Supplementary Information for

Anoxygenic photosynthesis and the delayed oxygenation of Earth's atmosphere

Kazumi Ozaki et al.

Supplementary Figure 1. Schematic figure of ocean configuration in the CANOPS-KB model (a). Ocean interior below the surface layers is divided into low-mid and high latitude sectors in the proportion of 0.75:0.25. Both sectors are vertically divided into 60 layers (*j*) to a maximum depth of 6100 m, with a layer spacing of 100m. Each sector interacts with modern ocean bathymetry. The model includes water transport by thermohaline circulation (*V*) and vertical/horizontal eddy diffusion (K_{ν} , K_h). Shown in (b) is a schematic depiction of the competitive photosynthesis scheme discussed in the text, where 'ox' represents oxygenic phototrophs, 'an' represent carbon export fluxes by oxygenic (ox) and anoxygenic (an) phototrophs.

Supplementary Figure 2. Effect of varying phosphorus flux to the ocean on the stability analysis presented in the Main Text. Shown are equilibrium atmospheric pO_2 values as a function of deep ocean Fe/P ratio ([Fe/P]_d) for our reference case (solid) and a model ensemble in which we reduce phosphorus input by 50% (dashed). Note that in these simulations we also reduce global erosion rates (and thus organic carbon oxidation) by a similar factor (i.e., $f_w = 0.5$). Under the physically unrealistic assumption that these two factors are uncoupled, the equilibrium atmospheric pO_2 under a given set of boundary conditions would be revised slightly downward.

Gene	Number of copies (ORF ID #)		
PhoB (phosphate regulon response regulator)	2 (22_16), (113_3)		
PhoR (phosphate regulon sensor)	1 (22_15)		
PhoU (phosphate uptake regulator)	5 (107_14), (62_3), (63_3), (63_4), (64_0)		
PhoH (phosphate starvation-inducible protein)	1 (58_9)		
PstC (phosphate ABC transporter)	4 (107_11), (62_0), (63_0), (64_3)		
PstA (phosphate ABC transporter)	4 (107_12), (62_1), (63_1), (64_2)		
PstB (phosphate transporter ATP-binding protein)	4 (107_13), (62_2), (63_2), (64_1)		
PstS (phosphate-binding protein)	6 (113_1), (110_6), (107_10), (64_10), (90_4), (47_6)		
Alkaline phosphatase (PhoA)	2 (113_6), (44_1)		
Polyphosphate kinase	2 (113 5), (44 19)		

Supplementary Table 1. Genes involved in phosphorus metabolism in *C. phaeoferrooxidans* strain KB01.

Parameter	Description	Default	Units	Source
	L	Value		
cyanobacteria				
μ_c	maximum growth rate	0.004	µmolC kg ⁻¹ s ⁻¹	10
I_c	half-saturation constant for light- limited growth	98	μ mol photons m ⁻² s ⁻¹	10
$K_{c,P}$	half-saturation constant for nutrients	0.015	µmol kg-1	10
photoferrotrophs				
μ_p	maximum growth rate	0.002	µmolC kg ⁻¹ s ⁻¹	This study
I_p	half-saturation constant for light-	1	µmol photons m ⁻² s ⁻¹	11
	limited growth			
$K_{p,Fe}$	half-saturation constant for dissolved Fe	11	µmol kg ⁻¹	This study
$K_{mp,P}$	half-saturation constant for nutrients	0.005	µmol kg ⁻¹	This study
physical				
parameters				
Т	water temperature	25	°C	-
Ι	ionic strength	0.7	-	-
I_0	incident light flux	1300	µmol photons m ⁻² s ⁻¹	10
$1/\lambda$	light attenuation length scale	15	m	12
w	upwelling rate	0.5	m d ⁻¹	-
K_{ν}	eddy diffusivity	10-4	$m^2 s^{-1}$	-
K_{d}^{FeP}	distribution coefficient for P on Fe	0.025	μM ⁻¹	13
	oxides			

Supplementary Table 2. Parameter definitions and default parameter values for the 1-D water column model.

