1 Does the endometrial cavity have a molecular microbial signature?

- 2 Andrew D. Winters^{1,2,3}, Roberto Romero^{3-7*}, Maria Teresa Gervasi⁸, Nardhy Gomez-Lopez^{1-3,9}, Maria
- Rosa Tran⁸, Valeria Garcia-Flores^{3,9}, Percy Pacora^{3,9}, Eunjung Jung^{3,9}, Sonia S. Hassan^{2,3,9,10}, Chaur-Dong Hsu^{2,3,9,10}, Kevin R. Theis^{1,2,3,*}
- ¹ Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of
- 6 Medicine, Detroit, Michigan, USA
- ⁷ ² Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of
- 8 Medicine, Detroit, Michigan, USA
- 9 ³ Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of
- 10 Intramural Research, *Eunice Kennedy Shriver* National Institute of Child Health and Human
- 11 Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda,
- 12 Maryland, and Detroit, Michigan, USA
- ⁴ Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- ⁵ Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan,
- 15 USA
- ⁶ Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- ⁷ Detroit Medical Center, Detroit, Michigan, USA
- ⁸ Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
- ⁹ Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit,
- 20 Michigan, USA
- 21 ¹⁰ Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- 22
- 23 *Address correspondence to:
- 24 Roberto Romero, MD, DMedSci (email: prbchiefstaff@med.wayne.edu) and Kevin R. Theis, PhD (email:
- 25 <u>ktheis@med.wayne.edu</u>)
- 26

27 SUPPLEMENTARY METHODS

28

Microbial profiles did not differ between paired mid-endometrial and whole-length endometrial samples

31

32 An analysis, using the touchdown PCR approach, was conducted to verify that the bacterial profiles of

- 33 samples collected from the mid-endometrium were representative of paired samples collected from the
- 34 whole-length of the endometrium (N = 9 subjects). 16S rRNA gene abundance, as determined through
- quantitative real-time PCR, did not differ between these paired sample types (paired t-test, p > 0.05).
- 36 With respect to alpha diversity, neither the richness (Chao1) nor heterogeneity (Shannon, Inverse
- Simpson) of mid-endometrial and whole-length endometrial bacterial profiles differed (Wilcoxon matched pairs or paired t-tests, p > 0.05) (Supplementary Methods Figure 1). With respect to beta
- diversity, the bacterial profiles of mid-endometrial and whole-length endometrial samples differed from
- 40 those of background technical controls in both composition (PERMANOVA; Jaccard: mid-endometrial, F
- 41 = 2.598, p = 0.0001; whole-length endometrial, F = 2.896, p = 0.0002) and structure (Bray-Curtis: mid-
- 42 endometrial, F = 6.014, p = 0.0003; whole-length endometrial, F = 7.651, p = 0.0002) (Supplementary
- 43 Methods Figure 2). However, the bacterial profiles of these two endometrial sample types did not differ
- from each other in composition or structure (Jaccard: F = 0.954, p = 0.573; Bray-Curtis: F = 0.594, p = 0.594, p
- 45 0.784). Indeed, subject identity had far greater influence on the bacterial profiles of endometrial samples
- than whether the swab was taken of the mid- or whole-length endometrium (Jaccard: subject, $R^2 = 0.49$, p
- 47 = 0.001, sample type, $R^2 = 0.06$, p = 0.16; Bray-Curtis: subject, $R^2 = 0.56$, p = 0.001, sample type, $R^2 = 0.06$
- 48 0.49, p = 0.42) (Supplementary Methods Figure 3).
- 49
- 50

- 51 Supplementary Methods Figure 1. Heat map illustrating similarity in percent relative abundances
- 52 of prominent operational taxonomic units (≥ 1% average relative abundance) among mid-
- 53 endometrial, whole-length endometrial, and DNA extraction kit samples. Amplification of 16S rRNA
- 54 genes was performed using a touchdown PCR approach.
- 55

59 Supplementary Methods Figure 2. Principal Coordinates Analyses (PCoA) illustrating variation in

16S rRNA gene profile among mid-endometrial, whole-length endometrial, and DNA extraction kit
 samples. Profiles were generated for 16S rRNA gene community composition (a) and structure (b) using

62 the Jaccard and Bray-Curtis indices, respectively.

63

- 64 65
- 66

Supplementary Methods Figure 3. Principal Coordinates Analyses (PCoA) illustrating variation
 among subjects in 16S rRNA gene profiles of mid-endometrial (circle) and whole-length
 endometrial (triangle) samples. Symbol color indicates subject identity. Profiles were generated for

- endometrial (triangle) samples. Symbol color indicates subject identity. Profiles were generated for
 16S rRNA gene community composition (a) and structure (b) using the Jaccard and Bray-Curtis
- 16S rRNA gene community composition (a) and structure (b) using
 indices, respectively.
- 72

