the miRNA profile of TCGA-E2-A15K-01(See Table 1, Figure 317 

6F). The miRNA profile of TCGA-E2-A15K-01 was also cross-aligned to the mRNAseq profile of 318 

TCGA-BH-A0BZ-01 (Table 1, Figure 5B).  When including alignments of other omics profiles in 319 

a patient-centric view (Figure 6F), the result suggests that there was a labeling error of the 320 

miRNA profile of TCGA-E2-A15K-01.  321 

These results together suggest that proMODMatcher with 138 cis-associations can 322 

accurately identify sample labeling errors and unambiguously correct labeling errors.  323 

 324 

Application to TCGA breast cancer dataset: mRNA and RPPA  profiles  325 
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There were 424 tumor samples with both mRNA expression measured in Agilent microarray and 326 

RPPA data, and 856 tumor samples with both mRNA expression measured in RNAseq and 327 

RPPA data. Total 145 proteins were mapped to unique mRNA transcripts, and 97 and 104 of 328 

protein-mRNA pairs whose protein abundance was significantly correlated (q<0.05) with the 329 

corresponding mRNA’s expression level were defined as significant cis-associations based on 330 

Agilent microarray and RNAseq data, respectively (Figure 7A and Table 2). And 84.9% and 331 

80.2% of candidate profile pairs were identified as self-aligned by proMODMatcher (Table 2). 332 

Examples of similarity scores of a self-aligned RNAseq-miRNA profile pair (Figure 7B) and a 333 

cross-alignment (Figure 7C, Supplementary Figure S5) comparing with other possible pairs 334 

are shown. The cross-aligned pair of the mRNA Agilent microarray profile TCGA-AR-A1AV-01 335 

and the RPPA profile of TCGA-AR-A1AW-01 data was identified (Figure 7D), consistent with 336 

labeling errors in the mRNA Agilent array data (Figure 7D). However, this pair was not identified 337 

by MODMatcher (Table 2). The potential cross-alignment between the mRNA Agilent 338 

microarray profile TCGA-AR-A1AW-01 and the RPPA profile of TCGA-AR-A1AV-01 data was not 339 

identified (Figure 7D), suggesting proMODMatcher’s sensitivity is limited when the number of 340 

cis-associations is around 100.  A large number of non-random missing data in RPPA data 341 

(Supplementary Figure S6) may also contribute to low sensitivity of the method.    342 

Table 2. Application of proMODMatcher to mRNA and RPPA profiles of TCGA BRCA data 343 
Data 
types 

Data 
types 

# 
samples1 

# cis 
pair 2 

# of self-
aligned  

# of 
cross  

Cross-
aligned  
pairs 

Self-aligned in 
RNA-CNV3 

Cross-
aligned pairs 

By 
MODMat
cher4 

Type1  Type 2     Type 1  Type 2  

RNAseq RPPA 856 104/151 687 
(80.2%) 

1  TCGA-A7-
A56D-01 

Y TCGA-W8-
A86G-01 

Y 

Agilent RPPA 424 97/145 360 
(84.9%) 

11  TCGA-BH-
A0DS-01 

No :TCGA-BH-
A0BA-01 

TCGA-E2-
A1IL-01 

Y 

      TCGA-E2-
A10C-01 

Y TCGA-LL-
A5YN-01 

Y 

      TCGA-E2-
A1B0-01 

Y TCGA-D8-
A1JK-01 

Y 

      TCGA-AR-
A1AV-01 

No: TCGA-AR-
A1AW-01 

TCGA-AR-
A1AW-01 

N 

      TCGA-E2-
A1B6-01 

No:TCGA-E2-
A1B5-01 

TCGA-AR-
A255-01 

N 

      TCGA-A8- Y TCGA-D8- N 
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A07J-01 A1JU-01 

      TCGA-A8-
A0AB-01 

Y TCGA-EW-
A1J3-01 

N 

      TCGA-AN-
A04C-01 

Y TCGA-E9-
A1N9-01 

N 

      TCGA-E2-
A105-01 

Y TCGA-C8-
A1HO-01 

Y 

      TCGA-AN-
A0XL-01 

Y TCGA-D8-
A1Y2-01 

N 

      TCGA-AN-
A0XV-01 

Y TCGA-GM-
A2DM-01 

N 

The bold indicates cross-alignments supported by other data.  344 
1The number of common sample with both type1 and type2 profiles. 345 
2The number of significant cis-pairs at q-value <0.05 at final iteration and the number of cis-pairs investigated.  346 
3Indicate the RNA sample of cross-aligned pairs are self-aligned or not in alignment between RNA profile (Agilent 347 
array or RNAseq) and CNV profile. The aligned pairs are also shown if there is a cross-aligned sample.  348 
4Indicate cross-aligned pairs are cross-aligned by MODMatcher. 349 
 350 
Application to TCGA pan-cancer datasets  351 

The proMODMatcher was also applied to pan-cancer datasets (total 22 different types of 352 

cancers) in TCGA to align miRNA (Table 3) and RPPA profiles (Table 4) with mRNA profiles.   353 

When aligning RNAseq and miRNAseq profiles, more than 95% of candidate profile pairs were 354 

identified as self-aligned for most cancer datasets (Figure 8A). The self-alignment rates for 355 

SARC, DLBC, and CESC were 100%, suggesting high data quality for the datasets (Figure 8A, 356 

Table 3).  On the other hand, miRNA expression profiles were aligned to mRNA expression 357 

profiles (i.e. Agilent, HG-U133, or RNAseq) at low self-alignments rate for the GBM dataset 358 

(Figure 8A), suggesting low quality of the TCGA GBM miRNA profiles.  359 

 For alignments between mRNA and RPPA profiles, the self-alignment rates were lower 360 

than alignments between mRNA and miRNA (Figure 8B) for most datasets due to lower 361 

numbers of cis-associations between mRNA and RPPA profiles. The self-alignment rates for 362 

DLBC (96.97%) and SARC (97.7%) were higher compared to other datasets (Figure 8AB), 363 

again suggesting high data qualities of the datasets. This observation indicates some datasets 364 

in TCGA showed consistently high confidence for sample quality and low data labeling errors.  365 

 Even in datasets of high quality, sample labeling errors were detected.  For example, the 366 

self-alignment rate for mRNA-miRNA profiles of the TCGA UCEC dataset was 98%.  Four 367 
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cross-alignments were identified (Table 3).  Two of them were likely due to a swap of miRNA 368 

profiles of TCGA-AX-A1C4-01 and TCGA-AX-A1CI-01 after considering other types of omics 369 

data (Figure 8C). Similarly, the self-alignment rate for mRNA-miRNA profiles of the TCGA OV 370 

dataset was 96.9%.  Five cross-alignments were identified (Table 3).  Two of them were likely 371 

due to a swap of miRNA profiles of TCGA-24-2261-01 and TCGA-31-1953-01 (Figure 8D). 372 

 373 

Application to ICGC datasets 374 

We applied proMODMatcher to 8 cancer datasets that were generated by institutes in the U.S., 375 

Spain, UK, Germany, Australia, Canada, and France. Each dataset contains more than one 376 

types of omics data including mRNA expression profiles (i.e. RNAseq and Array), DNA 377 

methylation profiles based on Illumina HumanMethylation450 (HM450), miRNA expression 378 

profiles, and copy number somatic mutation profiles. The ICGC datasets used and the 379 

associated alignment results were summarized in Table 5. In some of datasets such as  PAEN-380 

AU and PRAD-FR,  all profiles were matched to other corresponding profiles of the same 381 

sample names (Table 5). On the other hand,  several sample errors were identified in some 382 

datasets.  For example, mapping between gene expression Array  and CNV profiles in the  383 

NBL-US dataset resulted in 170 self-self aligned sample pairs, 10 non self-self aligned samples 384 

and 12 cross-mapped pairs of profiles (examples shown in Figure 9A).  Mapping gene 385 

expression profiles by RNAseq and Array in the CLLE-ES dataset yielded five non self-self 386 

aligned samples and two cross-mapped pairs of samples. The two cross-mapped pairs of 387 

samples were likely due to a swap of either RNAseq profile or Array profile (Figure 9B). 388 

Similarly, proMODMatcher identified three cross-alignments between RNAseq and DNA 389 

methylation profiles in the PRAD-CA dataset, which were also involved in cross-mappings when 390 

mapping Array and DNA methylation profiles: two of them were likely due to a swap of DNA 391 
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methylation  (HM450) profiles of DO229525 and DO51109 (Figure 9CD), and one of them was 392 

likely due to sample labeling errors in DNA methylation array (HM450) (Figure 9CD).       393 