Stoichiometry
$\alpha \mathrm{CO}_2 + \beta \mathrm{NH}_4^+ + \mathrm{H}_3 \mathrm{PO}_4 + \alpha \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{OM} + \alpha \mathrm{O}_2$
$\alpha \mathrm{CO}_2 + \beta \mathrm{NO}_3^{\cdot} + \mathrm{H}_3 \mathrm{PO}_4 + (\alpha + \beta) \mathrm{H}_2 \mathrm{O} + 2\beta \mathrm{H}^+ \rightarrow \mathrm{OM} + (\alpha + 2\beta) \mathrm{O}_2$
$OM + \alpha O_2 \rightarrow \alpha CO_2 + \beta NH_4^+ + H_3PO_4 + \alpha H_2O$
$OM + \frac{4}{5}\alpha NO_3^{\cdot} + \frac{4}{5}\alpha H^+ \rightarrow \alpha CO_2 + \beta NH_4^+ + H_3PO_4 + \frac{7}{5}\alpha H_2O + \frac{2}{5}\alpha N_2$
$\mathrm{OM} + \frac{1}{2}\alpha \mathrm{SO}_{4}^{2^{*}} + \alpha \mathrm{H}^{+} \rightarrow \alpha \mathrm{CO}_{2} + \beta \mathrm{NH}_{4}^{+} + \mathrm{H}_{3}\mathrm{PO}_{4} + \alpha \mathrm{H}_{2}\mathrm{O} + \frac{1}{2}\alpha \mathrm{H}_{2}\mathrm{S}$
$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$
$\Sigma H_2S + 2O_2 \rightarrow SO_4^{2-} + 2H^+$

Supplementary Table 3. Major reactions in the CANOPS-KB model. OM represents $(CH_2O)_{\alpha}(NH_4^+)_{\beta}H_3PO_4$.

Supplementary Table 4. Biogeochemical formulations used in the CANOPS-KB model. l and h represent low- and high-latitude surface layer, respectively. z is water depth, and w is upwelling rate at $z = h_{m}$.

