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SUMMARY

Endocrine therapy (ET) is the standard of care for
estrogen receptor-positive (ER+) breast cancers.
Despite its efficacy, �40% of women relapse with
ET-resistant (ETR) disease. A global transcription
analysis in ETR cells reveals a downregulation of the
neutral and basic amino acid transporter SLC6A14
governed by enhanced miR-23b-3p expression, re-
sulting in impaired amino acid metabolism. This
altered amino acid metabolism in ETR cells is sup-
ported by the activation of autophagy and the
enhanced import of acidic amino acids (aspartate
and glutamate) mediated by the SLC1A2 transporter.
The clinical significance of these findings is validated
by multiple orthogonal approaches in a large cohort
of ET-treated patients, in patient-derived xenografts,
and in in vivo experiments. Targeting these amino
acid metabolic dependencies resensitizes ETR cells
to therapy and impairs the aggressive features of
ETR cells, offering predictive biomarkers and poten-
tial targetable pathways to be exploited to combat
or delay ETR in ER+ breast cancers.
INTRODUCTION

Themajority of breast tumors are positive for estrogen receptor a

(called hereafter ER) and/or progesterone receptor (PR) and

negative for human epidermal growth factor receptor 2 (HER2).

Since these tumors are dependent on estrogen for growth and

survival, inhibiting this dependency with endocrine therapies

(ETs) is the standard of care for these patients. ET agents include
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selective ER modulators (e.g., tamoxifen) which compete with

estrogen for ER binding; selective ER downregulators (e.g., ful-

vestrant) that bind to and destabilize ER, inducing its degrada-

tion; and aromatase inhibitors (AIs; e.g., letrozole, anastrozole)

which block the conversion of androgens to estrogens lowering

estrogen levels. Over 50% of the ET-treated patients show an

initial clinical benefit, but �40% experience de novo or acquired

ET resistance (ETR). Therefore, there remains an urgent need for

more effective therapeutic strategies. We have previously

demonstrated that microRNA (miRNA)-dependent regulation of

the expression of key metabolic genes enhances glucose-

dependent metabolic plasticity in ETR cells (Bacci et al., 2016)

and that impairing this reprogramming resensitizes ETR cells to

therapy (Morandi and Indraccolo, 2017). Concomitantly, a num-

ber of metabolic stimuli (e.g., nutrients, hormones, cytokines)

modulate the miRNA expression, thus establishing a functional

association, which can be altered to perturb energy homeosta-

sis, as in the case of many tumors (Dumortier et al., 2013).

Here, we performed genome-wide expression profiling of ETR

long-term estrogen-deprived (LTED) ER+ breast cancer cells that

reveals a deregulation of amino acid transporters. Notably, the

mechanism that sustains amino acid metabolism in ETR is not

exclusively associated with estrogen deprivation but concurs

with fulvestrant and tamoxifen resistance, thus highlighting the

potential metabolic vulnerabilities to be exploited for either tar-

geting or prognostic purposes.

RESULTS

Genome Profiling Reveals a Deregulated miR-23b-3p/
SLC6A14 Axis in ETR Cells with Prognostic Value in ER+

Breast Cancer
To address the interconnection between miRNAs and genes

associated with estrogen deprivation, we analyzed the global
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Global Gene Expression and

miRNA Analysis Reveals a Deregulated

miR-23b-3p/SLC6A14 Node in LTED Com-

pared to Parental MCF7 Cells

(A) Supervised hierarchical clustering of RNA

transcripts (left) and miRNAs (right) of 3 biological

replicates of MCF7, MCF7 deprived from estrogen

(E2) for 3 days, and LTED cells that were subjected

to gene or miRNA expression profiling using an

Agilent Technologies assay. Differentially ex-

pressed genes (n = 3,568; ANOVA) and miRNAs

(n = 62; ANOVA) were used for heatmap genera-

tion. High and low expression is normalized to the

average expression across all of the samples. On

the left side, association of the genes in the heat-

map with leading edge genes resulting from GSEA

analysis on the specified gene sets is identified.

(B) Gene set enrichment analysis enrichment plot

of amino acid transport dataset showing a negative

association between the MSigDb M188 dataset

and the LTED gene expression profile. NES,

normalized enrichment score.

(C) Anti-correlation network of differentially ex-

pressed miRNAs and mRNAs. Edge color is

proportional to the strength of the anti-correlation

(white to red = low to high). Node color is pro-

portional to the LTED versus MCF7 log fold

change (red, downregulated; green, upregulated).

Solute carrier (SLC) genes are labeled in black;

other miRNAs or mRNAs are labeled in gray. miR-

23b and SLC6A14 nodes are highlighted as large

circles.

(D and E) Kaplan-Meier analysis of overall survival

of BRCA TCGA cohort of ER+ patients divided into

high and low expressing, as described in Method

Details, for miR-23b-3p expression (D: TGCA, high

expressing, n = 68; low expressing, n = 475) or

SLC6A14 (E: TGCA, high expressing, n = 257; low

expressing, n = 467).
gene and miRNA expression profile from 3 independent experi-

ments. We used an isogenic model in which parental MCF7 cells

in the presence of estrogen (E2) were used to model a patient at

primary diagnosis, MCF7 in the absence of E2 tomimic response

to an AI, and finally LTED MCF7 cells to model relapse on AIs.

Statistical analysis (1-way ANOVA, Benjamini-Hochberg correc-
tion followed by Student-Newman-Keuls

post hoc tests; false discovery rate

[FDR] <0.05, fold-change >2 and <�2) re-

vealed 62 miRNAs and 3,568 mRNAs

significantly deregulated in MCF7-LTED

versus MCF7, with or without E2. Within

the parental MCF7 cells, 603 genes and

14 miRNAs were found differently regu-

lated upon E2 treatment (Table S1). Su-

pervised hierarchical cluster analysis

shows comparable clustering of both

miRNA and gene expression data, with a

clear separation between MCF7-LTED

samples and the parental MCF7 cells

subdivided into E2-treated and short-
term E2-deprived samples (Figure 1A). Although E2 treatment

had, as expected, a significant impact on gene expression (Table

S1), we focused on the differences between LTED and parental

MCF7 cells either in the presence or absence of E2 addition

to model a clinical scenario that is independent of circulating

E2 levels or prior endocrine agent administration, such as that
Cell Reports 28, 104–118, July 2, 2019 105



of a post-menopausal patient who relapses after AI treatment

(Table S1).

Using gene set enrichment analysis (GSEA) (Subramanian

et al., 2005) (Table S2), many of the differentially expressed

gene sets in LTED versus MCF7 cells are related to metabolic

pathways (Figure 1A). In particular, the LTED profile is negatively

correlated with the gene set associated with amino acid trans-

porters and metabolism (Figure 1B). Since miRNAs exert their

role by binding to the target mRNAs and impairing their transla-

tion, their expression profiles are expected to be inversely corre-

lated. Therefore, we created a correlative network based on

gene andmiRNA expression profiles to identify potential deregu-

latedmiRNA-mRNA nodes (Figure 1C). Since the identification of

metabolic dependencies could be of therapeutic and predictive

value in ER+ breast cancer and GSEA analysis revealed deregu-

lated amino acid transport associated with LTED, we focused

our attention on a metabolic-related network involving the solute

carrier (SLC) family 6 member 14 (SLC6A14), a sodium-chloride-

dependent amino acid transporter for all of the amino acids, with

the exception of glutamate and aspartate (Babu et al., 2015). The

SLC family plays a significant role in mediating amino acid trans-

port across the plasma membrane (Hediger et al., 2004). Among

the miRNAs reported to correlate with SLC6A14 (Figure S1A)

was miR-23b-3p, which, as expected, showed an inverse corre-

lation (Bisognin et al., 2012). Furthermore, miR-23b-3p was

significantly upregulated in LTED cells compared to the parental

MCF7 cells, independently of E2 treatment (Table S1). The clin-

ical relevance of the deregulated miR-23b-3p/SLC6A14 node

observed was validated in retrospective clinical data. High

expression of miR-23b-3p correlates with reduced survival in

ER+ breast cancer patients (hazard ratio [HR] = 2.64, log-rank

p = 0.0007, n = 543; Figure 1D). Conversely, high expression of

SLC6A14 identifies a subset of good-prognosis ER+ breast can-

cer patients (HR = 0.47, log-rank p = 0.0012, n = 724; Figure 1E).