Table 5. Application of proMODMatcher to datasets with multiple types of omics datasets from 394 
ICGC database 395 
Dataset Cancer type  Country Data types Data types # 

samples 

# cis 
pair  

# self  # non-
self  

# cross  

   Type1  Type 2      

CLLE-ES Chronic 
Lymphocytic 
Leukemia  

Spain 
 

Exp-Array Methylation 139 3614 139 0 0 

Exp-Array Exp-Seq 293 12753 288 5 2 

Exp-Seq Methylation 101 3666 101 0 0 

MALY-DE Malignant 
Lymphoma 

Germany Exp-Seq miRNA 49 134 49 0 0 

PAEN-AU Pancreatic 
Cancer 
Endocrine 
neoplasms 
 

Australia 
 

Exp-seq CNV 32 2205 32 0 0 

Exp-Array CNV 23 541 23 0 0 

Exp-Array Exp-Seq 21 3425 21 0 0 

Exp-Seq Methylation 32 3902 32 0 0 

Exp-Array Methylation 31 3845 31 0 0 

NBL-US Neuroblastoma 
 

USA Exp-Array CNV 180 2396 170 10 12 

OV-AU Ovarian  Australia 
 

Exp-Seq Methylation 80 1045 80 0 0 

Exp-Seq miRNA 82 56 79 3 0 

PRAD-CA Prostate Cance
r Adenocarcino
ma 
 

Canada Exp-Array Exp-Seq 136 10676 133 3 0 

Exp-Array Methylation 210 3114 196 14 4 

Exp-Seq Methylation 142 4263 132 10 3 

PRAD-FR Prostate Cance
r Adenocarcino
ma 

France Exp-Array Exp-Seq 25 4249 25 0 0 

PACA-AU Pancreatic 
Cancer 

Australia 
 

Exp-Array Exp-Seq 72 7548 72 0 0 

Exp-Array CNV 121 1041 118 3 0 

Exp-Seq CNV 79 1327 78 1 0 

Exp-Seq Methylation 77 5538 77 0 0 

Exp-Array Methylation 174 2514 169 5 1 

 396 

Discussion 397 

We developed a sample alignment method, proMODMatcher, for detecting and correcting 398 

sample labeling errors by aligning omics profiles. The proMODMatcher extended our previous 399 

method MODMatcher by estimating probabilities of potential matches rather than using ranks of 400 

similarity scores.  Applied to simulated datasets,  proMODMatcher outperformed MODMatcher 401 

when aligning the omics data profiles with relatively small number of cis-associations.  We 402 

showed that the number of candidate intrinsic cis-association between mRNA-miRNA profiles or 403 

mRNA-RPPA profiles was low. Application of our proMODMatcher to alignment between 404 

mRNA-miRNA profile pairings and mRNA-RPPA profile pairings from 22 different cancer 405 
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datasets in TCGA demonstrated that sample labeling errors occurred even in datasets of high 406 

quality and our procedure was not only able to identify sample labeling errors but also to 407 

unambiguously identify the source of the errors.  408 

 Integrating multi-omics data into comprehensive network models is essential to elucidate 409 

complex molecular mechanisms of cancers. After correcting sample labeling errors, 410 

associations between different profiles were stronger.  For example, mis-labeled samples were 411 

outliers when comparing significant pairs between mRNA and miRNA expression levels in the 412 

TCGA BRCA dataset (Figure 10A, red dots were mis-labeled samples). Spearman correlation 413 

between expression levels of miRNAs and their host genes were improved for most pairs of 414 

miRNA-host genes after curating sample labeling errors (Figure 10B).  415 

We showed that some potential cross-aligned profiles pairs in the TCGA BRCA dataset 416 

were missed by proMODMatcher. The sensitivity and accuracy of multi-omics profile matching 417 

methods needs further improvement.  Integrating more than two types of profiles in probability 418 

estimation may yield more robust sensitivity and specificity when the number of cis-associations 419 

is small.   420 

The proMODMatcher depends on a set of biological cis-associations and the information 421 

content (Shannon entropy) of each cis-association depends on the randomness of each locus or 422 

gene.  Thus, in our analyses, we excluded biological cis-associations that are driven by extreme 423 

values (rare events).  For example, in eQTL analyses, we only included loci of minor allele 424 

frequency (MAF)>0.05.  Missing values commonly occur in high throughput omics data.  In our 425 

analyses, we don’t explicitly impute missing values.  Instead, we filtered out probes or genes of 426 

more than 25% missing value in the data pre-processing step.  427 
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 The computational cost of applying proMODMatcher is small. For example, mapping 428 

mRNA and miRNA expression profiles for 408 samples took 802 seconds of CPU time with 429 

maximum memory usage  of 503 MB on a machine with CPU processor 3.50 GHz. 430 

 431 

Potential implications 432 

Our results demonstrated that sample labeling errors were common in large multi-omics 433 

datasets. Our method has improved statistical accuracy to identify and curate these errors over 434 

the previous method, and generally applicable to other data sets. Application of our general 435 

framework for automated curation of public databases and properly merging omics data would 436 

be the fundamental basis for the development of effective integrative approaches. 437 

 438 

Methods  439 

A general framework of multi-omics data matching: Pairwise alignments based on cis-440 

associations  441 

We followed the general framework of multi-omics data matching of the previous study [8]. Two 442 

types of data (or profiles) (i.e. Type A and Type B in Figure 1) were matched based on their cis-443 

associations. Probes in different types of data were matched by intrinsic biological relationships. 444 

For example, probes in methylation, miRNA and Copy number variation (CNV) profiles were 445 

mapped to a close transcript based on hg19 reference genome. Samples were initially matched 446 

based on annotated sample ID and potential cis-associations (Figure 1A). The significant cis-447 

associations from two different data types were identified by the Spearman correlations at 448 

Benjamini-Hochberg (BH) adjusted q-value < 0.05 (Figure 1B). The data for each cis-449 

association was normal rank-transformed as 𝑅𝑇(𝐴𝑛,𝑖)  and 𝑇(𝐵𝑛,𝑖)  , where 𝐴𝑛,𝑖   and 𝐵𝑛,𝑖  450 

represents the measurements of sample i and nth cis-related probes for Type A and B profiles, 451 
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respectively (Figure 1B). For simplicity, we omitted all normal rank transformation in the rest of 452 

notations. The profile similarity between the two types of data 𝑆(𝐴𝑖 , 𝐵𝑗) is defined as  (Figure 453 

1C): 454 

𝑆(𝐴𝑖 , 𝐵𝑗) = 𝑐𝑜𝑟𝑟(𝐴𝑖 , 𝐵𝑗) 455 

=
∑ 𝐴𝑛,𝑖

𝑁
𝑛=1 ∑ 𝐵𝑛,𝑗

𝑁
𝑛=1 − 𝑁 ∑ 𝐴𝑛,𝑖 × 𝐵𝑛,𝑗

𝑁
𝑛=1

√𝑁 ∑ 𝐴𝑛,𝑖
2 − (∑ 𝐴𝑛,𝑖

𝑁
𝑛=1 )2𝑁

𝑛=1 √𝑁 ∑ 𝐵𝑛,𝑖
2 − (∑ 𝐵𝑛,𝑖

𝑁
𝑛=1 )2𝑁

𝑛=1

 456 

  457 

First, profile pairs matched by annotated sample IDs were checked whether their similarity 458 

scores were high (Figure 1D) to be annotated as “self-aligned”. If not, additional steps were 459 

applied to find any potential matches among other unmatched profiles (Figure 1E). The 460 

matched profile pairs were then used to update significant cis-associations. We iteratively 461 

refined profile alignment and rounds of alignments were repeated until there were no further 462 

updates.  463 

 464 

Biological cis-associations  465 

“Biological cis-associations” reflect different biological regulations when different pairs of omics 466 

data are mapped.  (1) cis-eQTLs for mapping genotype and gene expression data: a genetic 467 

polymorphism at a gene’s promotor or regulatory region affects transcription factors or co-468 

factors binding, which in turn affects the abundance of the gene’s transcripts [11].  If the genetic 469 

polymorphism occurs within 1M bases from the gene’s transcription start site and the 470 

association is significant at the false discovery rate (FDR) <0.05, the association is called as a 471 

cis-eQTL. (2) cis-methylations for mapping DNA methylation and gene expression data: 472 

increased DNA methylation at CpGs sites near a gene promoter region is associated with gene 473 

repression [12]. A methylation probe is assigned to the transcript whose start site is closest to 474 
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the genomic location of the methylation probe when it is potentially mapped to multiple 475 

transcripts. If a DNA methylation probe locates within 1M bases from the gene’s start site and 476 

the association between the methylation level and the gene’s expression level is significant at 477 

FDR <0.05, the methylation probe is a cis-methylation probe. (3) cis-CNVs for mapping DNA 478 

copy number variations (CNVs) and gene expression profiles: amplified or deleted genomic 479 

regions can regulate the expression levels of genes within that genomic region [16]. If a gene’s 480 

expression  is associated with its CNV at FDR <0.05, the CNV is a cis-CNV. (4) cis-miRNA-481 

gene pairs for mapping miRNA and gene expression profiles: a small portion of miRNAs are 482 

embedded in gene regions (i.e. host genes) and frequently co-transcribed with host genes [14, 483 

15]. If the expression levels of a miRNA and   its host gene are associated at FDR <0.05, the 484 

pair is a cis-miRNA-gene pair. (5) cis-mRNA-protein pairs for mapping protein and gene 485 

expression profiles: the abundance of a protein depends on the corresponding mRNA transcript 486 

level and other factors [17]. If their association is significant at FDR <0.05, the pair is a cis-487 

mRNA-protein pair.  488 

 489 

Multi-Omics Data matcher (MODMatcher) 490 

In the “Determine self-aligned vs. cross-aligned” step (Figure 1E), the similarity scores of self-491 

aligned profiles between type A and type B, 𝑆(𝐴𝑖 , 𝐵𝑖), were top 5% ranked among 𝑆(𝐴𝑛, 𝐵𝑖), 𝑛 =492 

1 … 𝑁𝐴  as well as 𝑆(𝐴𝑖, 𝐵𝑛), 𝑛 = 1 … 𝑁𝐵  , to be annotated as self-aligned, where 𝑁𝐴 and 𝑁𝐵 493 

represent the number of samples of type A and type B, respectively. If the sample sizes were 494 

bigger than 400, top 20 was used as the threshold for self-alignment. Next, for the profiles that 495 

were not self-aligned, reciprocal mapping was applied to find any potential matches among 496 

other unmatched profiles.  If sample j  of type A and sample k of type B,  𝑆(𝐴𝑖 , 𝐵𝑘) is 1st ranked 497 
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among 𝑆(𝐴𝑗 , 𝐵𝑛), 𝑛 = 1 … 𝑁𝐵  as well as 𝑆(𝐴𝑛, 𝐵𝑘), 𝑛 = 1 … 𝑁𝐴 , then the pair is  annotated as 498 

cross-aligned.   499 

 500 

A probabilistic Multi-Omics Data matcher (proMODMatcher) 501 

The characteristics (noises, biases, dynamic ranges, and etc.) of two types of profiles may be 502 

different. The rank-based cutoff was not able to reflect similarity score differences in a specific 503 

similarity score distribution with a large or small variance (Supplementary Figure S7).  In the 504 