73 74

76 SUPPLEMENTARY TABLES

77 Supplementary Table S1. Description of prior 16S rRNA gene studies of the human endometrium

Study	Central research	Type of	Molecular	Relatively abundant /	Were DNA	Conclusions
	questions	samples	microbiology	prevalent bacterial taxa	contamination	
			methous	endometrium	controls includeu:	
Mitchell et al 2015 ¹	Evaluate the presence of vaginal bacterial taxa in the upper genital tract of women undergoing hysterectomy for non- cancerous conditions.	Swabs of the vagina, upper endocervix, and the endometrium (N = 58). Endometrial swabs were obtained post- hysterectomy.	Species- specific (12 vaginal bacterial species) and broad-range 16S rRNA gene qPCR. Culture was also performed in a subset of 30 women.	L. iners, Prevotella spp., and L. crispatus were identified in one-third to one-half of the upper genital tracts through qPCR. Diptheroids (corynebacteria), Gram- positive anaerobic cocci, Propionibacterium, and Lactobacillus were most commonly cultured from the upper genital tract.	Not reported.	 95% of women had low levels of bacterial colonization in the endometrium and/or the upper endocervix (i.e. the upper genital tract) as determined by species-specific or broad-range qPCR. 87% of women were culture positive.
Fang et al 2016 ²	Characterize the intrauterine microbiota in healthy donors and women with endometrial polyps (with or without chronic endometritis).	Swabs of the vagina and endometrium (N = 10 healthy donors, and 20 women with endometrial polyps). Endometrial swabs were obtained transcervically.	16S rRNA gene sequencing.	Overall, uterine bacterial profiles were dominated by <i>Lactobacillus</i> , followed by <i>Enterobacter</i> and <i>Pseudomonas</i> . Among healthy women, the endometrial microbiota was dominated by <i>Enterobacter</i> and <i>Pseudomonas</i> . Among women with endometrial polyps and chronic endometritis, the endometrial microbiota was dominated by <i>Lactobacillus</i> .	Not reported.	All women had an endometrial microbiota. The uterine microbiota of healthy donors and women with endometrial polyps differed.
Franasiak et al 2016 ³	Characterize the endometrial microbiota at the time	IVF catheter tip $(N = 33)$.	16S rRNA gene sequencing.	<i>Lactobacillus</i> and <i>Flavobacterium</i> were most prevalent and relatively	"Positive controls utilizing <i>E. coli</i> along with negative	The endometrial microbiotas of successful and unsuccessful IVF patient groups did not differ.

	of embryo transfer by			abundant.	controls were run to	
	pregnancy outcome.				detect any	
	1 8 9				contamination from	
					reagents."	
					0	
					"The positive and	
					negative controls for	
					the study protocol	
					were performed as	
					expected."	
					Taxonomic	
					assignment of any	
					sequences from	
					negative controls	
					were not reported.	
When at al	Assass microbial	Endometrial	165 . DNA	Prodominant hastoria wars	Not reported	Strantogoggggggggggg
Khan et al 2016^4	colonization of the	swabs collected	105 INNA	Lactobacillacae	Not reported.	Moravellaceae were more
2016	uterus and cystic fluid	transcervically	sequencing	Streptococcaceae		relatively abundant among
	of women with	$(N - 64 \cdot 32 \text{ with})$	sequeneing.	Staphylococaceae		women with endometriosis
	endometriosis and	endometriosis: 32	Cystic fluids	Enterobacteriaceae and		women with endometriosis.
	asymptomatic control	with uterine	were cultured.	Moraxellaceae		Among women with
	women with uterine	myoma without	nere calcarea.			endometriosis. Lactobacillaceae
	myoma (with and	endometriosis).				was decreased, and
	without					Streptococcaceae,
	gonadotropin-	Cystic fluid was				Staphylococcaceae, and
	releasing hormone	collected from				Enterobacteriaceae were
	agonist (GnRHa)	women with $(N =$				increased, with GnRHa
	treatment).	8) and without (N				treatment.
		= 8) ovarian				
		endometrioma				Among women without
		through				endometriosis,
		laparoscopy.				Staphylococcaceae was
						increased with GnRHa
						treatment.
						Streptococcaceae and
						Staphylococcaceae were
						increased, and Lactobacillaceae
						decreased, among women with
						Culture of custic fluid was
						culture of cystic fluid was
						negative.