Similar results were obtained in an independent cohort of ER+

breast cancers (Figures S1B and S1C). A correlation analysis

between miR-23b-3p and SLC6A14 was performed on the

TCGA patients’ dataset selected based on higher (upper quar-

tile) and lower (lower quartile) expression levels of miR-23b-3p

(n = 104). The correlation is significant and negative, and,

crucially, SLC6A14 expression is completely lost in the high

miR-23b-3p-expressing tumors (Figure S1D).

miR-23b-3p and SLC6A14 Expression Is Deregulated in
ETR Models
To determine whether the deregulation of the miR-23b-3p/

SLC6A14 expression axis was a prerequisite of cells that are

resistant to E2 deprivation or more generally a feature of ETR

cells, we evaluated their expression in the LTED cells and in

the MCF7-TAMR and MCF7-FULVR cell lines that are MCF7 de-

rivatives, mimicking the acquired resistance to tamoxifen and

fulvestrant, respectively. qRT-PCR analysis revealed a signifi-

cant increase in the expression of miR-23b-3p (Figure 2A) and

the reduced expression of SLC6A14 (Figures 2B–2D) in all of

the ETR lines when compared to their parental counterpart.

The miR-23b-3p mimic construct transfected into parental cells

(Figure S2A) induced SLC6A14 downregulation (Figure 2E),

whereas the miR-23b-3p inhibitor transfected into LTED cells
106 Cell Reports 28, 104–118, July 2, 2019
(Figure S2B) led to an SLC6A14 increase, thereby demonstrating

the functional relation between miR-23b-3p and SLC6A14 (Fig-

ure 2E). Consistent with reduced SLC6A14 expression, all of

the ETR cells displayed a reduced uptake of exogenous 14C-

labeled amino acidswhen compared to the parental cell counter-

parts (Figures 2F–2H). This impairment in amino acids uptake

could be reversed by downregulating miR-23b-3p expression

(Figures 2I and S2B). However, despite the reduced amino acids

uptake, no significant difference was observed in de novo pro-

tein synthesis (Figure 2J), suggesting nomajor impact on protein

availability to support ETR cell growth. Moreover, anti-miR-23b-

3p treatment slightly but significantly impaired LTED and TAMR

MCF7 cell survival (Figures S2C and S2D).

GATA2 Is Enhanced during ETR and Controls miR-23b-
3p-Dependent Amino Acids Upload
GATA2 is a transcription factor involved in embryonic develop-

ment, self-renewal, and stemness found overexpressed and

involved in cancer (Rodriguez-Bravo et al., 2017). GATA2

expression is negatively controlled by E2 (Yang et al., 2017),

and miR-23b-3p is a putative target of GATA2 (JASPAR

Predicted Transcription Factor Targets, http://amp.pharm.

mssm.edu/Harmonizome). GATA2 expression was significantly

enhanced in ETR cells both at the protein and mRNA levels (Fig-

ures 3A and 3B). E2 deprivation induced enhanced GATA2

expression (Figures 3C and 3D) and the subsequent increase

in miR-23b-3p expression (Figure 3E) in the parental cells, thus

reinforcing the functional link between E2 deprivation, GATA2,

and miR-23b-3p that characterized E2-deprived and endocrine

agent-treated cells. Silencing GATA2 in all of the high-express-

ing ETR cells (Figure S3A) resulted in reduced miR-23b-3p

expression (Figure 3F), enhanced amino acids uptake (Fig-

ure 3G), and impaired cell survival (Figure 3H). The clinical signif-

icance of GATA2 in ER+ breast cancer was validated in a large

retrospective breast cancer patient cohort in which GATA2

higher expression identifies a subset of ER+ breast cancers char-

acterized by poorer prognosis (HR = 1.86, log-rank p = 0.0008,

n = 548; Figure 3I).

Enhanced Autophagic Flux Is Essential for ETR Cell
Survival
Despite the reduced amino acids uptake in ETR cells, we did not

observe a significant reduction in cell growth, protein synthesis,

or protein content between LTED and parental cells (Figures 2J,

S4A, and S4B). Therefore, we hypothesized that LTED cells may

compensate for decreased amino acids uptake by activating

macro-autophagy, hereafter referred as autophagy. Autophagy

allows a cell to recycle dispensable and/or dysfunctional compo-

nents to fuel catabolic and anabolic processes, including protein

synthesis (Galluzzi et al., 2015). Moreover, SLC6A14 downregu-

lation has been reported to induce autophagy activation (Coo-

thankandaswamy et al., 2016). Western blot analysis revealed

that LTED cells have increased levels of the microtubule-associ-

ated protein 1A-1B-light chain 3 (LC3), an established marker of

autophagy activation, which was further enhanced by chloro-

quine (CQ) administration (Figure 4A). CQ is a lysosomotropic

agent that prevents endosomal acidification, hence inhibiting

lysosomal hydrolases and preventing autophagosomal fusion

http://amp.pharm.mssm.edu/Harmonizome
http://amp.pharm.mssm.edu/Harmonizome
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Figure 2. miR-23b-3p/SLC6A14 Axis Is De-

regulated in Different ETR Cells

(A–D) ETR-derived and parental MCF7 (A and B),

HCC1428 (C), and ZR75.1 (D) cells were subjected

to qRT-PCR analysis using the assays described

in the figure. Relative expression is shown using

the parental cells as comparator. Data represent

means ± SEMs. One-way ANOVA; Dunnett cor-

rected; *p < 0.05; **p < 0.01; ***p < 0.001. Each dot

represents a biological replicate.

(E) Total protein lysates fromMCF7 and LTED cells

transfected with the oligos as described in the

figure for 72 h were subjected to western blot

analysis, as indicated.

(F–H) 14C-amino acids mixture upload was

measured in ETR-derived and parental MCF7 (F),

HCC1428 (G), and ZR75.1 (H) cells. The relative

upload capacity is shown using parental cells as

comparator. Data represent means ± SEMs. One-

way ANOVA; Dunnett corrected; *p < 0.05; **p <

0.01; ***p < 0.001. Each dot represents a biological

replicate.

(I) 14C-amino acids mixture upload was measured

in ETR-derived MCF7 cells transfected for 72 h

with either anti-miR-CTR or anti-miR-23b-3p oli-

gos. The relative upload capacity is shown using

anti-miR-CTR transfected cells as comparator.

Data represent means ± SEMs. Student’s t test;

*p < 0.05; **p < 0.01; ***p < 0.001. Each dot rep-

resents a biological replicate.

(J) LTED derivatives and parental counterparts of

MCF7 and ZR75.1 cells were subjected to protein

synthesis assay, as described in Method Details.

No differences were observed between parental

and LTED cells in the absence or presence of the

protein synthesis inhibitor cycloheximide (CHX,

50 mg/mL for 30 min). Data represent means ±

SEMs. One-way ANOVA; Dunnett corrected; ns,

not significant.
and degradation. Since autophagy is a dynamic process, acute

CQ administration results in the accumulation of autophago-

somes, and the observed LC3-II increase is thus directly corre-

lated with the autophagic flux (Yoshii and Mizushima, 2017).

Additional regulators of autophagy induction includemammalian

target of rapamycin (mTOR) inhibition and beclin-1 expression,

which functions as the central scaffold protein for autophago-

some formation. The 3 MCF7 ETR derivatives showed increased

levels of beclin-1 and LC3-II expression (Figure 4B). The auto-

phagy activation described is functionally linked to miR-23b-3p

expression, since ectopic miR-23b-3p overexpression in

parental MCF7 cells enhanced LC3-II (Figure 4C), whereas the

miR-23b-3p inhibitor reduced that of LTED cells (Figure 4D). In

addition, ETR cells showed an increased number of LC3 puncta

in the presence of CQ, when compared to parental cells (Figures

4E and 4F). Comparable results were obtained in ETR models of

ZR75.1 and HCC1428 cells when compared to their parental

counterparts (Figures 4F, S4C, and S4D). Based upon this
observation, longer CQ treatment (120 h) or silencing ATG7, a

key component in the autophagosome formation, selectively

impaired cell survival in ETR cells (Figures 4G and S4E–S4H),

but not in the parental cells, indicating that targeting autophagy

may resensitize ETR cells to endocrine agents.