“Determine self- vs. cross-aligned” step, the proMODMatcher evaluated a similarity score in a 505 

bivariate normal distribution, Χ~𝑁2(𝛍, 𝚺), where  𝛍 is the mean vector and 𝚺 is the covariance 506 

matrix (Figure 1D). The probability of a match between profile i of type A and profile j of type B, 507 

P(𝐴𝑖 , 𝐵𝑗) = 𝑃(𝑆(𝐴𝑖 , 𝐵𝑗), 𝑆(𝐴𝑖 , 𝐵𝑗)) , is estimated based on a score distribution 508 

of  (𝑆(𝐴𝑖 , 𝐵𝑚), 𝑆(𝐴𝑚, 𝐵𝑗)) , where Am and Bm represent type A and type B profile of the mth 509 

matched profile pairs, respectively. Given the bivariate normal distribution, we calculated the 510 

distance of a point  𝑥 = (𝑆(𝐴𝑖 , 𝐵𝑚), 𝑆(𝐴𝑚, 𝐵𝑗))  to the center of the distribution, known as 511 

Mahalanobis distance, as 𝑟 = √(𝑥 − 𝛍)𝑇Σ−1(𝑥 − 𝛍), and the cumulative function  𝐹(𝑅 ≤ 𝑟) = 1 −512 

𝑒−𝑟2 2⁄ .  To obtain a more robust estimation of covariance matrix  𝚺 of the distribution, we added 513 

1000 profile pairs of randomly permuted profiles in addition to true profile pairs. 514 

Additionally, we introduced a prior probability of self-alignment 𝑝0. Thus, given profiles Ai 515 

and Bj and their similarity score 𝑆(𝐴𝑖 , 𝐵𝑗) as well as estimated Mahalanobis distance ri,j , we 516 

calculated the p-value of the two profiles matched by chance  as 𝑝(𝐴𝑖, 𝐵𝑗)  =517 

 {
𝑝0 ∗ 𝑒−𝑟𝑖,𝑗

2 /2, 𝑖𝑓 𝑖 = 𝑗

𝑒−𝑟𝑖,𝑗
2 /2, 𝑖𝑓 𝑖 ≠ 𝑗

. In this study, the prior probability 𝑝0 was set as 𝑝0 = 1 𝑁𝑠⁄  , where 𝑁𝑠 518 

represents number of samples. We also set global similarity score cutoffs for self-alignment, 519 
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𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

, as well as cross-alignment, 𝑆𝑐𝑟𝑜𝑠𝑠
𝑐𝑢𝑡𝑜𝑓𝑓

. The  𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

 value was set as the lower bound of 520 

99% of the self-self similarity scores estimated by mean and standard deviations of 𝑆(𝐴𝑖 , 𝐵𝑖), 521 

where i indicates the samples with both type A and Type B profiles. And the 𝑆𝑐𝑟𝑜𝑠𝑠
𝑐𝑢𝑡𝑜𝑓𝑓

  was set as 522 

the lower bound of 68% of the self-self similarity scores.  523 

 The similarity score 𝑆(𝐴𝑖 , 𝐵𝑗)   and its corresponding p-value  𝑝(𝐴𝑖 , 𝐵𝑗)  were used to 524 

identify matched pairs between type A and type B profiles (Figure 1E). Each round of our 525 

procedure consisted of three steps. First, the self-alignment similarity score 𝑆(𝐴𝑖 , 𝐵𝑖)  and 526 

corresponding p-value 𝑝(𝐴𝑖, 𝐵𝑖) were calculated. If 𝑆(𝐴𝑖 , 𝐵𝑖) >𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

 and (𝐴𝑖 , 𝐵𝑖) < 𝑝𝑖≠𝑗(𝐴𝑖, 𝐵𝑗) , 527 

then the profiles 𝐴𝑖 and 𝐵𝑖  were self-aligned. Second, for a profile  𝐴𝑖 that was not self-aligned 528 

to the profile 𝐵𝑖 in the first step, it was compared to all unmapped profile 𝐵𝑗.  If the similarity 529 

score 𝑆(𝐴𝑖 , 𝐵𝑗) < 𝑆𝑐𝑟𝑜𝑠𝑠
𝑐𝑢𝑡𝑜𝑓𝑓

   and the corresponding p-value 𝑝(𝐴𝑖, 𝐵𝑗) ≤ 𝑎𝑟𝑔 min
𝑛∈[1…,𝑁𝐵]

(𝑝(𝐴𝑖 , 𝐵𝑛)) 530 

and 𝑝(𝐴𝑖, 𝐵𝑗) ≤ 𝑎𝑟𝑔 min
𝑛∈[1…,𝑁𝐴]

(𝑝(𝐴𝑛, 𝐵𝑗)), then the profiles 𝐴𝑖  and 𝐵𝑗   were cross-aligned. Third, 531 

for profile pairs 𝐴𝑖 and 𝐵𝑖  that were not aligned in the first two steps,  if 𝑆(𝐴𝑖 , 𝐵𝑖) >𝑆𝑠𝑒𝑙𝑓
𝑐𝑢𝑡𝑜𝑓𝑓

  and 532 

the  p-value  𝑝(𝐴𝑖 , 𝐵𝑖) was smaller than the fifth smallest among 𝑝(𝐴𝑖, 𝐵𝑛), 𝑛 = 1 … 𝑁𝐵 as well as  533 

𝑝(𝐴𝑛, 𝐵𝑖), 𝑛 = 1 … 𝑁𝐴,  then the profiles 𝐴𝑖 and 𝐵𝑖 were rescued as self-aligned. The rounds of 534 

alignments were repeated until there was no further change. 535 

 536 

Correlation of cis-associated mRNA and miRNA before and after correcting labeling 537 

errors 538 

To assess improvement of signals after labeling error correction, we calculated Spearman 539 

correlation between miRNA expression and its host genes with initially matched pairs based on 540 

sample ID and with aligned sample pairs. To avoid bias due to different number of samples, we 541 

matched the number of samples of initially matched pairs to the number of aligned pairs. We 542 
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randomly selected the samples with the same number of aligned pairs, and calculated the 543 

Spearman correlation. We performed random selection 100 times and calculated mean of 544 

correlation.            545 

 546 

Availability of source code and requirements 547 

Project name: ProMODMatcher  (passcode to decrypt the zipped file is “password123”) 548 

Project home page: Github site (https://github.com/integrativenetworkbiology/proMODMatcher) 549 

and http://research.mssm.edu/integrative-network-biology/Software.html 550 

Operating system: Platform independent   551 

Programming language: R (R 3.5.1 or later) 552 

Other requirements: R package mnormt  553 

License: GNU General Public License 554 

RRID: SCR_017219 555 

 556 

Availability of supporting data and materials 557 

Data supporting the results of this article are deposited in Data supporting the results of this 558 

article are publicly available at firehose database, TCGA data portal, and ICGC data portal (see 559 

Data Description).  560 

 561 

Declarations 562 

List of abbreviations 563 

TCGA: The Cancer Genome Atlas 564 

QC: quality control 565 
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MODMatcher: Multi-Omics Data matcher 566 

proMODMatcher : A probabilistic Multi-Omics Data matcher  567 

BH: Benjamini-Hochberg 568 

FPR: false positive rate 569 

RPPA: Reverse Phase Protein Array  570 

CNV: Copy number variation 571 

HM27:  Illumina HumanMethylation27 Beadchip 572 

HM450: Illumina HumanMethylation450 Beadchip 573 

BRCA: breast invasive carcinoma 574 

BLCA: Bladder urothelial carcinoma 575 

CESC: Cervical and endocervical cancers 576 

COAD: Colon adenocarcinoma 577 

DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 578 

GBM: Glioblastoma multiforme 579 

HNSC: Head and Neck squamous cell carcinoma 580 

KIRC: Kidney renal clear cell carcinoma 581 

KIRP: Kidney renal papillary cell carcinoma 582 

LGG: Brain Lower Grade Glioma 583 

LIHC: Liver hepatocellular carcinoma 584 

LUAD: Lung adenocarcinoma 585 

LUSC: Lung squamous cell carcinoma 586 

OV: Ovarian serous cystadenocarcinoma 587 

PRAD: Prostate adenocarcinoma 588 

READ: Rectum adenocarcinoma 589 
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SARC: Sarcoma 590 

SKCM: Skin Cutaneous Melanoma 591 

STAD: Stomach adenocarcinoma 592 

THCA: Thyroid carcinoma 593 

UCEC: Uterine Corpus Endometrial Carcinoma 594 
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Figure legends 668 

Figure 1. Overview of proMODMatcher procedure. (A) Probes in two types of profiles (i.e. 669 

Type A and Type B) were matched by intrinsic biological relationships. (B) The significant cis-670 

associations from two different data types were identified by the Spearman correlation. The data 671 

for each cis relationship was normal rank-transformed. (C) The sample similarity score between 672 

the two types of data 𝑆(𝐴𝑖, 𝐵𝑗)  is defined as Spearman correlation between normal rank-673 

transformed profiles. (D) The proMODMatcher evaluated a similarity score of a match, 𝑆(𝐴𝑖 , 𝐵𝑗), 674 

by calculating probability of a match estimated based on a score distribution 675 

of (𝑆(𝐴𝑖, 𝐵𝑛), 𝑆(𝐴𝑛, 𝐵𝑗)), where An and Bn represent type A and type B profile of the nth matched 676 

profile pairs. (E) In the Determine self-aligned vs. cross-aligned step, profile pairs matched by 677 

sample IDs were checked whether their similarity scores were high to be annotated as “self-678 

aligned”. If not, additional steps were applied to find any potential matches among other 679 

unmatched profiles. The matched profile pairs were used to update significant cis-associations.  680 