Moreno et al 2016 ⁵	Investigate the existence of an endometrial microbiota in relation to that of the vagina, assess its hormonal regulation, and determine its effect on reproductive outcome in women undergoing IVF.	Endometrial fluid was obtained transcervically from 13 fertile women in perceptive and receptive phases of the menstrual cycle. Vaginal fluids were also obtained. Secondarily, endometrial fluid was obtained from 22 fertile women in perceptive and receptive phases. Lastly, endometrial fluids were obtained from 35 infertile women undergoing IVF.	16S rRNA gene sequencing.	The endometrial microbiota was dominated by <i>Lactobacillus</i> . <i>Gardnerella</i> , and <i>Bifidobacterium</i> were also relatively abundant.	Not reported.	There is an endometrial microbiota. Endometrial and vaginal microbiotas differed for some subjects. The endometrial microbiota did not change in structure during the acquisition of endometrial receptivity. Non- <i>Lactobacillus</i> -dominated microbiota was associated with significant decreases in implantation, ongoing pregnancy, and live birth rates.
Verstraelen et al 2016 ⁶	Evaluate the presence of a uterine microbiota in non- pregnant women with idiopathic reproductive conditions.	Endometrial brush samples were obtained transcervically (N = 19).	16S rRNA gene sequencing.	90% of women had endometrial bacterial profiles in which three <i>Bacteroides</i> species and one <i>Pelomonas</i> species accounted for over one third of the total. There was an abundance of <i>Lactobacillus</i> in some subjects.	Not reported.	The data are consistent with the existence of a distinct endometrial microbiota.
Walther- Antonio et al 2016 ⁷	Compare intrauterine microbiota composition between women with and without endometrial cancer.	Swabs and scrapes from the vagina and cervix were taken pre- hysterectomy from women with benign	16S rRNA gene sequencing. A microbial DNA enrichment kit	Endometrial samples were dominated by <i>Shigella</i> and <i>Barnesiella</i> .	Controls for both the DNA extraction and microbial enrichment processes were included and sequenced.	Significant subject-specific correlations in microbiota structure were observed across all organs. The data suggest <i>Atopobium</i> <i>vaginae</i> and a <i>Porphyromonas</i>

		gynecologic conditions (N = 10), endometrial hyperplasia (N = 4), and endometrial cancer (N = 17). Biopsies from the uterus, fallopian tube, and ovary were taken following hysterectomy. Urine and stool samples were also collected.	was used to separate microbial DNA from human DNA prior to amplification for some samples (mostly tissues) that did not amplify.		Nine out of 14 controls yielded sequence data. Relatively abundant taxa in controls included Enterobacteriaceae, <i>Methylobacterium</i> , <i>Moryella</i> , and <i>Staphylococcus</i> . Contamination during sample collection was assessed using an open Petri dish containing Lysogeny broth.	spp. in the gynecologic tract are associated with endometrial cancer.
Chen et al 2017 ⁸	Investigate the presence of a microbiota in the upper reproductive tract and identify potential biomarkers of common reproductive tract diseases.	Swabs of the vagina and cervix of women with benign, non- infectious gynecological conditions (N = 110) were taken pre- hysterectomy. Swabs of the endometrium, fallopian tubes, and peritoneal fluid were taken following hysterectomy.	16S rRNA gene sequencing. Real-time quantitative PCR using primers targeting four vaginal <i>Lactobacillus</i> species.	Relative abundances of Acinetobacter, Pseudomonas, Morganella, Sphingobium, and Vagococcus increased from the lower reproductive tract to the upper reproductive tract, while relative abundances of Lactobacillus species decreased. In the endometrium, while high relative abundances of Lactobacillus were detected, high relative abundances of Pseudomonas, Acinetobacter, Vagococcus, Sphingobium, and Comamonadaceae were also detected.	Sequence data for negative controls are publicly available.	An intra-individual continuum of microbiota along the female reproductive exists, and it is indicative of a non-sterile endometrium.
Miles et al	Investigate the presence of bacteria	With the exception of	16S rRNA gene	High relative abundances of <i>Lactobacillus</i> were detected	"Quality assurance and control of the	Bacteria were identified in 95% of samples.

20179	throughout the reproductive tract of women undergoing a total hysterectomy and bilateral salpingo- oopherectomy.	vaginal swabs, swabs of the endometrium, cervix, myometrium, fallopian tube, and ovary were collected post- hysterectomy (N = 10).	sequencing.	in the endometrium in half of the women. Increased relative abundances of <i>Acinetobacter</i> and <i>Corynebacterium</i> were observed for cervical and endometrial samples.	reactions were performed with both positive and negative control samples to ensure fidelity of the reagents and lack of contamination." There was no report of the controls being sequenced.	The upper reproductive tract is not sterile in most women. The structure of the microbiota in multiple sites is similar within a given woman.
Tao et al 2017 ¹⁰	Characterize the endometrial microbiota of women undergoing IVF.	IVF catheter tip (N = 70).	16S rRNA gene sequencing.	Lactobacillus was detected in all samples, with greater than 90% relative abundance in 33/70 samples, and greater than 50% relative abundance in 50/70 samples. Other vaginal bacteria (Bifidobacterium, Corynebacterium, Staphylococcus, and Streptococcus) were also detected.	Varying concentrations of mock communities were used to validate that poly-microbial samples can be identified by the 16S rRNA gene sequencing assay performed. One blank extraction control was sequenced. The most abundant taxa in the control sample were <i>Ralstonia</i> , <i>Pseudomonas</i> , <i>Cupriavidis</i> , <i>Agrobacterium</i> , <i>Mesorhizobium</i> , and <i>Hyphomicrobium</i> .	There is an endometrial microbiota. Preamplification of raw lysates prior to 16S rRNA gene sequencing provides a sensitive approach for characterizing the endometrial microbiota.
Kyono et al 2018 ¹¹	Assess variation in the endometrial microbiota among healthy volunteers, IVF patients, and non-IVF patients.	Endometrial fluid was collected transcervically with an intrauterine insemination catheter from IVF patients (N = 79), non-IVF patients (N = 23),	16S rRNA gene sequencing.	Endometrial samples from all were largely dominated by <i>Lactobacillus</i> . IVF patients also had endometrial microbiota containing high relative abundances of <i>Gardnerella</i> , <i>Streptococcus</i> , <i>Atopobium</i> , <i>Bifidobacterium</i> , <i>Sneathia</i> , <i>Prevotella</i> , and	One blank DNA extraction kit was sequenced. "Blank-characteristic OTUs," including Acinetobacter, Escherichia, Flavobacterium, Janthinobacterium,	The percentages of <i>Lactobacillus</i> in the endometrium of IVF patients, non-IVF patients, and healthy volunteers were different. 62% of IVF patients have an endometrial microbiota that is not <i>Lactobacillus</i> -dominated.