An additional indication that autophagy may play a key role in

ETR comes from the report that miR-23b-3p acts as a regulator

of beclin-1 (Gozuacik et al., 2017). Ubiquitination of beclin-1 on

Lys63 (K63) promotes autophagy, and this K63 ubiquitination

is controlled by the balanced action of the ubiquitinating enzyme

tumor necrosis factor receptor (TNFR)-associated factor 6

(TRAF6) and the deubiquitinating enzyme TNFAIP3 (also known

as A20) (Shi and Kehrl, 2010). Our analysis revealed that

TNFAIP3 is a predicted target gene of miR-23b-3p (using

miRGator3.0 [Cho et al., 2013], a positive score was found in

TargetScan, miRNAorg, PITA, PicTar, and miRDB). This interac-

tion has also been validated by cross-linking immunoprecipita-

tion (Kishore et al., 2011). Gene expression data (0.48-fold
Cell Reports 28, 104–118, July 2, 2019 107
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Figure 3. GATA2 Is Enhanced during ETR

andControlsmiR-23b-3p-DependentAmino

Acids Upload

(A) Total protein lysates from ETR-derived and

parental MCF7 cells were analyzed by western

blotting with the antibody indicated.

(B) ETR-derived and parental MCF7 cells were

subjected to qRT-PCR for GATA2 analysis. Rela-

tive expression is shown using the parental cells as

comparator. Data represent means ± SEMs. One-

way ANOVA; Dunnett corrected; *p < 0.05; **p <

0.01. Each dot represents a biological replicate.

(C–E) Parental MCF7 cells were 3-day E2 deprived

and subjected to either qRT-PCR (C and E) or

western blot (D) analyses, as indicated in the

figure. Data represent means ± SEMs. Student’s t

test; **p < 0.01; ***p < 0.001.

(F–H) ETR-MCF7 cell derivatives transfected with

non-targeting small interfering RNA (siRNA)

(siCTR) or siRNA targeting GATA2 (siGATA2) for

72 h were subjected to qRT-PCR analysis for miR-

23b-3p expression (F), 14C-amino acids upload

capacity (G), or cell viability assay using crystal

violet (H). siCTR transfected cells were used as

comparator. Data represent means ± SEMs. Stu-

dent’s t test; ***p < 0.001.

(I) Kaplan-Meier analysis of overall survival of ER+

breast cancer patients divided into high and low

GATA2 expressing, as described in Method De-

tails. Hazard ratio (HR) and log-rank Mantel-Cox

p values are shown.
compared to MCF7�E2 and 0.29-fold compared to MCF7+E2)

and qRT-PCR analysis demonstrated a reduction in the expres-

sion of TNFAIP3 in the LTED cells (Figure 4H). This reduced

expression is of clinical significance as low TNFAIP3 expression

identifies a poor prognosis subset of patients in independent

studies (HR = 0.52, log-rank p = 0.0066; Figures 4I and S1E).

In support of these data, immunoprecipitation and western blot

demonstrated an increase in not only the beclin-1 levels in the

3 ETR lines (see also Figure 4B) but also the level of K63-ubiqui-

nated beclin-1, thus sustaining autophagy in the ETR cells

(Figure 4J).

Increased Levels of Intracellular Aspartate and
Glutamate Sustain the Aggressive Phenotype of ETR
Cells
Despite the demonstration that ER+ cells are dependent on the

SLC6A14 transporter (Babu et al., 2015) and that all ETR cell lines
108 Cell Reports 28, 104–118, July 2, 2019
show a substantial reduction in SLC6A14

expression (Figures 2B–2D), it was

notable that ETR cells show only a

modest reduction in amino acids uptake

(Figures 2F–2H) and no significant differ-

ence in de novo protein synthesis (Fig-

ure 2J), suggesting no major impact on

protein availability to support ETR cell

growth (Figures S4A and S4B). To

determine whether the maintenance of

de novo protein synthesis was accompa-
nied by an imbalance in the intracellular amino acid levels, we

analyzed their relative intracellular concentration in the LTED

and parental MCF7 cells. High-performance liquid chromatog-

raphy (HPLC) analysis revealed a significant increase in the intra-

cellular levels of aspartate and glutamate in MCF7-LTED cells

compared to parental cells (Figure 5A), and, moreover, the levels

of aspartate and glutamate were unaffected by acute CQ treat-

ment (Figure S4I). These analyses indicate that the increased

levels of aspartate and glutamate in LTED cells were not depen-

dent on the enhanced autophagic flux. By contrast, a general

decrease in essential amino acid intracellular levels was induced

by CQ (Figure S4I). We therefore hypothesized that an acidic

amino acid transporter may be expressed at higher levels in

the LTED model to provide the increased levels of aspartate

and glutamate. Gene expression analysis of LTED and parental

cells revealed 57 significantly deregulated SLC genes (Fig-

ure 5B), 9 of which encode amino acid transporters. Of these,
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Figure 4. ETR Cells Rely on miR-23b-3p-

Dependent Autophagy Activation for Cell

Survival

(A) LTED and parental MCF7 cells were subjected

to 25 mmol/L chloroquine (CQ) for 16 h. Total

protein lysates were analyzed by western blotting

with the antibody indicated.

(B) Total protein lysates from ETR and parental

MCF7 cells were subjected to western blotting

analysis with the antibodies indicated.

(C and D) Total protein lysates from MCF7 (C) and

LTED (D) cells transfected with the oligos as

described in the figure for 72 h were subjected to

western blot analysis, as indicated.

(E and F) MCF7 ETR and parental (E) cells were

treatedwith 25mmol/L ofCQ for 16handsubjected

to confocal analysis (E, green: LC3; blue: TO-

PRO-3, nuclei). Comparable analysis was per-

formed for HCC1428-LTED (Figure S4C), ZR75.1-

LTED (Figure S4D), and parental counterparts, and

LC3 puncta were quantified (F) as described in

Method Details. Representative images are

shown; scale bar, 10 mm. Data represent means ±

SEMs. Two-way ANOVA; **p < 0.01; ***p < 0.001.

(G) ETR-derived and MCF7 parental cells were

grown either in the absence (vehicle) or presence

of 50 mmol/L CQ treatment for 120 h before sub-

jecting them to cell viability assay. Data are

presented as fold change survival fraction of CQ-

treated versus vehicle-treated cells. Representa-

tive images are shown. Data represent means ±

SEMs and were compared to parental cells using

1-way ANOVA; Dunnett corrected; ***p < 0.001.

(H) LTEDandMCF7parental cellsweresubjected to

qRT-PCRusing the assay indicated.Data represent

means ± SEMs. Student’s t test; ***p < 0.001.

(I) Kaplan-Meier analysis of overall survival of

BRCA The Cancer Genome Atlas (TCGA) cohort

of ER+ patients divided into high and low ex-

pressing, as described in Method Details for

TNFAIP3 expression (high expressing, n = 231;

low expressing, n = 493). The HR and log-rank

Mantel-Cox p value are shown.

(J) Total protein lysates from ETR and parental

MCF7 cells were subjected to immunoprecipita-

tion (IP) using an anti-beclin-1 antibody and then

subjected to immunoblotting (IB), as reported in

the figure (top). Total lysates were also subjected

to western blot analysis, as indicated (bottom).
8 were downregulated in the LTED compared to parental cells,

including SLC6A14. The exception was SLC1A2, a sodium-

dependent high-affinity glutamate/aspartate transporter (3.4-

fold increased in LTED cells compared to MCF7�E2 and

4.1-fold compared toMCF7+E2). Western blot and qRT-PCR an-

alyses confirmed SLC1A2 increased expression in the LTED

cells compared to their corresponding parental line (Figures 5B

and 5C), an observation that is independent of E2 stimulation

(Table S1). SLC1A2 has a predicted GATA2 binding site at the

promoter region (JASPAR Predicted Transcription Factor Tar-

gets, http://amp.pharm.mssm.edu/Harmonizome), and GATA2

silencing reduced SLC1A2 expression levels (Figure S3B).