 681 

Figure 2. Application of MODMatcher to simulated data sets. We simulated data sets with 682 

different numbers of samples and significant cis-associations. For variable number of samples 683 

and significant cis-associations, sensitivity and false positive rate (FPR, 1-specificity) were 684 

measured and plotted.  685 

 686 

Figure 3. Application of  proMODMatcher to simulated data sets. (A) For variable number of 687 

samples and significant cis-associations specificity and FPR were measured based on 688 

simulated data sets with 0%, 4% and 6% sample labeling error rate. (B-C) F measure, 689 

sensitivity, and specificity were compared with MODMatcher’s results.  690 



 32 

 691 

Figure 4. Aligning gene expression profiles by RNAseq and miRNAseq data. (A) An 692 

example of miRNAs (e.g. miR-452) that are embedded in gene regions (e.g. GABRE).  (B) 693 

Expression level of miR-452 was highly associated with mRNA expression of GABRE. (C) The 694 

rank of the similarity scores of self-self RNAseq-miRNAseq profiles. (D) An example of the 695 

similarity score of the self-aligned profiles, TCGA−D8−A1JH-01. The similarity score between 696 

RNAseq profile of  TCGA−D8−A1JH-01 and miRNA profiles of other samples were shown. The 697 

red star indicates similarity score of self-self RNAseq-miRNAseq profiles. (E) An example of  698 

non self-aligned RNAseq-miRNA profiles, TCGA-B6-A0X7-01. (F)  The probabilities of similarity 699 

scores (before multiplying prior probability) for self-aligned RNAseq-miRNAseq profiles. (G) An 700 

example of similarity scores of self-aligned RNAseq-miRNA profile pairs. X-axis indicates the 701 

similarity scores between RNAseq profile of TCGA-OL-A6VO-01 and miRNAseq profiles of all 702 

other samples, and y-axis indicates similarity scores between miRNAseq profile of TCGA-OL-703 

A6VO-01 and RNAseq profiles of all other samples. The red dot indicates similarity score for 704 

self-self RNAseq-miRNAseq profile. (H)  An example of similarity scores of non self-aligned 705 

RNAseq-miRNA profile pairs.  706 

 707 

Figure 5. Comparison of MODMatcher and proMODMatcher for aligning expression 708 

profiles by RNAseq and miRNAseq data. (A) The similarity scores of a self-aligned RNAseq-709 

miRNA profile pair identified by proMODMatcher, but not by MODMatcher.  X-axis indicates the 710 

similarity score between RNAseq profile of TCGA-AO-A0JF-01 and miRNAseq profiles of all 711 

other samples, and y-axis indicates similarity score between miRNAseq profile of TCGA-AO-712 

A0JF-01 and RNAseq profiles of all other samples. The red dot indicates similarity score for 713 

self-self RNAseq-miRNAseq profiles.  (B) One cross-aligned pair, RNAseq of TCGA-BH-A0BZ-714 
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01 and miRNA of TCGA-E2-A15K-01, identified by proMODMatcher. The similarity score of the 715 

cross-aligned pair was shown in blue and the similarity scores of self-self alignments was shown 716 

in red. (C) Significance levels of cis-associations based on profile pairs aligned by MODMatcher 717 

and proMODMatcher.  718 

 719 

Figure 6. Aligning gene expression profiles by Agilent array and miRNAseq data (A) An 720 

example of possible sample swaps. In alignment of Agilent array and miRNAseq profiles, 721 

TCGA-BH-A18K-01 and TCGA-BH-A18T-01 were cross-aligned to each other. The similarity 722 

scores of each cross-alignment were shown. The similarity score of the cross-aligned pair was 723 

shown in blue and the similarity scores of self-self alignments were shown in red. (B) Other 724 

omics profiles of TCGA-BH-A18K and TCGA-BH-A18T were compared with each other and 725 

results were summarized into a patient-centric view. Red line indicates self-aligned, and blue 726 

line indicates cross-aligned. (C)  After swapping the corresponding mRNA Agilent array profiles, 727 

multiple-omics profiles of TCGA-BH-A18K and TCGA-BH-A18T were aligned to each other 728 

consistently.  (D-F) The similarity scores of other cross-aligned pairs were shown, and their 729 

available omics profiles and alignment results were summarized into a patient-centric view. 730 

 731 

Figure 7. Aligning mRNA and RPPA  profiles.  (A) The Spearman correlations of protein 732 

abundance and the corresponding mRNA’s expression level were shown based on RNAseq and 733 

Agilent array. The red line indicates correlation values corresponding to q-value 0.05.   (B) 734 

Similarity scores of a self-aligned RNAseq-miRNA profile pair  (C) Similarity scores of a cross-735 

aligned RNAseq-miRNA profile pair. (D) Similarity scores of the cross-aligned pair between the 736 

mRNA Agilent microarray and RPPA profiles, TCGA-AR-A1AV-01 and TCGA-AR-A1AW-01,  737 

and alignment results for other omics profiles of this pair into a patient centric  view.  738 
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 739 

 740 

Figure 8. Application to TCGA pan-cancer datasets.  (A-B) The self-alignment rate of RNA-741 

miRNA and RNA-RPPA alignment for each cancer type. (C-D) Two possible sample swap 742 

cases of miRNA profiles in the TCGA UCEC and OV datasets. The similarity scores of each 743 

cross-alignment and alignment results for other available omics profiles were shown.  744 

 745 

Figure 9. Application to ICGC datasets (A) An example of self-self aligned, non self-self 746 

aligned and cross-aligned pairs of samples based on alignment between Array and CNV profiles 747 

in the NBL-US dataset. (B) An example of sample labeling errors. In alignment of Array and 748 

DNA methylation profiles, DO7484 and DO7472 were cross-aligned to each other. The similarity 749 

scores of each cross-alignment are shown. The similarity score of the cross-aligned pair is 750 

shown in blue and the similarity scores of self-self alignments are shown in red. Omics profiles 751 

of DO7484 and DO7472 were compared with each other and results were summarized into a 752 

patient-centric view. Red line indicates self-aligned, and blue line indicates cross-aligned. (C) An 753 

example of possible sample swaps and sample labeling errors. DO229525 and DO51109 were 754 

cross-aligned to each other in alignment of RNAseq and DNA methylation profiles as well as 755 

Array and DNA methylation profiles. Additionally, RNAseq and Array profiles of DO51105 were 756 

cross-aligned to DNA methylation profile of DO51091. (D) Other omics profiles of these pairs 757 

were compared with each other and results were summarized into a patient-centric view. After 758 

swapping the corresponding DNA methylation profiles, multiple-omics profiles of DO229525 and 759 

DO51109 were aligned to each other consistently.   760 

 761 
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Figure 10. Correcting sample labeling errors. (A) Mis-labeled samples were outliers when 762 

comparing significant pairs between mRNA and miRNA expression levels in the TCGA BRCA 763 

dataset.  Red dots were mis-labeled samples. (B) Spearman correlation between expression 764 

levels of miRNAs and their host genes before and after curating sample labeling errors.  765 

 766 
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Table 3. Application of proMODMatcher to mRNA and miRNA profiles of TCGA cancer data excluding BRCA. 767 
Types 
of 
cancer  

Data 
types 

Data types # 
Com
mon 
samp
les 

# cis 
pair  

# of self-
aligned  

# of cross-
aligned  

Cross-aligned  pairs Self in 
RNA-
CNV 

Cross-aligned pairs 

 Type1  Type 2     Type 1  Type 2 

BLCA RNAseq miRNAseq 405 187/231 402 (99.2%) 0    

CESC RNAseq miRNAseq 100 132/223 100 (100%) 0    

COAD RNAseq miRNAseq 248 122/191 242 (97.5%) 8 (3.2%) TCGA-CM-4744-01 Y TCGA-AA-3558-01 

       TCGA-QL-A97D-01 Y TCGA-AA-A00W-
01 

       TCGA-A6-A567-01 Y TCGA-AA-3693-01 

       TCGA-5M-AATA-01 Y TCGA-AA-3529-01 

       TCGA-RU-A8FL-01 Y TCGA-AZ-4681-01 

       TCGA-QG-A5YV-01 Y TCGA-AA-A02H-01 

       TCGA-A6-A565-01 Y TCGA-AA-A02E-01 

       TCGA-5M-AATE-01 Y TCGA-AA-A01F-01 

DLBC RNAseq miRNAseq 47 59/210 47 (100%) 0 (0%)    

GBM Agilent miRNA 
array 

525 73/107 307 (58.4%) 14(2.6%) TCGA-02-0064-01 Y TCGA-08-0390-01 

       TCGA-02-0325-01 Y TCGA-08-0345-01 

       TCGA-02-0321-01 Y TCGA-19-0957-01 

       TCGA-08-0510-01 Y TCGA-26-5135-01 

       TCGA-02-0070-01 Y TCGA-28-5218-01 

       TCGA-12-0773-01 Y TCGA-06-0744-01 

       TCGA-12-0780-01 Y TCGA-08-0354-01 

       TCGA-12-0822-01 Y TCGA-16-1045-01 

       TCGA-16-1062-01 Y TCGA-28-5209-01 

       TCGA-14-1829-01 Y TCGA-14-1450-01 

       TCGA-19-1385-01 Y TCGA-08-0352-01 

       TCGA-32-4719-01 Y TCGA-06-0140-01 

       TCGA-19-5952-01 Y TCGA-02-0324-01 

       TCGA-06-0201-01 No TCGA-06-0141-01 

 HG-
U133 

miRNA 
array 

520 56/100 315 (60.5%) 5 (0.9%) TCGA-02-0058-01 No: 
TCGA
-06-
0190-
01 

TCGA-12-0778-01 
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       TCGA-02-0115-01 Y TCGA-12-0656-01 