		and healthy volunteers (N = 7). Swabs of vaginal discharge were also collected.		Staphylococcus.	Methylobacterium, Pseudomonas, Rhodococcus, Sphingomonas, and Stenotrophomonas were removed from the dataset prior to analysis.	
Liu et al 2018 ¹²	Assess the difference between microbiotas of endometrial tissue and fluid in IVF patients.	Paired endometrial fluid (lavage water) and tissue (biopsy) samples collected transcervically from 25 women with recurrent miscarriages.	16S rRNA gene sequencing.	Relatively abundant taxa in both tissue and fluid include: Lactobacillus, Stenotrophomas, Gardnerella, Bifidobacterium, Atopobium, Prevotella, Megasphaera, Staphylococcus, and Escherichia.	Negative controls included RNase- and DNase-free water used for rinsing the tissue and uterine cavity (N = 8), and swabs exposed to the air (N = 8). Only two controls yielded sequences (6 and 12 reads). The taxonomic data were not reported.	There is an endometrial microbiota. The composition of the microbiota in endometrial fluid is not completely reflective of that in endometrial tissue. "Further efforts are needed to identify the preanalytical effects, including sampling sites, methods, and sequencing depth, on profiling endometrial microbiota."
Moreno et al 2018 ¹³	Is real-time polymerase chain reaction comparable to the use of histology, hysteroscopy, and/or microbial culture to diagnose chronic endometritis?	Endometrial biopsies obtained transcervically from women suspected of having chronic endometritis (N = 113). 95 biopsies yielded sufficient DNA for analysis.	Species- specific (9 potential endometritis agents) qPCR. 16S rRNA gene sequencing on 13 biopsies with confirmed chronic endometritis. Culture was performed in a subset of 65 women.	Streptococci were most commonly identified through targeted qPCR. <i>Enterococcus</i> , <i>Streptococcus</i> , and <i>Escherichia</i> were most often recovered in culture. The 16S rRNA gene profiles of women with confirmed chronic endometritis were dominated by <i>Lactobacillus</i> , <i>Streptococcus</i> , and <i>Gardnerella</i> .	The qPCR assays included robust controls. For 16S rRNA gene sequencing, "Positive controls of <i>E. coli</i> DNA and negative controls were included to detect any contamination from reagents." It was not reported whether these controls were sequenced.	 56% of women tested for chronic endometritis were qPCR-positive for at least one endometritis agent. 52% of women were culture positive. qPCR can be an inexpensive and rapid diagnostic tool for identifying chronic endometritis.
Pelzer et al 2018 ¹⁴	Characterize the endometrial and	Paired endometrial	16S rRNA gene	The endometrial and endocervical microbiotas of	Not reported.	There is an endometrial microbiota.

	endocervical microbiota in women with menorrhagia or dysmenorrhea.	curettings and endocervical swabs were collected transcervically from women with menorrhagia (N = 25), dysmenorrhea (N = 32), and virgo intacta controls (N = 3).	sequencing.	women with dysmenorrhea and menorrhagia were largely dominated by <i>Lactobacillus</i> , with <i>Gardnerella</i> , <i>Veillonella</i> , <i>Prevotella</i> , and <i>Sneathia</i> also being abundant. <i>Propionibacterium</i> , <i>Staphylococcus</i> , <i>Pseudomonas</i> , <i>Ralstonia</i> , <i>Corynebacterium</i> , and <i>Kocuria</i> were more relatively abundant in the endometrium than the endocervix. <i>Jonquetella</i> and <i>Fusobacterium</i> were dominant in the endometrium of virgo intacta women		The microbiotas of the endometrium and endocervix do not differ overall. The endometrial microbiotas of women with menorrhagia and dysmenorrhea do not differ.
Wee et al 2018 ¹⁵	Compare the vaginal, cervical and endometrial microbiotas of women with a history of infertility and those with a history of fertility.	Vaginal swabs, endocervical swabs, and endometrial biopsies were collected transcervically from women with a history of infertility (N = 15) and women without infertility (N = 16).	16S rRNA gene sequencing. RT-qPCR was conducted to detect <i>Ureaplasma</i> spp. RT-qPCR of selected human gene transcripts in 2 endometrial tissues: (IL-1α, IL-6, IL-8, Tenascin-C, TNF α , and Syndecan 1).	Lactobacillus was the most common and relatively abundant taxon in vaginal, cervical, and endometrial samples.	Samples with low DNA yield were not sent for sequencing. Negative controls for lysis, extraction, and PCR were sequenced and analyzed. They had a low sequence yield. Taxa were not reported.	Endometrial samples did not consistently yield sequence libraries. When they did, endometrial and vaginal microbiotas did not consistently differ. Expression of selected human genes in the endometrium did not correlate with either fertility status or microbiota composition.