SLC1A2 silencing further reduced the amino acids uptake of

ETR cells (Figures 5D and 5E), which was already diminished
compared to parental cells (Figures 2F–2H). Furthermore,

SLC1A2 silencing impaired the incorporation by MCF7-LTED

cells of 14C-glutamate (Figure 5F) and 14C-aspartate (Figure 5G),

thus reducing ETR cell survival (Figure 5H) andMCF7-LTED inva-

sion (Figure S5A), an aggressive feature of LTED cells. In addi-

tion, LTED colony formation ability was reduced by selective

aspartate and glutamate deprivation (Figure 5I), thus reinforcing

the notion that the selective upload of aspartate and glutamate

drives the more ‘‘aggressive phenotype’’ of LTED cells.

Aspartate and Glutamate Confer Metabolic Plasticity to
ETR Cells
To identify the fate of the uploaded aspartate and glutamate,

we performed a radioactive tracing analysis. The enhanced
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Figure 5. Aspartate and Glutamate Intracel-

lular Levels Sustain the Aggressive Pheno-

type of ETR Cells

(A) Intracellular amino acids were extracted from

LTED and parental MCF7 cells. Amino acid deriv-

atization was performed using 4-N,N-dimethy-

laminoazobenzene-40-sulfonyl chloride (DABS).

DABS-amino acids were detected at visible light

wavelengths using HPLC. A representative chro-

matogram is reported, and the quantification of

aspartate (Asp) and glutamate (Glu) from 4 bio-

logical replicates is represented in a box and

whiskers graph (mean, 25th percentile, and 75th

percentile are shown; + indicates themedian of the

values). Student’s t test; ***p < 0.001.

(B) Gene expression analysis of the significantly

deregulated SLC transporters in LTED cells when

compared to parental cells. Of the 57 significantly

deregulated SLC genes, 9 amino acid transporters

are shown in red. Each dot represents the mean

value of the fold change derived by the analysis

of 3 biological replicates (see Figure 1). Western

blot analysis of total lysates from parental and

LTED MCF7 cells for SLC1A2 is reported in the

inset.

(C) LTED and parental MCF7, HCC1428, and

ZR75.1 cells were subjected to qRT-PCR using

the assay indicated. Data represent means ±

SEMs, n = 3. Student’s t test; *p < 0.05; ***p <

0.001.

(D–G) MCF7 ETR derivatives (D), HCC1428-LTED

(E), and MCF7-LTED (F and G) were silenced

using the non-targeting control (siCTR) or siRNAs

targeting SLC1A2 (siSLC1A2) for 72 h. 14C-amino

acid (D and E), 14C-glutamate (F), and 14C-aspar-

tate (G) uptake was measured, and the radioactive

signal normalized on protein content is shown,

using siCTR-treated cells as comparators. Data

represent means ± SEMs. One-way ANOVA;

Dunnett corrected; ***p < 0.001.

(H) Complementarily, cell viability was measured

using crystal violet staining and reported as fold

change using parental cells as comparator.

Data represent means ± SEMs. Student’s t test;

***p < 0.001.

(I) ETR and parental cells were subjected to colony formation assay either in the presence of all of the amino acids (all) or in the absence of both aspartate

and glutamate (�Asp, �Glu), as described in Method Details. Data represent means ± SEMs of 3 biological replicates. Two-way ANOVA; Bonferroni

corrected; *p < 0.05.
incorporation of radioactive aspartate observed in ETR cells (Fig-

ures 6A and S6A) was paralleled by the increased radioactive

labeling of lipids (Figure 6B), proteins (Figure 6C), and DNA (Fig-

ure 6D) in ETR cells (Figures S6B–S6D). Conversely, the

enhanced incorporation of glutamate in ETR cells (Figures 6E

and S6E) was paralleled only by a significant increase in radioac-

tive DNA labeling (Figure 6H), although a tendency toward

enhanced radioactive lipids and proteins was observed in ETR

cells (Figures 6F, 6G, S6F, and S6G). To quantify the contribution

of aspartate and glutamate to the LTED metabolism, cells were

cultured in medium containing uniformly (U) labeled 13C-aspar-

tate (Figure 6I) or 13C-glutamate (Figure 6J), and the 13C-labeling

of the tricarboxylic acid (TCA) cycle intermediates, together with

metabolites that could act as precursors of anaplerotic reactions

(e.g., uridine-50-triphosphate [UTP] for DNA synthesis and gluta-
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mine for protein synthesis), were analyzed by liquid chromatog-

raphy-mass spectrometry (LC-MS). When U-13C-aspartate

was used, significant increases in 13C-labeled a-ketoglutarate

(a-KG), succinate, malate, oxaloacetate, and citrate were

observed in LTED cells when compared to the parental cell

counterpart (Figure 6I). This was paralleled by a significant label-

ing of UTP and glutamine, indicating that aspartate is a major

source of carbons for the TCA cycle and this could fuel anabolic

pathways. Isotopologues analysis revealed that the TCA cycle in

LTED cells occurs predominantly via canonical cycle activity,

since a considerable fraction of citrate was 4 atoms of 13C,

whereas the fraction of 5 atoms is limited, suggesting that reduc-

tive carboxylation of a-KG, although occurring in LTED cells, is

not their main feature (Figure 6I). Comparable results were ob-

tained when U-13C-aspartate was used in combination with
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Figure 6. Metabolic Plasticity of ETR Cells Is Sustained by Aspartate and Glutamate
(A–D) LTED and MCF7 cells were subjected to 14C radioactive aspartate uptake (A) or cultured for 24 h in a medium containing radioactive aspartate. Lipids,

proteins, or DNAwere extracted in parallel and radioactive signal measured tomonitor the amount of aspartate that is incorporated into lipids (B), proteins (C), and

DNA (D), as described in Method Details. Each value was normalized on protein content.

(legend continued on next page)
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(unlabeled) 12C-glutamate (Figure S6I), suggesting that the ability

of aspartate to fuel the TCA cycle and subsequent anabolic and

catabolic pathways is independent of the presence of glutamate.

When U-13C-glutamate was used, significant increases in 13C-

labeled a-KG, succinate, malate, oxaloacetate, and citrate

were observed in LTED cells when compared to the parental

cell counterpart (Figure 6J). This was paralleled by a significant

labeling of UTP and glutamine, indicating that glutamate is a

source of carbons for the TCA cycle and that can fuel anabolic

pathways (Figure 6J). Similar to aspartate, comparable results

were obtained when U-13C-glutamate was used in combination

with 12C-aspartate (Figure S6J).

As ETR cells have enhancedmetabolic plasticity (Morandi and

Indraccolo, 2017), we next addressed whether their increased

aspartate and glutamate uptake was used, not only for anabo-

lism but also as a source of energy. As assessed using the Sea-

horse XFe Mito Stress Test (Figures 6K, 6L, S6K, and S6L), there

were no significant differences in basal and maximal respiration

by monitoring the oxygen consumption rate (OCR) of parental

MCF7 cells either in the presence or absence of single or both

amino acids. By contrast, concomitant deprivation of aspartate

and glutamate in ETR cells (Figures 6K, 6L, S6K, and S6L) signif-

icantly impaired their basal and maximal respiration. However,

the withdrawal of each single amino acid was not sufficient to

affect the OCR levels of ETR cells, suggesting that ETR cells

can replenish the TCA cycle and subsequent electron transport

chain with either amino acid, when the other is absent. This

is in line with the results of the metabolomic analysis using

U-13C-glutamate and U-13C-asparate (Figure 6I and 6J).