Parameter	Units	Formulation
Total export production	mol C m ⁻² yr ⁻¹	$J_{ex}^{total} = \boldsymbol{\alpha} \cdot \boldsymbol{h}_{m} \cdot \boldsymbol{\varepsilon} \cdot [\mathrm{PO}_{4}^{3-}] \cdot \frac{[\mathrm{PO}_{4}^{3-}]}{K_{m}^{P} + [\mathrm{PO}_{4}^{3-}]}$
New production of photoferrotrophs	mol C m ⁻² yr ⁻¹	$J_{ex}^{pfe} = \min\left\{J_{Fe}^{up} / r_{FeC}, J_{ex}^{total^{l}}\right\}$
New production of cyanobacteria	mol C m ⁻² yr ⁻¹	$J_{ex}^{cyano} = \begin{cases} J_{ex}^{total^{1}} - J_{ex}^{pfe} & : \text{Fe-limit} \left(J_{ex}^{pfe} < J_{ex}^{total^{l}} \right) \\ 0 & : \text{P-limit} \left(J_{ex}^{pfe} = J_{ex}^{total^{l}} \right) \end{cases}$
Aerobic respiration	mol C m ⁻³ yr ⁻¹	$R_{O_2} = (\sum k_i G_i) \cdot \frac{[O_2]}{K_{O_2} + [O_2]}$
Denitrification	mol C m ⁻³ yr ⁻¹	$R_{\text{deni}} = (\sum k_i G_i) \cdot \frac{K'_{O_2}}{K'_{O_2}} + [O_2] \cdot \frac{[\text{NO}_3]}{K_{\text{NO}_3}} + [\text{NO}_3]$
Sulphate reduction	mol C m ⁻³ yr ⁻¹	$R_{\rm MSR} = (\sum k_i G_i) \cdot \frac{K_{\rm O_2}}{K_{\rm O_2}} + [O_2] \cdot \frac{K_{\rm NO_3}}{K_{\rm NO_3}} + [\rm NO_3^{-}] \cdot \frac{[\rm SO_4^{2^{\circ}}]}{K_{\rm SO_4}} + [\rm SO_4^{2^{\circ}}]$
Nitrification	mM yr ⁻¹	$R_{\text{nitrf}} = k_{\text{NH}_4} \cdot [\text{NH}_4^+] \cdot [\text{O}_2]$
Sulphide oxidation	mM yr ⁻¹	$R_{\text{H2Sox}} = k_{\text{H}_2S} \cdot [\Sigma \text{H}_2\text{S}] \cdot [\text{O}_2]$
Fe(II) upwelling flux	mol Fe m ⁻² yr ⁻¹	$J_{Fe}^{up} = [\text{Fe/P}]_{d} \cdot J_{P}^{up}$
P scavenging and burial	mol P m ⁻² yr ⁻¹	$J_{\text{scav}} = \begin{cases} \gamma \cdot K_d^{FeP} \cdot [\text{PO}_4^{3-}]_l \cdot J_{Fe}^{up} \text{ when } [\text{O}_2]_{j=1} < 1 \mu\text{M} \\ 0 \text{when } [\text{O}_2]_{j=1} \ge 1 \mu\text{M} \end{cases}$
Phosphate upward flux	mol P m ⁻² yr ⁻¹	$J_P^{up} = A_{j=1} w \cdot \left[\operatorname{PO}_4^{3-} \right]_{j=1} + A_{j=1} K_v \left. \frac{\partial \left[\operatorname{PO}_4^{3-} \right]}{\partial z} \right _{z=h_{\mathrm{m}}}$
Corg burial efficiency	%	$BE_{\rm oc} = \frac{be_1 - be_2}{1 + SR/a} + be_2$
Porg burial efficiency	%	$BE_{Porg} = BE_{oc}^* \cdot (1 + \exp(-0.001/SR))^{-1} \cdot \left(\alpha_P + (1 - \alpha_P)\frac{[O_2]_{bw}}{[O_2]_{bw}^*}\right)$
Fe-bound P burial	%	$BE_{\text{Fe-bound}} = BE_{\text{oc}}^* \cdot (1 + \exp(-0.001/SR))^{-1} \cdot \frac{[O_2]_{bw}}{[O_2]_{bw}^*}$
Authigenic P burial	%	$BE_{\text{auth}} = 2 \cdot BE_{\text{oc}}^* \cdot (1 + \exp(-0.001/SR))^{-1}$