- 78 Supplementary Table S2. Differences in alpha diversity values among paired body site samples for
- 79 the standard PCR dataset based on three metrics (Chao 1 richness estimator, Shannon diversity
- 80 index, and the inverse Simpson index). Differences were evaluated using linear mixed-effect models
- and ANOVA tests, controlling for subject (i.e., patient identity) as a random effect. OS = oral, RS =
- 82 rectal, VS = vaginal, CS = cervical, and EMS = endometrial.

Chao ~ 1	Type + (1 Sub	oject)									
								Estimate	Std. Error	z value	Pr(> z)
	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)	EMS-CS	6.120	11.893	0.515	1.000
Туре	108582.9	27145.73	4	72.97271	44.95605	5.52E-19	OS-CS	32.721	7.790	4.201	< 0.0001
							RS-CS	76.073	7.790	9.766	< 0.0001
							VS-CS	-9.508	7.790	-1.221	1.000
							OS-EMS	26.601	11.450	2.323	0.202
							RS-EMS	69.953	11.450	6.110	< 0.0001
							VS-EMS	-15.628	11.450	-1.365	1.000
							RS-OS	43.352	6.950	6.237	< 0.0001
							VS-OS	-42.229	6.950	-6.076	< 0.0001
							VS-RS	-85.581	6.950	-12.313	< 0.0001
			summary	(glht(Stand	ard_Chao_	model, linfct	= mcp(Type = "	Fukey")), te	est = adjus	ted("bonf	erroni"))
lmer (Sł	nannon ~ Typ	e + (1 Sub	ject)					Estimate	Std Error	7.Valuo	Dr(\171)
	Sum Sa	Moon Sa	NumDE	DopDE	Evoluo			0.120	0 200	2 Value	1 000
Tuno	Sum Sq		NUMDF		F Value	PI(>F)	EIVIS-CS	-0.130	0.298	-0.438	1.000
туре	96.54595	24.36396	4	10.07927	05.90790	1.176-25		1.505	0.190	0.050	< 0.0001
							KS-CS	1.904	0.196	9.715	< 0.0001
								-0.582	0.196	-2.969	0.030
							US-EIVIS	1.433	0.286	5.009	< 0.0001
							RS-EIVIS	2.034	0.286	7.108	< 0.0001
							VS-EIVIS	-0.451	0.286	-1.5//	1.000
							RS-OS	0.601	0.175	3.423	0.006
							VS-OS	-1.885	0.175	-10.743	< 0.0001
							VS-RS	-2.485	0.175	-14.16/	< 0.0001
			summary	(glht(Stand	ard_Shanr	ion_model, lii	nfct = mcp(Type	= "Tukey")), test = ac	ljusted("b	onferroni"
Imer (In	vSimpson ~ 1	rype + (1 S	subject)					Estimate	Std. Error	z value	Pr(> z)
	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)	EMS-CS	-0.569	3.306	-0.172	1.000
Туре	6921.09	1730.273	4	69.97894	35.71063	3.07E-16	OS-CS	11.481	2.188	5.246	< 0.0001
							RS-CS	19.345	2.188	8.840	< 0.0001
							VS-CS	-0.681	2.188	-0.311	1.000
							OS-EMS	12.049	3.165	3.807	0.001
							RS-EMS	19.914	3.165	6.293	< 0.0001
			1				VS-EMS	-0.112	3.165	-0.035	1.000
							RS-OS	7.864	1.969	3.994	0.001
							VS-OS	-12.161	1.969	-6.177	< 0.0001
							VS-RS	-20.026	1.969	-10.171	< 0.0001

- 84 Supplementary Table S3. Differences in alpha diversity values between cervical, endometrial, and
- 85 background technical control samples for the touchdown PCR dataset based on three metrics
- 86 (Chao 1 richness estimator, Shannon diversity index, and the inverse Simpson index). Differences
- 87 were evaluated using Mann-Whitney/Wilcoxon rank-sum tests. CS = cervical, EMS = endometrial, and
- 88 BLK = technical background control.