Increased Aspartate and Glutamate Levels in Patient-
Derived Xenografts (PDXs) Correlate with ETR, and
Impairing Their Transport Reduces the Metastatic
Potential of ETR Cells In Vivo

To further corroborate the role of the amino acid transporters in

our model, we monitored SLC6A14 and SLC1A2 in an estab-

lished ER+ breast cancer PDX model (HBCx34 TAMR), which

has acquired resistance to tamoxifen treatment in vivo (Cottu

et al., 2014). qRT-PCR analysis revealed a significant reduction

in SLC6A14 expression and a concomitant increase in SLC1A2

in the TAMRPDXswhen compared to the parental PDXs (Figures

7A and 7B). This differential SLC expression was accompanied

by enhanced intratumoral levels of glutamate and aspartate, as-

sessed using gas chromatography-MS (GC-MS) analysis (Fig-

ures 7C and 7D). Since we and others have previously reported

that ETR cells display enhanced invasive abilities in vitro and
(E–H) LTED and MCF7 cells were subjected to 14C radioactive glutamate uptake

proteins, or DNA were extracted in parallel and the radioactive signal was mea

proteins (G), and DNA (H), as described in Method Details. Each value was norma

*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

(I and J) Schematic overview of the metabolism of downstream 13C-labeled aspart

in the metabolites (I). Schematic overview of metabolism of downstream 13C-labe

glutamate in the metabolites (J). Two-way ANOVA, Sidak corrected; *p < 0.05; **

(K and L) Parental and LTEDMCF7 cells were subjected to Seahorse XFe96 Mito

time in the presence or absence of the indicated amino acids. Basal (K) and maxim

OCRafter the administration of the ATP synthase inhibitor oligomycin, the proton u

respiratory complex I inhibitor rotenone, together with the respiratory complex

Dunnett’s corrected; **p < 0.01.
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in vivo (Bacci et al., 2016; Nguyen et al., 2015; Liu et al., 2014),

we assessed whether impairing amino acid metabolism and

availability, by targeting SLC1A2 or miR-23b-3p, had an impact

on the invasive phenotype of the ETR cell lines, as observed

in vitro (Figures S5A and S5B). To directly assess the role of

the �3p isoform of the miR-23b, we could not stably express

the pre-miR-23b construct, as this results in the downregulation

of both the�3p or�5p isoforms. Therefore, we transfected cells

with either a control non-targeting miRNA (anti-miR-CTR) or an

anti-miR-23b-3p in a short-term in vivo assay, which has been

previously published to reflect the metastatic potential of breast

cancer cells (Murugaesu et al., 2014). Since metastatic burden

resulted from the ability of the cells to survive in the circulation

and to colonize secondary sites, transfected cells were labeled

with cell tracker dyes, mixed in a 1:1 ratio, and injected via the

tail vein into SCID mice. Imaging the lungs 1 h post-injection

confirmed that an equal number of cells had been inoculated.

An examination of the lungs 5 h post-injection revealed that a

reduced number of anti-miR-23b-3p-treated cells were retained

in the lungs compared to the anti-miR-CTR transfected cells,

indicating that miR-23b-3p expression is required for efficient

survival in the circulation and retention in the lungs (Figures 7E

and S7A). Equivalent results were obtained in a dye swap exper-

iment (Figure S7B). Crucially, comparable data were obtained by

targeting SLC1A2 (Figure 7F and S7C), indicating that both miR-

23b-3p and SLC1A2 are responsible for the increased invasive

ability of the ETR cells and that their targeting could reduce the

aggressiveness of ETR breast cancer.

Finally, we evaluated whether the molecular players differen-

tially expressed in ETR cells versus the parental counterpart

and involved in the described reprogramming could have prog-

nostic and predictive value for ET-treated ER+ breast cancers.

We used a curated dataset that combined�800 ER+ breast can-

cer patients (from independent retrospective studies) who had

been treated with adjuvant tamoxifen. Relapse-free survival

was used as a surrogate for therapy response. Kaplan-Meier

analysis revealed that patients characterized by lower levels of

TNFAIP3 (HR = 1.64, p = 0.01, n = 809; Figure 7G) or SLC6A14

(HR = 1.69, p = 0.0029, n = 809; Figures 7G and 7H) showed

poorer relapse-free survival when compared with higher-ex-

pressing tumors. Multivariate Cox regression analysis revealed

that the prognostic value is independent of proliferation (Table

S3). The predictive value of SLC1A2 in response and resistance

to ET was validated by in silico analysis, which was performed by

retrieving publicly available gene expression data from the

biopsies of 52 ER+ breast cancer patients taken before and after
(E) or cultured for 24 h in a medium containing radioactive glutamate. Lipids,

sured to monitor the amount of glutamate that is incorporated into lipids (F),

lized on protein content. Data represent means ± SEMs, n = 3. Student’s t test;

ate and fluxes and relative incorporation of 13C carbons derived from aspartate

led glutamate and fluxes and relative incorporation of 13C carbons derived from

p < 0.01; ***p < 0.001; ns, not significant.

Stress Test analysis and oxygen consumption rate (OCR) was measured in real

al (L) respiration was calculated as described in Method Details, based on the

ncoupler carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP), and the

III inhibitor antimycin A. Data represent means ± SEMs. One-way ANOVA;
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Figure 7. Increased Aspartate and Glutamate Levels in PDX Correlate with ETR, and Impairing Their Transport Reduces the Metastatic

Potential of ETR Cells

(A–D) ET (i.e., tamoxifen)-sensitive and tamoxifen-resistant PDX (HBCx34) were obtained from ER+ breast cancer specimens previously characterized as

described in Method Details. Tumor tissues were excised, and total RNA was extracted and subjected to qRT-PCR using the assay to detect SLC6A14 (A) and

SLC1A2 (B). Each dot represents an independent mouse. Alternatively, tumor tissues were extracted and subjected to GC-MS (as detailed in Method Details) to

evaluate the intratumoral levels of glutamate (C) and aspartate (D). Data represent means ± SEMs. Student’s t test; *p < 0.05; **p < 0.01; ***p < 0.001.

(legend continued on next page)

Cell Reports 28, 104–118, July 2, 2019 113



2 weeks of neoadjuvant letrozole treatment (Miller et al., 2007).

The patients were divided into responders and non-responders,

defined by a >50% and a <50% reduction, respectively, in tumor

volume following a further 3 months of letrozole treatment. A

pairwise comparison shows a significant decrease in SLC1A2

expression after 2 weeks of letrozole treatment in the responder

cohort but not in the non-responder cohort (p = 0.0007; Figure 7I).

The relevance of the players involved in response to selective

downregulators of ER was finally validated in a small cohort of

ER+ breast cancer patients who received adjuvant fulvestrant.

Since the clinical outcome was not available, we used the

changes in the proliferation-related gene AURKA as a surrogate

for therapy response. The evaluation of proliferation using Ki67

staining has been shown to predict poor long-term disease

outcome (Forbes et al., 2008). Changes in the expression levels

of SLC1A2 induced by fulvestrant treatment were positively

correlated with those of AURKA (rs = 0.62, p = 0.05, n = 11; Fig-

ure 7J), suggesting that SLC1A2 expression levels are linked to

fulvestrant-induced changes in proliferation (i.e., response to

therapy).

These data support a role for amino acid metabolic reprog-

ramming in ETR breast cancers, and the predictive value of the

molecular and metabolic players identified should be validated

in clinical prospective (neoadjuvant) trials.

DISCUSSION

The data presented in this study highlight the amino acid meta-

bolic pathway as an important determinant of resistance to ET

in ER+ breast cancers. In particular, molecular reprogramming

occurs and sustains the catabolic and anabolic processes of

ETR breast cancer cells by (1) activating autophagy and (2)

modulating the expression of amino acid transporters to selec-

tively import certain amino acids (in this case, aspartate and

glutamate).

This study originated from the analysis of extensively charac-

terized ER+ cells adapted to study ETR that we along with others

have demonstrated to be clinically relevant (Martin et al., 2003,

2012; Nguyen et al., 2015; Sanchez et al., 2011; Morandi et al.,

2013; Fox et al., 2013; Plaza-Menacho et al., 2010; Liu et al.,

2014). In addition, in vitro findings were validated using PDX,

lung retention assay, and retrospective clinical data derived

from ET-treated patients.

miR-23b is a member of the miR-23b/-27b/-24-1 cluster, and

its deregulation has been reported in several types of cancer,

although no conclusive results to date have provided a link be-
(E and F) MCF7-LTED cells were transfected with either anti-miR-23b-3p or a non

(green for anti-miR-CTR and red for anti-miR-23b-3p) before injecting a mixture o

vein of SCID mice (n = 4 per group), as described in Method Details. Similarly, SL

lungs were recovered at the time indicated and imaged to analyze the number of

coverage per field of view (FOV); n = 4 mice per group per time point ± SEMs. R

(G andH) Kaplan-Meier analysis of relapse-free survival of a curated cohort of ER+

low expressing as described in Method Details for TNFAIP3 (G) and SLC6A14 ex

(I) Correlation of SLC1A2 expression with response to AI in 52 paired ER+ breast c

significant decrease in SLC1A2 expression was observed in the responder grou

t test). ns, not significant. Each dot represents the value derived by a patient’s sp

(J) Correlation of the change in the SLC1A2 andAURKA expression levels followin

and p value are indicated in the figure).
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tween its role as an oncomiR or as a tumor suppressor. miR-

23b-enhanced expression levels were found in renal cell

carcinomas (Zaman et al., 2012), lymphomas (Li et al., 2013),

non-small-cell lung cancers (Begum et al., 2015), and pancreatic

cancers (Chen et al., 2017). Conversely, reduced levels were

found to be associated with colon cancer (Zhang et al., 2011)

and multiple myeloma (Fulciniti et al., 2016). Reduced levels of

miR-23b were found to promote the chemoresistance of gastric

cancers (An et al., 2015) and radioresistance in pancreatic can-

cers (Wang et al., 2013). An additional layer of complexity may

come from the �5p and �3p isoforms that could have indepen-

dent and/or opposing effects in different tissue contexts. Since

some of the above-mentioned studies did not dissect which of

the isoforms were predominant in the cohort of tumors analyzed,

some of the discrepancies observed may derive from such bias.