       TCGA-19-1789-01 Y TCGA-06-0413-01 

       TCGA-06-2561-01 Y TCGA-12-0691-01 

       TCGA-02-0338-01 Y TCGA-76-6283-01 

 RNAseq miRNA 
array 

151 70/129 115 (76.1%) 19 
(12.5%) 

TCGA-06-1804-01 Y TCGA-81-5911-01 

       TCGA-06-0178-01 No TCGA-16-1060-01 

       TCGA-14-1034-01 Y TCGA-02-0330-01 

       TCGA-15-0742-01 Y TCGA-02-0116-01 

       TCGA-06-5413-01 Y TCGA-14-0865-01 

       TCGA-19-2620-01 Y TCGA-76-6193-01 

       TCGA-06-0158-01 Y TCGA-06-0174-01 

       TCGA-06-0211-01 Y TCGA-12-3648-01 

       TCGA-06-2564-01 Y TCGA-12-0688-01 

       TCGA-06-0141-01 Y TCGA-08-0246-01 

       TCGA-06-0238-01 Y TCGA-06-0177-01 

       TCGA-06-0744-01 Y TCGA-76-6664-01 

       TCGA-06-0125-01 Y TCGA-08-0358-01 

       TCGA-41-2572-01 Y TCGA-02-0021-01 

       TCGA-06-0190-02 Y TCGA-19-5955-01 

       TCGA-28-2499-01 No: 
TCGA
-02-
0099-
01 

TCGA-12-1091-01 

       TCGA-06-0152-02 Y TCGA-26-1799-01 

       TCGA-19-1389-02 Y TCGA-14-0813-01 

       TCGA-14-1034-02 Y TCGA-15-1447-01 

HNSC RNAseq miRNAseq 517 183/229 494 (95.5%) 0 (0%)    

KIRC RNAseq miRNAseq 516 146/205 487 (94.3%) 0 (0%)    

KIRP RNAseq miRNAseq 290 131/205 285 (98.2%)  0 (0%)     

LAML RNAseq miRNAseq 173 93/166 168 (97.1%) 0    

LGG RNAseq miRNAseq 526 170/245 500 (95.0%) 0    

LIHC RNAseq miRNAseq 369 179/228 369 (99.4%) 0    

LUAD RNAseq miRNAseq 512 179/229 507 (99.0%) 0    

 Agilent miRNAseq 32 32/180 17 (53.1%) 3 (9.3%) TCGA-44-2655-01 Y TCGA-44-6148-01 

       TCGA-05-4249-01 No TCGA-86-A4D0-01 

       TCGA-35-4123-01 No TCGA-55-6969-01 

LUSC RNAseq miRNAseq 474 191/229 466 (98.3%) 0 (0%)    
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OV  RNAseq miRNAseq 291 159/192 282 (96.9%) 5 (1.7%) TCGA-24-2261-01 Y TCGA-31-1953-01 

       TCGA-31-1953-01 Y TCGA-24-2261-01 

       TCGA-61-1728-01 Y TCGA-23-2072-01 

       TCGA-09-0369-01 Y TCGA-25-1877-01 

       TCGA-VG-A8LO-01 Y TCGA-04-1654-01 

PRAD RNAseq miRNAseq 494 129/198 432 (87.4%) 0     

READ RNAseq miRNAseq 66 77/180 60 (90.9%) 3 (4.5%)  TCGA-AG-A01J-01 Y TCGA-DY-A1DG-
01 

       TCGA-AG-A014-01 Y TCGA-DC-6158-01 

       TCGA-AG-A023-01 Y TCGA-AG-4022-01 

SARC  RNAseq miRNAseq 261 169/220 261 (100%) 0     

SKCM RNAseq miRNAseq 449 203/251 446 (99.3%) 0    

STAD RNAseq miRNAseq 377 193/256 371 (98.4%) 0    

THCA RNAseq miRNAseq 508 139/217 483 (95.0%) 0     

UCEC RNAseq miRNAseq 361 169/240 354 (98.0%) 4 (1.1%) TCGA-A5-A0GP-01 Y TCGA-AJ-A2QO-
01 

       TCGA-AX-A1C4-01 Y TCGA-AX-A1CI-01 

       TCGA-AX-A1CI-01 Y TCGA-AX-A1C4-01 

       TCGA-BG-A220-01 No TCGA-AJ-A3NE-01 
Underlines indicates sample swaps 768 
 769 
 770 

 771 

 772 

 773 

 774 

 775 

 776 
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 777 

Table 4. Application of proMODMatcher to mRNA and RPPA profiles of TCGA cancer data excluding BRCA 778 
Types 
of 
cancer  

Data 
types 

Data 
types 

# 
Common 
samples 

# cis 
pair  

# of self-
aligned  

# of cross-
aligned  

Cross-aligned  pairs Self in 
RNA-
CNV 

Cross-aligned pairs 

 Type1  Type 
2 

Type 1    Type 1  Type 2 

BLCA RNAseq RPPA 340 121/193 297 (87.3%) 3 (0.8%) TCGA-XF-AAN8-01 Y TCGA-FD-A6TB-01 

       TCGA-FD-A5BR-01 Y TCGA-XF-AAMF-
01 

       TCGA-E7-A6ME-01 Y TCGA-E7-A541-01 

CESC RNAseq RPPA 172 101/184 152 (88.8%) 1 (0.5%) TCGA-EK-A3GJ-01 Y TCGA-C5-A8XI-01 

COAD RNAseq RPPA 240 110/202 195 (81.2%) 15 (6.2%) TCGA-G4-6321-01 Y TCGA-AA-A01P-01 

       TCGA-AD-A5EJ-01 Y TCGA-AA-3672-01 

       TCGA-CA-5256-01 Y TCGA-AA-3815-01 

       TCGA-AZ-4682-01 Y TCGA-G4-6321-01 

       TCGA-G4-6303-01 Y TCGA-A6-2677-01 

       TCGA-A6-6137-01 Y TCGA-AA-A01S-01 

       TCGA-G4-6627-01 Y TCGA-G4-6298-01 

       TCGA-A6-6140-01 Y TCGA-AA-3519-01 

       TCGA-NH-A5IV-01 Y TCGA-AA-A00E-01 

       TCGA-G4-6320-01 Y TCGA-A6-2672-01 

       TCGA-DM-A28H-
01 

Y TCGA-AA-3811-01 

       TCGA-CK-5913-01 Y TCGA-AA-3664-01 

       TCGA-NH-A50U-01 Y TCGA-AA-3558-01 

       TCGA-AD-6901-01 Y TCGA-NH-A6GC-
06 

       TCGA-A6-A565-01 Y TCGA-AA-3520-01 

DLBC RNAseq RPPA 33 58/184 32 (96.9%) 0 (0%)    

GBM Agilent RPPA 191 97/194 157 (82.1%) 13 (6.8%) TCGA-06-0139-01 No TCGA-06-A5U1-01 

       TCGA-06-0158-01 Y TCGA-19-5950-01 

       TCGA-06-0176-01 Y TCGA-19-2625-01 

       TCGA-06-0206-01 Y TCGA-06-0190-02 

       TCGA-12-0620-01 Y TCGA-RR-A6KC-
01 

       TCGA-06-0881-01 Y TCGA-02-0003-01 
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       TCGA-14-1454-01 Y TCGA-19-A6J5-01 

       TCGA-12-1091-01 Y TCGA-14-1034-02 

       TCGA-14-1037-01 No TCGA-19-A60I-01 

       TCGA-14-1795-01 Y TCGA-12-5301-01 

       TCGA-32-2616-01 Y TCGA-06-5858-01 

       TCGA-81-5911-01 Y TCGA-19-1389-02 

       TCGA-14-1450-01 Y TCGA-06-5418-01 

 HG-
U133 

RPPA 186 90/187 147 (79.0%) 13 (6.9%) TCGA-02-0068-01 Y TCGA-06-5413-01 

       TCGA-02-0033-01 No TCGA-32-4211-01 

       TCGA-14-0781-01 Y TCGA-74-6575-01 

       TCGA-12-1091-01 Y TCGA-14-1034-02 

       TCGA-28-2509-01 Y TCGA-19-A60I-01 

       TCGA-06-0141-01 Y TCGA-06-A5U1-01 

       TCGA-06-0160-01 Y TCGA-06-6700-01 

       TCGA-06-0394-01 Y TCGA-74-6578-01 

       TCGA-08-0518-01 Y TCGA-26-6173-01 

       TCGA-08-0512-01 Y TCGA-19-1389-02 

       TCGA-02-0330-01 Y TCGA-06-A6S1-01 

       TCGA-32-2491-01 Y TCGA-06-6698-01 

       TCGA-32-4719-01 Y TCGA-06-0876-01 

 RNAseq RPPA 83 106/201 75 (90.3%) 25    

HNSC RNAseq RPPA 212 82/156 175 (82.5%) 3 (1.4%) TCGA-CQ-6222-01 No TCGA-CV-5439-01 

       TCGA-D6-6824-01 Y TCGA-CV-5976-01 

       TCGA-MZ-A7D7-01 Y TCGA-CN-6011-01 

KIRC RNAseq RPPA 475 125/209 396 (83.3%) 4 (0.8%) TCGA-CJ-5681-01 Y TCGA-B0-5709-01 

       TCGA-B0-5709-01 Y TCGA-CJ-6030-01 

       TCGA-CJ-
4869-01 

Y TCGA-BP-4771-01 

       TCGA-CJ-4888-01 Y TCGA-CJ-4875-01 

KIRP RNAseq RPPA 215 93/184 178 (82.7%) 3 (1.3%) TCGA-KV-A74V-01 Y TCGA-MH-A55Z-
01 

       TCGA-MH-A854-01 Y TCGA-UZ-A9PL-01 

       TCGA-MH-A561-01 Y TCGA-B1-A47N-01 

LGG RNAseq RPPA 435 95/173 320  (73.5%) 1 (0.2%) TCGA-HT-7681-01 Y TCGA-P5-A737-01 

LIHC RNAseq RPPA 181 105/214 158 (87.2%) 4 (2.2%) TCGA-ZS-A9CD-01 Y TCGA-G3-A5SK-01 

       TCGA-DD-AAC9-
01 

Y TCGA-DD-A4NG-
01 

       TCGA-G3-AAV0-01 Y TCGA-GJ-A9DB-01 
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       TCGA-G3-AAV5-01 Y TCGA-ED-A627-01 