		Sum of		Effect	
		ranks	z value	size	<i>p</i> value
Chao 1	CS_EMS	17.0	-1.379	0.308	0.168
	CS_BLK	79.5	-0.480	0.107	0.631
	EMS_BLK	60.0	0.000	0.000	1.000
Shannon	CS_EMS	16.0	-1.467	0.328	0.142
	CS_BLK	151.0	-2.901	0.649	0.004
	EMS_BLK	104.0	-2.868	0.641	0.004
Inverse Simpson	CS_EMS	21.0	-1.022	0.229	0.307
	CS_BLK	131.0	-1.942	0.434	0.052
	EMS_BLK	91.0	-2.011	0.450	0.044

Supplementary Table S4. Genera indicated by Linear discriminant analysis Effect Size (LEfSe) as being more relatively abundant in the
 endometrium than in background technical controls

Genus	Ecological and clinical description of the genus and its reported	Has this genus been
	occurrence in prior sequence-based studies of the human endometrium	documented as a
		DNA contaminant
		in prior sequence-
		based studies?
Acinetobacter	A diverse genus containing both common soil and clinically relevant bacteria that can cause a range of opportunistic, often catheter-related, infections in humans ¹⁶ . <i>Acinetobacter</i> was identified at low relative abundances (i.e., < 1%) in seven	Yes ^{10,12,17,18}
	endometrial microbiota studies ^{2,3,6,7,10,12,14} , and was present at varying abundances (i.e., 5 - 30% in some samples) in others ^{5,8,9,13} .	
Pseudomonas	A diverse group of bacteria that inhabit a wide variety of environments and can colonize many different mucosal surfaces, invade tissues and blood, and cause nosocomial infections ^{19,20} .	Yes ^{7,10,12,17,18}
	<i>Pseudomonas</i> was identified at low relative abundances in six endometrial microbiota studies ^{5-7,10,12,14} , and at abundances of $\geq 5\%$ in three others ^{2,3,8} .	
Cloacibacterium	A genus with species previously isolated from wastewater ²¹ , freshwater lake sediment ²² , activated sludge ²³ , and the intestinal tract of a bivalve ²⁴ . Using 16S rDNA sequencing, <i>C. normanense</i> was detected in a tissue sample of a patient with spondylodiscitis ²⁵ .	Yes ¹⁸
	<i>Cloacibacterium</i> was identified in one endometrial microbiota study at a low relative abundance ⁵ .	
Haemophilus	A diverse genus containing strains that cause pathogenic infection in both animals and humans. <i>Haemophilus</i> species can be commensals of the mucous membranes ²⁶ .	Yes ¹⁸
	<i>Haemophilus</i> was identified in four endometrial microbiota studies at low relative abundances ^{5,6,9,13} .	
Flavobacterium	The genus has more than 100 species of commensal bacteria and opportunistic pathogens of freshwater fish that are common in sediments and aquatic environments ^{27,28} . <i>F. lindanitolerans</i> was isolated from the ascites of a patient in China with Enterovirus 71 infection who died of fatal pulmonary edema and hemorrhage ²⁹ .	Yes ¹⁷

	<i>Flavobacterium</i> was identified in two endometrial microbiota studies at low relative abundances ^{12,13} .	
Veillonella	Common commensals found in the alimentary canal and vagina of mammals that are often associated with bite wounds and infections of the mouth, sinuses, lungs, heart, bone, and central nervous system ³⁰ . <i>Veillonella</i> was identified in six endometrial microbiota studies at low relative abundances ^{2,5,7,9-11} .	Yes ^{7,18}
Stenotrophomonas	Bacteria commonly isolated from, sewage, sludge, and soil that can be agents of nosocomial infections ³¹ , especially among immunocompromised patients ^{32,33} . <i>Stenotrophomonas</i> was identified at low relative abundances in eight endometrial microbiota studies ^{2,5-10,12} .	Yes ^{17,18}
Enhydrobacter	This genus has a single environmental species ³⁴ . <i>Enhydrobacter</i> was identified at low relative abundances in three endometrial microbiota studies ^{2,5,8} .	Yes ^{7,17,18}
Fusobacterium	This genus contains several species that inhabit the mucous membranes of humans and animals ³⁵ . The presence of <i>Fusobacterium</i> is associated with periodontitis ³⁶ , thrombophlebitis ³⁷ , and colorectal carcinoma ³⁸ . <i>Fusobacterium</i> was identified in seven endometrial microbiota studies at low relative abundances ^{2,5-8,10,14} .	Yes ^{7,18,39}
Actinomyces	Ubiquitous bacteria found in soil and in the microbiota of animals; they can be opportunistic pathogens ⁴⁰ . <i>Actinomyces</i> was identified in five endometrial microbiota studies at low relative abundances ^{2,5-7,10} .	Yes ^{7,18}

91 SUPPLEMENTARY FIGURES

92 Supplementary Figure S1. Alpha diversity values based on three metrics (Chao 1 richness estimator,

Shannon diversity index, and the inverse Simpson index) for 16S rRNA gene profiles of the five body
 sites for the standard PCR dataset and of the cervical, endometrial, and technical control samples for the

95 touchdown PCR dataset.