In this study, enhanced miR-23b-3p expression characterizes

ETR breast cancer cells and a subset of breast cancer patients

who show a worse prognosis. Since stable knockdown of miR-

23b-3p in vivo could be achieved only by concomitant downmo-

dulation of the �5p, we have opted for a short-term assay (i.e.,

quantification of residing cells in the lung after tail vein injection).

Lung retention assay has some limitations and does not recapit-

ulate the complex mechanism of the full metastatic cascade.

However, we have carefully selected the time point of the anal-

ysis such that the ability of a given cell to be retained is likely

due to the ability to survive and to colonize the lung. The priming

event that leads to miR-23b-3p-enhanced expression is the up-

regulation of the transcription factor GATA2 mediated by ER

signaling disengagement. GATA2 has been reported to favor

breast cancer progression (Wang et al., 2012) and to regulate

chemotherapy resistance and tumorigenicity in prostate cancer

(Vidal et al., 2015). Crucially, GATA2 silencing impairs the miR-

23b-3p-dependent amino acid transport regulation and ETR

cell survival and has a prognostic value in ER+ breast cancer.

miR-23b-3p-enhanced levels in ETR cells are paralleled by a

significant decrease in its target SLC6A14, an amino acid trans-

porter that has been demonstrated to be an ER-dependent gene,

and its expression was associated exclusively with ER+ breast

cancers. Moreover, SLC6A14 targeting is sufficient to induce

autophagy-dependent cell death in ER+ breast cancer models

(Karunakaran et al., 2011). Since the reduced expression levels

of SLC6A14 are compatible with ER+ ETR cell survival, it is plau-

sible that SLC6A14 downregulation may have been caused by a

miR-23b-3p-induced adaptation, thus establishing a metabolic

phenotype of the ETR cells that is characterized by enhanced

pro-survival autophagy and the reliance on another amino acid
-targeting control (anti-miR-CTR, E). Cells were labeled with CellTracker dyes

f anti-miR-23b-3p and anti-miR-CTR transfected cells in a 1:1 ratio into the tail

C1A2 silenced (red) and siCTR transfected cells (green) were injected (F). The

fluorescent cells that colonize the lungs. Data shown are means for tumor cell

epresentative images are shown; scale bar, 200 mm. ***p < 0.001.

patients treatedwith tamoxifen in the adjuvant setting and divided into high and

pression (H). HR and log-rank Mantel-Cox p values are shown.

ancer samples pre- and post-2-week letrozole treatment (Miller et al., 2007). A

p, but no difference was found in the non-responder group (Wilcoxon paired

ecimen. Red lines connect the mean values pre- and post-letrozole treatment.

g adjuvant fulvestrant treatment (Geo: GSE33658, n = 11; Spearman correlation



transporter to compensate for the reduction in amino acid import

caused by SLC6A14 impairment. ETR cells and parental cells

show comparable cell growth rates and protein synthesis,

although the import of amino acids is reduced in ETR cells. We

hypothesized that autophagy could compensate for the reduced

amino acids import. However, amino acids uptake, although

significantly reduced, was not abolished, suggesting that other

amino acid transporters may still function in ETR cells. It has

been reported that glutamine can contribute to ETR cell survival

in an MYC-dependent mechanism (Shajahan-Haq et al., 2014)

and that autophagy activation could support tamoxifen resis-

tance (Cook et al., 2011). Moreover, tamoxifen resistance could

be supported by importing leucine in an LLGL2-dependent

fashion (Saito et al., 2019). Our data revealed that SLC1A2

expression and the subsequent increases in the intracellular

levels of aspartate and glutamate and uptake in ETR cells and

PDX models confer a catabolic and anabolic advantage to ETR

breast cancers.

Our analyses show that both autophagy and aspartate and

glutamate uploaded together establish a metabolic condition

that sustains resistance to ET. Although this phenomenon

should warrant further investigation, a potential explanation of

the need for both autophagy and selective amino acid import

may come from the reduction in essential amino acid levels

that we have observed following autophagy inhibition. In this

context, the aspartate and glutamate that are not affected by

autophagy inhibition could be used to derive all of the other

non-essential amino acids. In addition, glutamate and aspartate

import could mitigate the effects caused by a severe decrease

in the intracellular levels of amino acids, an established activator

of autophagy (Galluzzi et al., 2014), to modulate the flux. This

promotes a pro-survival autophagy, without the activation of a

pro-apoptotic autophagic flux, which has been reported after

the acute targeting of SLC6A14. In addition, in silico analysis

of the METABRIC database (Pereira et al., 2016) shows that

SLC1A2 and SLC6A14 are not concomitantly overexpressed

or amplified in breast cancers and may be mutually exclusive

(Figure S7D). It is interesting to note that SLC1A2 expression

has been reported to play a role in different cancers. SLC1A2

undergoes a genomic breakpoint in its 50 region and forms a

fusion gene with CD44 in gastric and colorectal cancers (Tao

et al., 2011; Shinmura et al., 2015). The CD44-SLC1A2 aberra-

tion induces higher glutamate intracellular levels, and SLC1A2

targeting resensitizes tumors to chemotherapy (Tao et al.,

2011). Similarly, the enhanced levels of SLC1A2 in the ETR

breast cancer models resulted in a significant increase in intra-

cellular and intratumoral aspartate and glutamate levels. Once

targeted, ETR cellular aggressive features are reduced and cells

are resensitized to ET. Although we did not investigate the po-

tential fusion gene in the ETR models analyzed, gene expression

profiling revealed that CD44 expression is upregulated in LTED

cells (7.3-fold when compared to parental MCF7), and therefore

it would be interesting to investigate whether a CD44-SLC1A2

fusion may also occur in ETR breast cancer models. The role

of aspartate in cancer has been recently explained by the sem-

inal work of the Vander Heiden group (Sullivan et al., 2015).

Initially, Sullivan et al. (2015) demonstrated that in oxidative

phosphorylation (OXPHOS)-proficient cells, respiration serves
to fuel electron acceptors for aspartate synthesis, and aspar-

tate supplementation is sufficient to sustain proliferation in

OXPHOS-deficient cells (Tao et al., 2011). More recently, 2 inde-

pendent studies revealed that aspartate availability is a meta-

bolic limitation that tumors experience and that overcoming

this limitation, either via aspartate upload via SLC1A3 (Garcia-

Bermudez et al., 2018) or via the conversion of asparagine

into aspartate (Sullivan et al., 2018), is advantageous for tumor

growth. Previous studies have reported that metformin anti-tu-

mor activity correlates with a diminution of NAD+ and aspartate

in tumors (Gui et al., 2016), and these findings indicate that

aspartate limitation is required for the anti-tumor efficacy of

metformin and, broadly, other biguanides. We have previously

reported that metformin was ineffective in AI-resistant models

(Bacci et al., 2016), and this can now be explained by the

enhanced SLC1A2-dependent aspartate-boosting mechanism

that maintains aspartate homeostasis. Therefore, lowering

aspartate intratumoral levels may be of benefit in ETR. However,

as confirmed in our study, SLC1A2 can also serve for glutamate

import, and only the concomitant deprivation of both amino

acids was able to reduce the mitochondrial potential and OCR

of the resistant cells. However, even if the glutamate contribu-

tion seems lower than that of aspartate by 14C tracing experi-

ments, flux analysis using U-13C-glutamate revealed a role for

glutamate in anabolism, which is able to sustain not only DNA

biosynthetic pathways but also lipid and protein biosynthesis.