LUAD RNAseq RPPA 360 125/193 312 (86.6%) 10 (2.7%) TCGA-50-5045-01 No TCGA-44-7672-01 

       TCGA-44-7667-01 Y TCGA-44-3917-01 

       TCGA-MP-A4TI-01 Y TCGA-MP-A4TA-
01 

       TCGA-MP-A4TJ-01 Y TCGA-50-5939-01 

       TCGA-50-5055-01 No TCGA-97-A4M2-01 

       TCGA-55-A48X-01 Y TCGA-64-5778-01 

       TCGA-64-5775-01 No TCGA-05-5715-01 

       TCGA-55-6987-01 Y TCGA-44-2664-01 

       TCGA-38-7271-01 Y TCGA-50-5068-01 

       TCGA-55-8208-01 Y TCGA-50-5066-01 

 Agilent RPPA 23 34/187 14 (60.8%) 7 (30.4%) TCGA-44-2661-01 No TCGA-05-4249-01 

       TCGA-05-4249-01 No TCGA-55-6978-01 

       TCGA-44-3398-01 No TCGA-86-A4JF-01 

       TCGA-44-4112-01 No TCGA-44-3919-01 

       TCGA-44-2662-01 Y TCGA-78-7145-01 

       TCGA-67-3774-01 Y TCGA-73-7498-01 

       TCGA-35-3621-01 No TCGA-44-2661-01 

LUSC RNAseq RPPA 324 125/193 278 (85.8%) 3 (0.9%) TCGA-18-4086-01 Y TCGA-63-5131-01 

       TCGA-39-5039-01 Y TCGA-34-2604-01 

       TCGA-56-A4ZJ-01 Y TCGA-90-6837-01 

OV RNAseq RPPA 241 134/202 232 (96.2%) 9 (3.7%) TCGA-61-2095-01 Y TCGA-42-2587-01 

       TCGA-09-0364-01 Y TCGA-29-1774-01 

       TCGA-09-2048-01 Y TCGA-13-0802-01 

       TCGA-13-0890-01 Y TCGA-42-2590-01 

       TCGA-24-2035-01 Y TCGA-30-1892-01 

       TCGA-25-1870-01 Y TCGA-36-2534-01 

       TCGA-31-1956-01 Y TCGA-29-1768-01 

       TCGA-57-1583-01 Y TCGA-61-1916-01 

       TCGA-59-2350-01 Y TCGA-61-1913-01 

PRAD RNAseq RPPA 351 96/178 209 (59.5%) 9 (2.5%) TCGA-VN-A88I-01 Y TCGA-KC-A4BV-
01 

       TCGA-KC-A7F3-01 Y TCGA-ZG-A8QX-
01 

       TCGA-FC-A6HD-01 No TCGA-EJ-A8FN-01 

       TCGA-EJ-5499-01 Y TCGA-VN-A88L-01 

       TCGA-HC-7230-01 Y TCGA-HC-7748-01 
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       TCGA-XJ-A83G-01 Y TCGA-G9-6338-01 

       TCGA-HC-A8CY-
01 

Y TCGA-V1-A9Z8-01 

       TCGA-HC-7821-01 Y TCGA-YL-A9WL-
01 

       TCGA-VP-A87C-01 Y TCGA-EJ-8470-01 

READ RNAseq RPPA 55 54/202 43 (78.1%) 4 (7.2%) TCGA-AG-A00H-01 Y TCGA-F5-6810-01 

       TCGA-AG-3584-01 Y TCGA-AG-4022-01 

       TCGA-AG-3883-01 Y TCGA-AG-4005-01 

       TCGA-AG-3575-01 Y TCGA-F5-6863-01 

SARC RNAseq RPPA 224 110/184 219 (97.7%) 0    

SKCM RNAseq RPPA 352 128/193 314 (89.2%) 2 TCGA-EB-A44N-01 Y TCGA-EB-A5UM-
01 

       TCGA-W3-A828-06 Y TCGA-EB-A551-01 

STAD RNAseq RPPA 306 103/177 233 (76.1%) 12 (3.9%) TCGA-D7-6818-01 Y TCGA-EQ-8122-01 

       TCGA-HU-A4H3-01 Y TCGA-CG-4442-01 

       TCGA-SW-
A7EB-01 

Y TCGA-CG-4460-01 

       TCGA-VQ-A94P-01 Y TCGA-RD-A8NB-
01 

       TCGA-ZA-
A8F6-01 

Y TCGA-CG-4476-01 

       TCGA-FP-8210-01 Y TCGA-D7-A4Z0-01 

       TCGA-HU-8244-01 Y TCGA-BR-4371-01 

       TCGA-HU-8604-01 Y TCGA-BR-A4QL-
01 

       TCGA-HU-A4GJ-01 Y TCGA-CD-A4MI-01 

       TCGA-HU-A4H8-01 Y TCGA-CG-5720-01 

       TCGA-R5-A7ZI-01 Y TCGA-BR-6710-01 

       TCGA-VQ-A927-01 Y TCGA-F1-A72C-01 

THCA RNAseq RPPA 222 55/167 142 (63.9%) 3 (1.3%) TCGA-EM-A3FJ-01 No TCGA-EM-A2CS-
06 

       TCGA-DJ-A4UW-
01 

No TCGA-EL-A3CU-01 

       TCGA-ET-A3BQ-01 No TCGA-EL-A3GR-
01 

UCEC RNAseq RPPA 300 115/187 270 (90%) 15 (5%) TCGA-AX-A05Y-01 Y TCGA-AX-A060-01 

       TCGA-AX-A05Z-01 Y TCGA-EO-A3AV-
01 
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       TCGA-AX-A0IW-01 Y TCGA-KP-A3VZ-01 

       TCGA-D1-A163-01 Y TCGA-AJ-A3BH-01 

       TCGA-D1-A1NZ-01 Y TCGA-E6-A2P9-01 

       TCGA-EO-A22T-01 Y TCGA-B5-A1MW-
01 

       TCGA-FI-A2F9-01 Y TCGA-A5-A1OH-
01 

       TCGA-BG-A0MQ-
01 

Y TCGA-A5-A7WJ-01 

       TCGA-BG-A0MO-
01 

Y TCGA-BK-A13B-01 

       TCGA-D1-A17A-01 Y TCGA-A5-A0GB-01 

       TCGA-BS-A0TE-01 Y TCGA-AJ-A3EK-01 

       TCGA-BS-A0UL-01 Y TCGA-EO-A22T-01 

       TCGA-FI-A2CX-01 Y TCGA-E6-A2P8-01 

       TCGA-B5-A11M-01 No TCGA-EY-A1GW-
01 

       TCGA-FI-A2D6-01 Y TCGA-DF-A2KY-01 
The bold indicates cross-alignments supported by other data.  779 
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B.  CLLE-ES: Array and RNAseq  

A. NBL-US: Array and CNV

C. PRAD-CA: RNAseq and methylation (HM450)
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We have thoroughly addressed all reviewers’ comments pertaining to our manuscript “A 
probabilistic multi-omics data matching method for detecting sample errors in integrative 
analysis”. The reviewers’ comments are very thoughtful and constructive, and have served to 
strengthen the manuscript significantly. We performed additional data analyses suggested by 
the reviewers, and revised the manuscript to address all comments as detailed below. The 
reviewer’s comments are in black font type and our responses are given in blue. All page 
numbers and other such as references given are with respect to the revised manuscript unless 
otherwise stated.   
 
 
Reviewer reports: 
 
Reviewer #1: The author present proMODMatcher, a probabilistic multi-omics data matching 
method for detecting sample errors in integrative analysis. The study concerns the relevant 
problem of detecting sample errors in large datasets and the presented method offers an 
interesting solution. The method, which is an extension of MODMatcher, is designed to 
overcome the issue that the power of MODMatcher decreases when the number of "cis-
associations" between two omics profiles is small. Overall, the paper is well organized. 
We thank the reviewer for the encouraging comments. 
 
I recommend a revision because better justification is needed for the arguments based on 
existing data and the clarity of some results needs to be improved. 
   