96

Supplementary Figure S2. Heat map illustrating percent relative abundances of amplicon sequence
 variants among cervical, endometrial, and background technical control samples. Amplification of
 16S rRNA genes was performed using both standard PCR and touchdown PCR approaches. Each
 amplicon sequence variant differed at most by one base pair (bp) from the consensus sequence of its
 respective operational taxonomic unit (OTU) (a-e).

105 **REFERENCES**

- 1061Mitchell, C. M. *et al.* Colonization of the upper genital tract by vaginal bacterial species in107nonpregnant women. *Am J Obstet Gynecol* **212**, 611.e611-619 (2015).
- Fang, R. L. *et al.* Barcoded sequencing reveals diverse intrauterine microbiomes in patients
 suffering with endometrial polyps. *Am J Transl Res* 8, 1581-1592 (2016).
- 1103Franasiak, J. M. *et al.* Endometrial microbiome at the time of embryo transfer: next-generation111sequencing of the 16S ribosomal subunit. J Assist Reprod Genet **33**, 129-136 (2016).
- Khan, K. N. *et al.* Molecular detection of intrauterine microbial colonization in women with
 endometriosis. *Eur J Obstet Gynecol Reprod Biol* **199**, 69-75 (2016).
- 1145Moreno, I. *et al.* Evidence that the endometrial microbiota has an effect on implantation success115or failure. Am J Obstet Gynecol **215**, 684-703 (2016).
- Verstraelen, H. *et al.* Characterisation of the human uterine microbiome in non-pregnant
 women through deep sequencing of the V1-2 region of the 16S rRNA gene. *PeerJ* 4, e1602
 (2016).
- 1197Walther-Antonio, M. R. *et al.* Potential contribution of the uterine microbiome in the120development of endometrial cancer. *Genome Med* 8, 122 (2016).
- 1218Chen, C. *et al.* The microbiota continuum along the female reproductive tract and its relation to122uterine-related diseases. *Nat Commun* **8**, 875 (2017).
- Miles, S. M., Hardy, B. L. & Merrell, D. S. Investigation of the microbiota of the reproductive tract
 in women undergoing a total hysterectomy and bilateral salpingo-oopherectomy. *Fertil Steril* **107**, 813-820.e811 (2017).
- 12610Tao, X. *et al.* Characterizing the endometrial microbiome by analyzing the ultra-low bacteria127from embryo transfer catheter tips in IVF cycles: Next generation sequencing (NGS) analysis of128the 16S ribosomal gene. *Human Microbiome Journal* **3**, 15-21 (2017).
- 11 Kyono, K., Hashimoto, T., Nagai, Y. & Sakuraba, Y. Analysis of endometrial microbiota by 16S
 ribosomal RNA gene sequencing among infertile patients: a single-center pilot study. *Reprod* 131 *Med Biol* 17, 297-306 (2018).
- 13212Liu, Y. et al. Systematic comparison of bacterial colonization of endometrial tissue and fluid133samples in recurrent miscarriage patients: Implications for future endometrial microbiome134studies. Clin Chem 64, 1743-1752 (2018).
- 13 Moreno, I. *et al.* The diagnosis of chronic endometritis in infertile asymptomatic women: a
 136 comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology.
 137 Am J Obstet Gynecol 218, 602.e601 (2018).
- 13814Pelzer, E. S., Willner, D., Buttini, M. & Huygens, F. A role for the endometrial microbiome in139dysfunctional menstrual bleeding. Antonie Van Leeuwenhoek 111, 933-943(2018).
- 140 15 Wee, B. A. *et al.* A retrospective pilot study to determine whether the reproductive tract
 141 microbiota differs between women with a history of infertility and fertile women. *Aust N Z J*142 *Obstet Gynaecol* 58, 341-348 (2018).
- 14316Towner, K. The genus Acinetobacter in The Prokaryotes: Volume 6: Proteobacteria: Gamma144Subclass (ed Martin Dworkin) 746-758 (Springer, 2006).
- 14517Salter, S. J. *et al.* Reagent and laboratory contamination can critically impact sequence-based146microbiome analyses. *BMC Biol* **12**, 87 (2014).
- 147 18 Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent bacterial DNA
 148 contamination of extraction and sequencing reagents may affect interpretation of microbiota in
 149 low bacterial biomass samples. *Gut Pathog* 8, 24 (2016).
- 19 Moore, E. R. *et al.* Nonmedical: pseudomonas in *The Prokaryotes: Volume 6: Proteobacteria:* 151 *Gamma Subclass* (ed Martin Dworkin) 646-703 (Springer, 2006).