This anabolic supporting role of aspartate and glutamate is in

line with previous reports showing that the majority of carbon

mass in cells is derived from amino acids rather than glucose

or glutamine (Hosios et al., 2016).

In conclusion, the experimental and clinical data herein pre-

sented support a role for amino acid metabolism and availability

in promoting ETR. The findings provide mechanistic insights into

the metabolic deregulation of ETR and a series of molecular

players that could be useful in identifying a signature for breast

cancer patients with an increased risk of ETR. This is particularly

pertinent given that the majority of ER+ breast cancer patients

will undergo ET and that the identification of resistant patients

is an important and still unmet clinical issue.
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Gy}orffy, B. (2016). miRpower: a web-tool to validate survival-associated

miRNAs utilizing expression data from 2178 breast cancer patients. Breast

Cancer Res. Treat. 160, 439–446.

Li, Y., Zou, L., Li, Q., Haibe-Kains, B., Tian, R., Li, Y., Desmedt, C., Sotiriou, C.,

Szallasi, Z., Iglehart, J.D., et al. (2010). Amplification of LAPTM4B and YWHAZ

contributes to chemotherapy resistance and recurrence of breast cancer. Nat.

Med. 16, 214–218.

Li, B., Sun, M., Gao, F., Liu, W., Yang, Y., Liu, H., Cheng, Y., Liu, C., and Cai, J.

(2013). Up-regulated expression of miR-23a/b targeted the pro-apoptotic Fas

in radiation-induced thymic lymphoma. Cell. Physiol. Biochem. 32, 1729–

1740.

Liu, J., Xu, Y., Stoleru, D., and Salic, A. (2012). Imaging protein synthesis in

cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci.

USA 109, 413–418.

Liu, S., Meng, X., Chen, H., Liu, W., Miller, T., Murph, M., Lu, Y., Zhang, F., Ga-

gea, M., Arteaga, C.L., et al. (2014). Targeting tyrosine-kinases and estrogen

receptor abrogates resistance to endocrine therapy in breast cancer. Oncotar-

get 5, 9049–9064.

Loi, S., Haibe-Kains, B., Desmedt, C., Lallemand, F., Tutt, A.M., Gillet, C., Ellis,

P., Harris, A., Bergh, J., Foekens, J.A., et al. (2007). Definition of clinically

distinct molecular subtypes in estrogen receptor-positive breast carcinomas

through genomic grade. J. Clin. Oncol. 25, 1239–1246.

Loi, S., Haibe-Kains, B., Desmedt, C., Wirapati, P., Lallemand, F., Tutt, A.M.,

Gillet, C., Ellis, P., Ryder, K., Reid, J.F., et al. (2008). Predicting prognosis using

molecular profiling in estrogen receptor-positive breast cancer treated with

tamoxifen. BMC Genomics 9, 239.

Martin, L.A., Farmer, I., Johnston, S.R., Ali, S., Marshall, C., and Dowsett, M.

(2003). Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal

transduction pathways operate during the adaptation of MCF-7 cells to long

term estrogen deprivation. J. Biol. Chem. 278, 30458–30468.

Martin, L.A., Pancholi, S., Farmer, I., Guest, S., Ribas, R., Weigel, M.T., Thorn-

hill, A.M., Ghazoui, Z., A’Hern, R., Evans, D.B., et al. (2012). Effectiveness and

molecular interactions of the clinically active mTORC1 inhibitor everolimus in

combination with tamoxifen or letrozole in vitro and in vivo. Breast Cancer

Res. 14, R132.

Massarweh, S., Tham, Y.L., Huang, J., Sexton, K., Weiss, H., Tsimelzon, A.,

Beyer, A., Rimawi, M., Cai, W.Y., Hilsenbeck, S., et al. (2011). A phase II neo-

adjuvant trial of anastrozole, fulvestrant, and gefitinib in patients with newly

diagnosed estrogen receptor positive breast cancer. Breast Cancer Res.

Treat. 129, 819–827.

Miller, L.D., Smeds, J., George, J., Vega, V.B., Vergara, L., Ploner, A., Pawitan,

Y., Hall, P., Klaar, S., Liu, E.T., and Bergh, J. (2005). An expression signature for

p53 status in human breast cancer predicts mutation status, transcriptional ef-

fects, and patient survival. Proc. Natl. Acad. Sci. USA 102, 13550–13555.

Miller, W.R., Larionov, A.A., Renshaw, L., Anderson, T.J., White, S., Murray, J.,

Murray, E., Hampton, G., Walker, J.R., Ho, S., et al. (2007). Changes in breast

cancer transcriptional profiles after treatment with the aromatase inhibitor, le-

trozole. Pharmacogenet. Genomics 17, 813–826.

Minn, A.J., Gupta, G.P., Siegel, P.M., Bos, P.D., Shu, W., Giri, D.D., Viale, A.,

Olshen, A.B., Gerald, W.L., and Massagué, J. (2005). Genes that mediate
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Alférez, D.G., Spence, K., Santiago-Gόmez, A., Chemi, F., et al. (2015). Anti-

estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-

Dependent Cancer Stem Cell Activity. Cell Rep 12, 1968–1977.
118 Cell Reports 28, 104–118, July 2, 2019
Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., Nordgren, H.,

Farmer, P., Praz, V., Haibe-Kains, B., et al. (2006). Gene expression profiling

in breast cancer: understanding the molecular basis of histologic grade to

improve prognosis. J. Natl. Cancer Inst. 98, 262–272.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gil-

lette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Me-

sirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based approach

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA

102, 15545–15550.

Sullivan, L.B., Gui, D.Y., Hosios, A.M., Bush, L.N., Freinkman, E., and Vander

Heiden, M.G. (2015). Supporting Aspartate Biosynthesis Is an Essential Func-

tion of Respiration in Proliferating Cells. Cell 162, 552–563.

Sullivan, L.B., Luengo, A., Danai, L.V., Bush, L.N., Diehl, F.F., Hosios, A.M.,

Lau, A.N., Elmiligy, S., Malstrom, S., Lewis, C.A., and Vander Heiden, M.G.

(2018). Aspartate is an endogenous metabolic limitation for tumour growth.

Nat. Cell Biol. 20, 782–788.

Symmans, W.F., Hatzis, C., Sotiriou, C., Andre, F., Peintinger, F., Regitnig, P.,

Daxenbichler, G., Desmedt, C., Domont, J., Marth, C., et al. (2010). Genomic

index of sensitivity to endocrine therapy for breast cancer. J. Clin. Oncol. 28,

4111–4119.

Tao, J., Deng, N.T., Ramnarayanan, K., Huang, B., Oh, H.K., Leong, S.H., Lim,

S.S., Tan, I.B., Ooi, C.H., Wu, J., et al. (2011). CD44-SLC1A2 gene fusions in

gastric cancer. Sci. Transl. Med. 3, 77ra30.

Vidal, S.J., Rodriguez-Bravo, V., Quinn, S.A., Rodriguez-Barrueco, R., Lujam-

bio, A., Williams, E., Sun, X., de la Iglesia-Vicente, J., Lee, A., Readhead, B.,

et al. (2015). A targetable GATA2-IGF2 axis confers aggressiveness in lethal

prostate cancer. Cancer Cell 27, 223–239.

Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M., Look, M.P., Yang, F., Talan-

tov, D., Timmermans, M., Meijer-van Gelder, M.E., Yu, J., et al. (2005). Gene-

expression profiles to predict distant metastasis of lymph-node-negative

primary breast cancer. Lancet 365, 671–679.

Wang, Y., He, X., Ngeow, J., and Eng, C. (2012). GATA2 negatively regulates

PTEN by preventing nuclear translocation of androgen receptor and by

androgen-independent suppression of PTEN transcription in breast cancer.

Hum. Mol. Genet. 21, 569–576.

Wang, P., Zhang, J., Zhang, L., Zhu, Z., Fan, J., Chen, L., Zhuang, L., Luo, J.,

Chen, H., Liu, L., et al. (2013). MicroRNA 23b regulates autophagy associated

with radioresistance of pancreatic cancer cells. Gastroenterology 145, 1133–

1143.e12.