1) The generic concept of "biological cis-association" should be explained in more detail and 
supported with some examples, starting with the introduction. Indeed, this concept is central to 
the functioning of both MODMatcher and proMODMatcher, and it is also related to the main 
motivation for the development of proMODMatcher. Besides, what are the criteria for defining 
such cis-associations? To which (combinations of) omics types can such criteria be applied? 
We appreciated the reviewer’s comment. Following the reviewer suggestion, we added the 
following sentences at the Introduction in Page 4: 
“The main idea is first to identify “biological cis-associations” between two types of omics data, 
and then to use these “biological cis-associations” as intrinsic barcodes to match different types 
of omics data. The types of “biological cis-associations” are different when different pairs of 
omics data are mapped, but they all reflect general biological regulations. For example, when 
mapping genotype and gene expression data, the method is based on cis-genetic regulation of 
expression traits (or expression quantitative trait loci—cis-eQTLs), where a genetic 
polymorphism at a gene’s promotor or regulatory region affects transcription factors or co-
factors binding, which in turn affects the abundance of the gene’s transcript [11]. Similarly, when 
mapping methylation and gene expression data, the method leverages on cis-methylation 
regulation of expression traits (or cis-methyls), where high DNA methylation level of CpGs at a 
gene’s promotor or regulatory region hinders transcription factors or co-factors binding, which in 
turn represses the gene’s transcription [12].  More on “biological cis-associations” are detailed in 
the Methods section. ”  
 
Also, we added the following section at the Methods section in Page 21: 
“Biological cis-associations  
“Biological cis-associations” reflect different biological regulations when different pairs of omics 
data are mapped.  (1) cis-eQTLs for mapping genotype and gene expression data: a genetic 
polymorphism at a gene’s promotor or regulatory region affects transcription factors or co-
factors binding, which in turn affects the abundance of the gene’s transcripts [11].  If the genetic 
polymorphism occurs within 1M bases from the gene’s transcription start site and the 

Response to comments letter Click here to access/download;Personal Cover;Response to
Reviewer comments_v1_EL.docx
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association is significant at the false discovery rate (FDR) <0.05, the association is called as a 
cis-eQTL. (2) cis-methylations for mapping DNA methylation and gene expression data: 
increased DNA methylation at CpGs sites near a gene promoter region is associated with gene 
repression [12]. A methylation probe is assigned to the transcript whose start site is closest to 
the genomic location of the methylation probe when it is potentially mapped to multiple 
transcripts. If a DNA methylation probe locates within 1M bases from the gene’s start site and 
the association between the methylation level and the gene’s expression level is significant at 
FDR <0.05, the methylation probe is a cis-methylation probe. (3) cis-CNVs for mapping DNA 
copy number variations (CNVs) and gene expression profiles: amplified or deleted genomic 
regions can regulate the expression levels of genes within that genomic region [16]. If a gene’s 
expression  is associated with its CNV at FDR <0.05, the CNV is a cis-CNV. (4) cis-miRNA-
gene pairs for mapping miRNA and gene expression profiles: a small portion of miRNAs are 
embedded in gene regions (i.e. host genes) and frequently co-transcribed with host genes [14, 
15]. If the expression levels of a miRNA and   its host gene are associated at FDR <0.05, the 
pair is a cis-miRNA-gene pair. (5) cis-mRNA-protein pairs for mapping protein and gene 
expression profiles: the abundance of a protein depends on the corresponding mRNA transcript 
level and other factors [17]. If their association is significant at FDR <0.05, the pair is a cis-
mRNA-protein pair.” 
 
 
2) Related to point 1: are there limitations in terms of missing data or sparse datasets (e.g. 
mutation profiles)? 
For genotype data, we used common variants instead of rare variants to increase information 
content (Shannon Entropy) per locus (or gene). In the eQTL analyses, the loci of minor allele 
frequency (MAF)>0.05 were include.  
 
Regarding missing data, we pre-processed data profiles to filter out genes or probes with more 
than 25% of  missing values. Regarding sparse data, the input data can be any sparse datasets 
such as mutation profiles. We added the following sentences in the Discussion section in Page 
19: 
“The proMODMatcher depends on a set of biological cis-associations and the information 
content (Shannon entropy) of each cis-association depends on the randomness of each locus or 
gene.  Thus, in our analyses, we excluded biological cis-associations that are driven by extreme 
values (rare events).  For example, in eQTL analyses, we only included loci of minor allele 
frequency (MAF)>0.05.  Missing values commonly occur in high throughput omics data.  In our 
analyses, we don’t explicitly impute missing values.  Instead, we filtered out probes or genes of 
more than 25% missing value in the data pre-processing step.” 
   
3) In general, some aspects related to the comparison between proMODMatcher and 
MODmatcher should be clarified. 
 
3.1) The difference between the performances of the two methods in simulated datasets is very 
narrow (mostly of 10^(-3) of 10^(-4), like 0.9994 vs 1). In this view, the improvement of 
proMODMatcher in comparison to MODMatcher appears to be very marginal. Additionally, the 
specificity for some simulations at low nCIS (e.g. red dots nCIS=75) is, in opposition to 
expectations, higher in MODMatcher than proMODMatcher; these results raise concerns on the 
expected superiority of proMODMatcher vs MODMatcher at low nCIS, which does not appear 
as clearly as in Figure 2. 
Methods performance depends on both sensitivity and specificity.  The proMODMatcher method 
performed better than MODMatcher did in term of F scores (Figure 3B).  The top goal of 
MODMatcher and proMODMatcher is to detect “errors” of omics profiles without introducing any 



errors. Therefore, we emphasized the improvement of proMODMatcher in terms of specificity 
over sensitivity. Figure  3D shows that proMODMatcher achieved better specificity than 
MODMatcher across all conditions that we tested, and the better F scores (Figure 3B) were 
largely due to better specificity.   We reworded the paragraph clarify this point of view in the 
Analyses section in Page 9: 
“The top goal of MODMatcher  and proMODMatcher is to identify sample labeling errors without 
introducing any errors. Thus, we optimized the specificity of proMODMatcher over its sensitivity. 
In terms of sensitivity and specificity’s contribution to F scores, proMODMatcher achieved a 
similar sensitivity as MODMatcher (Figure 3C) but better specificities in all cases (Figure 3D). ”   
 
3.2) In real datasets (TCGA), the gain of using proMODMatcher instead of MODMatcher is not 
clearly quantified. To better motivate the use of proMODMatcher in spite of  MODMatcher, the 
authors should better illustrate the quantitative differences between the results obtained by the 
two methods. For instance, how many conflicting predictions? Shared results? 
Following the reviewer’s comments, we quantified the comparison of results for 
proMODMatcher and MODMatcher in real data sets in the Analyses section and added one 
additional column in Tables 1 and 2, indicating whether cross-aligned pairs were detected by 
MODMatcher.  
 
Additionally, we added similarity score plots for the cross-aligned pairs that were detected only 
by MODMatcher as Supplementary  Figure S2 and Supplementary  Figure S4 to emphasize 
specificity of proMODMatcher. Also, we added the following sentences in the Aligning gene 
expression profiles by RNAseq and miRNAseq data of Analyses section in Page 12:  
“On the other hand, the cross-aligned pairs detected only by MODMatcher showed relatively 
marginal similarity scores even though the similarity scores of cross-aligned pairs were the 
highest (Supplementary Figure S2). ” 
 
Also, we added the following sentences in the Aligning gene expression profiles by Agilent 
microarray and miRNAseq data of Analyses section in Page 13:  
“8 out of 9 pairs were also detected by MODMatcher (Table 1). MODMatcher detected 
additional cross-aligned pairs including several questionable cross-aligned pairs (i.e. 
TCGA−E2−A153−01 and TCGA−E9−A1NG−01, TCGA-AR-A1AL−01 and TCGA−AR−A1AN−01 
in Supplementary Figure S4).” 
 
Additionally, for the alignment between RPPA and Array profiles, we identified the cross-aligned 
pair of the mRNA Agilent microarray profile TCGA-AR-A1AV-01 and the RPPA profile of TCGA-

AR-A1AW-01 data, consistent with labeling errors in the mRNA Agilent array data. However, this 
pair was not identified by MODMatcher (Table 2), indicating its limited sensitivity.  We added the 
following sentences in the Application to TCGA breast cancer dataset: mRNA and RPPA  
profiles of Analyses section in Page 15:  
“However, this pair was not identified by MODMatcher (Table 2).” 
 
Other minor comments 
 
It is important that potential users are aware of the computational cost required for the analyses. 
Following the reviewer’s comment, we added our computational cost and CPU time at the end 
of the Discussion section in Page 19:  
“The computational cost of applying proMODMatcher is small. For example, mapping mRNA 
and miRNA expression profiles for 408 samples took 802 seconds of CPU time with maximum 
memory usage  of 503 MB on a machine with CPU processor 3.50 GHz. ”. 



 
117 "based on"? 
We thank the reviewer for pointing out these errors.  Yes, it should be “based on” 
 
355 Only here the author mention Pearson correlation. Did you mean Spearman? 
Yes, it should be “Spearman correlation”. 
 
382 RT(…) and T(…) 
Yes , they should RT(..). 
 
Fig. 1 caption: "calucalte" 
We corrected the mis-spelling in  the Fig1D’s caption.  
 
Fig. 4d sothers 
We corrected the mis-spelling. 
 
 
Reviewer #2: Major comments: 
1. It would be highly appreciated if the github or other open source (e.g. CRAN R-package) 
version of the tool can be provided with a user-friendly manual, this will help to make this tool 
available to a large enough community.  
Following the reviewer’s comments, we uploaded our package to github 
(https://github.com/integrativenetworkbiology/proMODMatcher). It will become public once the 
paper is published.  
  