152	20	Yahr, T. L. & Parsek, M. R. <i>Pseudomonas aeruginosa</i> in <i>The Prokaryotes: Volume 6:</i>
153		Proteobacteria: Gamma Subclass (ed Martin Dworkin) 704-713 (Springer, 2006).
154	21	Allen, T. D., Lawson, P. A., Collins, M. D., Falsen, E. & Tanner, R. S. Cloacibacterium normanense
155		gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal
156		wastewater. Int J Syst Evol Microbiol 56, 1311-1316 (2006).
157	22	Cao, S. J., Deng, C. P., Li, B. Z., Dong, X. Q. & Yuan, H. L. Cloacibacterium rupense sp. nov.,
158		isolated from freshwater lake sediment. Int J Syst Evol Microbiol 60, 2023-2026 (2010).
159	23	Chun, B. H., Lee, Y., Jin, H. M. & Jeon, C. O. Cloacibacterium caeni sp. nov., isolated from
160		activated sludge. Int J Syst Evol Microbiol 67, 1688-1692 (2017).
161	24	Hyun, D. W. et al. Cloacibacterium haliotis sp. nov., isolated from the gut of an abalone, Haliotis
162		discus hannai. Int J Syst Evol Microbiol 64 , 72-77 (2014).
163	25	Stavnsbjerg, C., Frimodt-Moller, N., Moser, C. & Bjarnsholt, T. Comparison of two commercial
164		broad-range PCR and sequencing assays for identification of bacteria in culture-negative clinical
165		samples. BMC Infect Dis 17, 233 (2017).
166	26	Hoiseth, S. K. The genus Haemophilus in The Prokaryotes: Volume 4: A Handbook on the biology
167		of Bacteria: Ecophysiology, Isolation, Identification, Applications (ed Albert Balows) 3304-3330
168		(Springer, 1992).
169	27	Bernardet, J. & Bowman, J. The Genus Flavobacterium in The Prokaryotes: Volume 7: Deeply
170		Rooting Bacteria (ed Martin Dworkin) 481-531 (Springer, 2006).
171	28	Loch, T. P. & Faisal, M. Emerging flavobacterial infections in fish: A review. J Adv Res 6, 283-300
172		(2015).
173	29	Tian, G. Z. et al. A Flavobacterium lindanitolerans strain isolated from the ascites sample of a
174		Chinese patient with EV71 virus infection. <i>Biomed Environ Sci</i> 24, 694-696 (2011).
175	30	Kolenbrander, P. The genus Veillonella in The Prokaryotes: Volume 4: A Handbook on the biology
176		of Bacteria: Bacteria: Firmicutes, Cyanobacteria (ed Martin Dworkin) 1022-1040 (Springer,
177		2006).
178	31	Palleroni, N. J. & Bradbury, J. F. Stenotrophomonas, a new bacterial genus for Xanthomonas
179		maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Evol Microbiol 43 , 606-609 (1993).
180	32	Calza, L., Manfredi, R. & Chiodo, F. Stenotrophomonas (Xanthomonas) maltophilia as an
181		emerging opportunistic pathogen in association with HIV infection: a 10-year surveillance study.
182	~~	Infection 31 , 155-161 (2003).
183	33	Safdar, A. & Rolston, K. V. Stenotrophomonas maltophilia: changing spectrum of a serious
184	~ ~	bacterial pathogen in patients with cancer. <i>Clin Infect Dis</i> 45 , 1602-1609 (2007).
185	34	Staley, J. I., Irgens, R. L. & Brenner, D. J. Enhydrobacter aerosaccus gen. nov., sp. nov., a gas-
186		vacuolated, facultatively anaerobic, neterotrophic rod. Int J Syst Evol Microbiol 37 , 289-291
187	25	(1987). Usfeted T. The second Suschmeterium in The Duckementer Makuna 4. A threadhack on the biology.
188	35	Hofstad, I. The genus Fusobacterium in The Prokaryotes: Volume 4: A Hanabook on the biology
189		<i>of Bacteria: Ecophysiology, Isolation, Identification, Applications</i> (ed Albert Balows) 4114-4126
190	20	(Springer, 1992).
191	30	signat, B., Roques, C., Poulet, P. & Duffaut, D. <i>Fusobacterium nucleatum</i> in periodontal nealth
102	27	Maaks D. E. Katz D. S. Savan B. & Kubal W. S. Lamiarra sundrama: report of five new cases
101	57	and literature review. Emerg Padiol 17, 222-228 (2010)
105	28	and merature review. Linery nuclei 17, 525-526 (2010). Castellarin M. et al. Eucobacterium nucleatum infection is prevalent in human colorastal
196	50	carcinoma Genome Res 22 299-306 (2012)
197	29	Kim D et al Ontimizing methods and dodging nitfalls in microhiome research Microhiome 5 52
198		(2017)
100		(2027).

19940Schaal, K. P., Yassin, A. F. & Stackebrandt, E. The family Actinomycetaceae: The200genera Actinomyces, Actinobaculum, Arcanobacterium, Varibaculum, and Mobiluncus in The201Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes (ed Martin Dworkin) 430-202537 (Springer, 2006).