Parameter	Symbol	Units	Value
physical parameters	·		
Ocean surface area	A	m^2	3.62×10^{14}
Coastal area ($z < -200 \text{ m}$)	A_{cs}	m^2	0.271×10^{14}
Surface area of high-latitude layer (H)	$A_{ m h}$	m^2	3.62×10 ¹³
Depth of mixed layer	$h_{ m m}$	m	100
Grid spacing	Δz	m	100
Water depth of ocean bottom	Zb	m	6100
Ocean overturning rate	V	\mathbf{Sv}	20
High-latitude convection	$V_{ m h}$	\mathbf{Sv}	57.4
Horizontal diffusion coefficient	$K_{ m h}$	$m^2 s^{-1}$	1000
biogeochemical parameters			
Efficiency factor for phosphate uptake at L	B	y-1	1.0
Efficiency factor for phosphate uptake at H	\mathcal{E}_{h}	y-1	0.15
Phosphate half saturation constant	Km ^P	mM	1×10 ⁻⁶
Redfield ratio for C and P	α	mol mol ⁻¹	106
Redfield ratio for N and P	β	mol mol ⁻¹	16
Fe/C stoichiometry of photoferrotrophy	∕′FeC	mol mol ⁻¹	4
Distribution coefficient for phosphorus scavenging	K_{d}^{FeP}	mM ⁻¹	70
Preservation efficiency of scavenged P	γ		0.5
POM sinking velocity	, Vpom	m d ⁻¹	100
Weight fraction of G ₁	f _{G1}		0.72
Weight fraction of G ₂	f_{G2}		0.25
Weight fraction of G ₃	f_{G3}		0.03
Decomposition rate of G_1	k_1	d-1	0.6
Decomposition rate of G ₂	k_2	d^{-1}	0.1
Decomposition rate of G ₃	k_3	d^{-1}	0.0
Aerobic respiration of O2 half saturation constant	K_{O2}	mM	8×10 ⁻³
Denitrification half saturation constant	$K_{ m NO3}$	mM	3×10 ⁻²
Half saturation constant for sulphate reduction	$K_{ m SO4}$	mM	0
Ammonium oxidation rate	$k_{ m NH4}$	$mM^{-1} y^{-1}$	1.825×10^{4}
Sulphide oxidation rate	$k_{ m H2S}$	$mM^{-1} y^{-1}$	3.65×10^{3}
Riverine reactive phosphorus input rate	$R_{ m P}$	Tmol P y ⁻¹	0.18
Riverine nitrogen input rate	$R_{ m N}$	Tg N y ⁻¹	0
Atmospheric nitrogen deposition	$A_{ m N}$	Tg N ⁻¹	0
Baseline Corg weathering flux	$J_{\scriptscriptstyle W,0}{}^{org}$	Tmol C y ⁻¹	10.5
C huriel limit et sons es dimentation	beı	%	0.5 for $[O_2]_{bw} > 200 \ \mu M$
C _{org} burial limit at zero sedimentation			50 for $[O_2]_{bw} < 30 \ \mu M$
Corg burial limit at infinite sedimentation	be_2	%	75
	а	cm y-1	0.264 for $[O_2]_{bw} > 200 \ \mu M$
Center of regression for C _{org} burial efficiency			0.0038 for $[O_2]_{bw} < 30 \mu\text{M}$
Reference bottom water O ₂ for P burial	$[O_2]_{bw}^*$	μM	250
Constant for O ₂ dependence on Porg burial	αp	-	0.25

Supplementary Table 5. Constants used in the CANOPS-KB model.

Supplementary References

- 1 Rao, N. & Torriani, A. Molecular aspects of phosphate transport in Eschericia coli. *Molecular Microbiology* **4**, 1083-1090 (1990).
- 2 Neidhardt, F. C. *Escherichia coli and Salmonella: Cellular and Molecular Biology*. (ASM Press, 1996).
- 3 Aguena, M. & Spira, B. Transcriptional processing of the pst operon of Escheria coli. *Current Microbiology* **58**, 264-267 (2009).
- 4 Adams, M. M., Gómez-García, M. R., Grossman, A. R. & Bhaya, T. Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats. *J Bacteriol* **190**, 8171-8184 (2008).
- 5 Lidbury, I. D., Fraser, T., Murphy, A. R., Scanlan, D. J., Bending, G. D., Jones, A. M., Moore, J. D., Goodall, A., Tibbett, M. & Hammond, J. P. The 'known' genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils. *MicrobiologyOpen* **6**, 4 (2017).
- 6 Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Ann. Rev. Earth Planet. Sci. 33, 1-36 (2005).
- 7 Kump, L. R. & Garrels, R. M. Modeling atmospheric O₂ in the global sedimentary redox cycle. *Am. J. Sci.* **286**, 337-360 (1986).
- 8 Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early life. *Science* **293**, 839-843 (2001).
- 9 Bolton, E. W., Berner, R. A. & Petsch, S. T. The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling. *American Journal of Science* **306**, 575-615 (2006).
- Denaro, G., Valenti, D., Spagnolo, B., Basilone, G., Mazzola, S., Zgozi, S. W., Aronica, S. & Bonanno, A. Dynamics of two picophytoplankton groups in Mediterranean Sea: Analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. *Plos One* 8, e66765 (2013).
- 11 Manske, A. K., Glaeser, J., Kuypers, M. M. M. & Overmann, J. Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. *Appl Environ Microb* **71**, 8049-8060 (2005).
- 12 Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. *Science* **268**, 1480-1482 (1995).
- Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canfield, D. E. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. *Geology* **43**, 135-138 (2015).