2. It is not very clear how the proteomics/ CNV/ methylation are mapped to gene expression 
data. From the result part, I can only see  
RNAseq/microRNA/RPPA/microarray datasets. I didn't see the results of other multi-omics 
layers as introduced in the data description section of the results part.  
 As the reviewer suggested, we added the following sentences in the Introduction section in 
Page 4:  
“The main idea is first to identify “biological cis-associations” between two types of omics data, 
and then to use these “biological cis-associations” as intrinsic barcodes to match different types 
of omics data. The types of “biological cis-associations” are different when different pairs of 
omics data are mapped, but they all reflect general biological regulations. For example, when 
mapping genotype and gene expression data, the method is based on cis-genetic regulation of 
expression traits (or expression quantitative trait loci—cis-eQTLs), where a genetic 
polymorphism at a gene’s promotor or regulatory region affects transcription factors or co-
factors binding, which in turn affects the abundance of the gene’s transcript [11]. Similarly, when 
mapping methylation and gene expression data, the method leverages on cis-methylation 
regulation of expression traits (or cis-methyls), where high DNA methylation level of CpGs at a 
gene’s promotor or regulatory region hinders transcription factors or co-factors binding, which in 
turn represses the gene’s transcription [12].  More on “biological cis-associations” are detailed in 
the Methods section. ”  
 
Also, we added the following section at the Methods section in Page 21:  
“Biological cis-associations  
“Biological cis-associations” reflect different biological regulations when different pairs of omics 
data are mapped.  (1) cis-eQTLs for mapping genotype and gene expression data: a genetic 
polymorphism at a gene’s promotor or regulatory region affects transcription factors or co-
factors binding, which in turn affects the abundance of the gene’s transcripts [11].  If the genetic 



polymorphism occurs within 1M bases from the gene’s transcription start site and the 
association is significant at the false discovery rate (FDR) <0.05, the association is called as a 
cis-eQTL. (2) cis-methylations for mapping DNA methylation and gene expression data: 
increased DNA methylation at CpGs sites near a gene promoter region is associated with gene 
repression [12]. A methylation probe is assigned to the transcript whose start site is closest to 
the genomic location of the methylation probe when it is potentially mapped to multiple 
transcripts. If a DNA methylation probe locates within 1M bases from the gene’s start site and 
the association between the methylation level and the gene’s expression level is significant at 
FDR <0.05, the methylation probe is a cis-methylation probe. (3) cis-CNVs for mapping DNA 
copy number variations (CNVs) and gene expression profiles: amplified or deleted genomic 
regions can regulate the expression levels of genes within that genomic region [16]. If a gene’s 
expression  is associated with its CNV at FDR <0.05, the CNV is a cis-CNV. (4) cis-miRNA-
gene pairs for mapping miRNA and gene expression profiles: a small portion of miRNAs are 
embedded in gene regions (i.e. host genes) and frequently co-transcribed with host genes [14, 
15]. If the expression levels of a miRNA and   its host gene are associated at FDR <0.05, the 
pair is a cis-miRNA-gene pair. (5) cis-mRNA-protein pairs for mapping protein and gene 
expression profiles: the abundance of a protein depends on the corresponding mRNA transcript 
level and other factors [17]. If their association is significant at FDR <0.05, the pair is a cis-
mRNA-protein pair.” 

 
3. Mapping database: I can just see a mapper file in the package which is between microRNA 
and gene expression. I don't know the resource of the mapping file, which should be described 
in the methods section. 4. This resource may also be updated regularly. The mapping file 
should also include methylation/gene expression, protein/gene expression etc. Currently this 
tool is not as what it declares to be, a "multi-omics tool".  
 Our mapping information is based on human genome assembly GRCh37 or gene symbols.  We 
uploaded the following mapper files: 
 
Matching_array_MethylationHM27.txt: Mapping between gene symbol and HM450 probe ID 
Matching_array_MethylationHM450.txt: Mapping between gene symbol and HM27 probe ID 
Matching_array_miRNA.txt: Mapping between gene symbol and miRNA  
Matching_array_protein.txt: Mapping between gene symbol and RPPA protein  
 
 
TCGA datasets are mostly based on U.S. patients, I am wondering if you can look into ICGC 
datasets (https://urldefense.proofpoint.com/v2/url?u=https-
3A__dcc.icgc.org_projects&d=DwIGaQ&c=shNJtf5dKgNcPZ6Yh64b-
A&r=RO09G907SbMLMqHyrCDZCw&m=HO91CP23G7b0TPBszNguttd47V51QT6Z7R7AQmyn
-m8&s=e2XbBb6Lvod0C-R71wukkxsbIJ3yAUM5CrjPmWJXutQ&e=) to look into other multi-
omics datasets and see if this tool still holds on the other datasets? 
We thank the reviewer for the suggestion.  We applied our procedure to ICGC datasets. Among 
ICGC datasets with more than one types of omics profiles (i.e. expression, DNA methylation, 
miRNA expression, and copy number variation profile) available, we selected 8 datasets based 
on the number of samples (i.e. more than 25). We added the section “ICGC datasets” in the 
Data Description section as follows: 
“ICGC datasets  
“For the ICGC datasets, the pre-processed data were downloaded from ICGC data portal 
(https://dcc.icgc.org/). We selected datasets with more than one available types of omics data 
including mRNA expression profiles (i.e. RNAseq and Array), DNA methylation profiles based 
on Illumina HumanMethylation450 (HM450), miRNA expression profiles, and copy number 
somatic mutation profiles. Each of profiles was reformatted into a matrix with genes (or probes) 

https://msvpn.mssm.edu/f5-w-68747470733a2f2f75726c646566656e73652e70726f6f66706f696e742e636f6d$$/v2/url?u=https-3A__dcc.icgc.org_projects&d=DwIGaQ&c=shNJtf5dKgNcPZ6Yh64b-A&r=RO09G907SbMLMqHyrCDZCw&m=HO91CP23G7b0TPBszNguttd47V51QT6Z7R7AQmyn-m8&s=e2XbBb6Lvod0C-R71wukkxsbIJ3yAUM5CrjPmWJXutQ&e=
https://msvpn.mssm.edu/f5-w-68747470733a2f2f75726c646566656e73652e70726f6f66706f696e742e636f6d$$/v2/url?u=https-3A__dcc.icgc.org_projects&d=DwIGaQ&c=shNJtf5dKgNcPZ6Yh64b-A&r=RO09G907SbMLMqHyrCDZCw&m=HO91CP23G7b0TPBszNguttd47V51QT6Z7R7AQmyn-m8&s=e2XbBb6Lvod0C-R71wukkxsbIJ3yAUM5CrjPmWJXutQ&e=
https://msvpn.mssm.edu/f5-w-68747470733a2f2f75726c646566656e73652e70726f6f66706f696e742e636f6d$$/v2/url?u=https-3A__dcc.icgc.org_projects&d=DwIGaQ&c=shNJtf5dKgNcPZ6Yh64b-A&r=RO09G907SbMLMqHyrCDZCw&m=HO91CP23G7b0TPBszNguttd47V51QT6Z7R7AQmyn-m8&s=e2XbBb6Lvod0C-R71wukkxsbIJ3yAUM5CrjPmWJXutQ&e=
https://msvpn.mssm.edu/f5-w-68747470733a2f2f75726c646566656e73652e70726f6f66706f696e742e636f6d$$/v2/url?u=https-3A__dcc.icgc.org_projects&d=DwIGaQ&c=shNJtf5dKgNcPZ6Yh64b-A&r=RO09G907SbMLMqHyrCDZCw&m=HO91CP23G7b0TPBszNguttd47V51QT6Z7R7AQmyn-m8&s=e2XbBb6Lvod0C-R71wukkxsbIJ3yAUM5CrjPmWJXutQ&e=


as rows and  barcodes of samples as columns. The gene and miRNA expression profiles were 
log2 transformed and normalized by quantile normalization[13]. For copy number somatic 
mutation profiles, the segments were mapped to hg19 gene symbols. Some datasets contain 
very sparse segment information for copy number somatic mutation profiles such as CLLE-ES. 
We excluded these copy number profiles for further analysis. For methylation profiles, the 
probes were mapped to hg19 gene symbols.” 
 
Among ICGC datasets, proMODMatcher identified data errors in some of datasets including 
CLLE-ES and PRAD-CA. To summarize the results, we added the Table 5 and Figure 9 and the 
section Application to ICGC datasets in the Analyses section in Page 17:  
“Application to ICGC datasets 
We applied proMODMatcher to 8 cancer datasets that were generated by institutes in the U.S., 
Spain, UK, Germany, Australia, Canada, and France. Each dataset contains more than one 
types of omics data including mRNA expression profiles (i.e. RNAseq and Array), DNA 
methylation profiles based on Illumina HumanMethylation450 (HM450), miRNA expression 
profiles, and copy number somatic mutation profiles. The ICGC datasets used and the 
associated alignment results were summarized in Table 5. In some of datasets such as  PAEN-
AU and PRAD-FR,  all profiles were matched to other corresponding profiles of the same 
sample names (Table 5). On the other hand,  several sample errors were identified in some 
datasets.  For example, mapping between gene expression Array  and CNV profiles in the  
NBL-US dataset resulted in 170 self-self aligned sample pairs, 10 non self-self aligned samples 
and 12 cross-mapped pairs of profiles (examples shown in Figure 9A).  Mapping gene 
expression profiles by RNAseq and Array in the CLLE-ES dataset yielded five non self-self 
aligned samples and two cross-mapped pairs of samples. The two cross-mapped pairs of 
samples were likely due to a swap of either RNAseq profile or Array profile (Figure 9B). 
Similarly, proMODMatcher identified three cross-alignments between RNAseq and DNA 
methylation profiles in the PRAD-CA dataset, which were also involved in cross-mappings when 
mapping Array and DNA methylation profiles: two of them were likely due to a swap of DNA 
methylation  (HM450) profiles of DO229525 and DO51109 (Figure 9CD), and one of them was 
likely due to sample labeling errors in DNA methylation array (HM450) (Figure 9CD).  “ 
 
Minor comments:  
There were several instances in the manuscript where there were minor grammatical errors. I'd 
recommend just having a native English speaker give it a careful read before publication. Also 
there are some misspelling errors (eg. Figure 4E Correlation) in this paper. 
There seems to be a bar omitted in Figure 3A first plot with nCis = 75, # sample =1000. 
We thank the reviewer for pointing out these errors. We corrected misspelling errors and added 
a bar corresponding nCis=75 and # sample = 1000 in Figure 3A plot.  