Yang, J.A., Stires, H., Belden, W.J., and Roepke, T.A. (2017). The Arcuate Es-

trogen-Regulated Transcriptome: Estrogen Response Element-Dependent

and -Independent Signaling of ERa in Female Mice. Endocrinology 158,

612–626.

Yoshii, S.R., and Mizushima, N. (2017). Monitoring and Measuring Autophagy.

Int. J. Mol. Sci. 18, E1865.

Zaman, M.S., Thamminana, S., Shahryari, V., Chiyomaru, T., Deng, G., Saini,

S., Majid, S., Fukuhara, S., Chang, I., Arora, S., et al. (2012). Inhibition of

PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One

7, e50203.

Zhang, Y., Sieuwerts, A.M., McGreevy, M., Casey, G., Cufer, T., Paradiso, A.,

Harbeck, N., Span, P.N., Hicks, D.G., Crowe, J., et al. (2009). The 76-gene

signature defines high-risk patients that benefit from adjuvant tamoxifen ther-

apy. Breast Cancer Res. Treat. 116, 303–309.

Zhang, H., Hao, Y., Yang, J., Zhou, Y., Li, J., Yin, S., Sun, C.,Ma,M., Huang, Y.,

and Xi, J.J. (2011). Genome-wide functional screening of miR-23b as a pleio-

tropic modulator suppressing cancer metastasis. Nat. Commun. 2, 554.

http://refhub.elsevier.com/S2211-1247(19)30768-5/sref48
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref48
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref48
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref48
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref49
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref49
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref49
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref49
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref50
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref50
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref50
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref50
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref51
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref51
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref51
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref52
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref52
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref52
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref52
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref52
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref53
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref53
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref53
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref53
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref54
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref54
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref54
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref54
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref55
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref55
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref56
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref56
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref56
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref57
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref57
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref57
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref57
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref58
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref58
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref58
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref58
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref59
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref59
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref59
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref59
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref60
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref60
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref60
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref60
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref61
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref61
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref61
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref62
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref62
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref62
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref62
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref63
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref63
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref63
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref63
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref64
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref64
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref64
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref64
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref65
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref65
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref65
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref65
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref65
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref66
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref66
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref66
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref67
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref67
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref67
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref67
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref68
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref68
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref68
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref68
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref69
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref69
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref69
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref70
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref70
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref70
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref70
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref71
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref71
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref71
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref71
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref72
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref72
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref72
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref72
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref73
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref73
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref73
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref73
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref74
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref74
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref74
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref74
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref75
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref75
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref76
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref76
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref76
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref76
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref77
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref77
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref77
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref77
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref78
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref78
http://refhub.elsevier.com/S2211-1247(19)30768-5/sref78


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-tubulin Sigma Cat# T5168; RRID: AB_477579

Rabbit polyclonal anti-GATA2 Cell signaling Cat# 4595; RRID: AB_2108579

Mouse monoclonal anti-SLC1A2 Santa Cruz Biotechnology Cat# 365634; RRID: AB_10844832

Rabbit polyclonal anti-SLC6A14 Abcam Cat# ab99102; RRID: AB_10696963

Rabbit polyclonal anti-beclin1 Thermo Fisher Scientific Cat# PA1-16857; RRID:AB_568459

Rabbit polyclonal anti-LC3 Thermo Fisher Scientific Cat# PA1-16930; RRID: AB_2281384

Mouse monoclonal anti-ubiquitin-K63 Thermo Fischer Scientific Cat# 14-6077-80; RRID:AB_1257214

Mouse monoclonal anti-APG7 Santa Cruz Biotechnology Cat# sc-376212 RRID:AB_10988418

Mouse monoclonal anti-beclin1 Santa Cruz Biotechnology Cat# sc-48341 RRID:AB_626745

Goat anti-Rabbit IgG (H+L) Secondary Antibody,

Alexa Fluor 488 conjugate

Thermo Fisher Scientific Cat# A-11034; RRID:AB_2576217

Goat Anti-Rabbit IgG (H+L) Highly Cross-adsorbed

Antibody, Alexa Fluor 633 conjugate

Thermo Fisher Scientific Cat# A-21071; RRID:AB_141419

Biological Samples

Patient-derived xenografts HBCx34 Prof. Elisabetta Marangoni Cottu et al., 2014

Chemicals, Peptides, and Recombinant Proteins

Methanol Sigma Cat# 900688-1

Acetonitrile Sigma Cat# 34851

4-N,N-dimethylaminoazobenzene-4’-sulfonyl

chloride

Supelco Cat# 502219

KH2PO4 Sigma Cat# P3786

Amino acids standards Sigma Cat# A9781

Chloroform Sigma Cat# 34854-1

Water Merck Cat# 102699-1000

Norvaline Sigma Cat# 53721

Methoxyamine hydrochloride Sigma Cat# 226904

Pyridine Thermo Fisher Scientific Cat# 25104

N-Methyl-N-(trimethylsilyl)trifluoroacetamide with

1% trimethylchlorosilane

Sigma Cat# 69478

Chloroquine diphosphate Sigma Cat# C6628

Glutamine Sigma Cat# G7513

RPMI 1640 medium GIBCO Cat# 11835-063

DMEM 1X GIBCO Cat# A14430-01
14C-Glutamic acid Perkin Elmer Cat# NEC290E050UC
14C-Aspartic acid Perkin Elmer Cat# NEC268E050UC
14C-Amino Acid Mixture Perkin Elmer Cat# NEC850E050UC
13C-Glutamic acid Sigma Cat# 604860
13C-Aspartic acid Cambridge Isotope Laboratories Cat# CNLM-544-H-0.25

D-Glutamic acid Sigma Cat# G1001

L-Aspartic acid Sigma Cat# A9256

Z-4-hydroxytamoxifen Sigma Cat# H7904

17-b-estradiol Sigma Cat# E2758

Fulvestrant Sigma Cat# I4409

Lipofectamine RNAiMAX Thermo Fisher Scientific Cat# 13778-150

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Opti-MEM GIBCO Cat# 31985062

Fetal Bovine Serum Euroclone Cat# ECS0180L

Charcoal/Dextran Treated FBS (DCC) Hyclone Cat# SH30068.03

Protease inhibitor cocktail Sigma Cat# P8340

Matrigel Matrix BD Biosciences Cat# 356234

Protein A/G-PLUS Agarose beads Santa Cruz Biotechnology Cat# sc-2003

DiffQuick solution BD Biosciences Cat# 726443

Laemmli Sample Buffer Bio-Rad Cat# 161-0737

Clarity Western ECL Substrate Bio-Rad Cat# 170-5061

XFe Seahorse RPMI medium Agilent Technologies Cat# 103336-100

Critical Commercial Assays

TaqMan Universal Mastermix no UNG Applied Biosystems Cat# 4440040

QuantiTect Reverse Transcription Kit QIAGEN Cat# 205311

TaqMan MicroRNA Reverse Transcription Kit Applied Biosystems Cat# 43665967

miRNeasy Mini Kit QIAGEN Cat# 217004

SosAdvanced Universal Sybr Green Supermix Bio-Rad Cat# 1725270

Cayman Chemicals Protein Synthesis Assay Cayman Chemical Cat# 601100

Seahorse XF Cell Mito Stress Kit Agilent Technologies Cat# 103015-100

Human genome microarray Agilent Technologies Cat# G4851A

Human miRNA microarray v16 Agilent Technologies Cat# G4870A

Deposited Data

mRNA and miRNA microarray data This paper GEO: GSE120931

Gene expression data Rème et al., 2013 ArrayExpress: E-MTAB-365

The Cancer Genome Atlas (TGCA) https://www.cancer.gov/about-nci/

organization/ccg/research/structural-

genomics/tcga

RRID:SCR_003193

Gene expression data Loi et al., 2007 GEO: GSE6532

Gene expression data Dedeurwaerder et al., 2011 GEO: GSE20711

Gene expression data Desmedt et al., 2007 GEO: GSE7390

Gene expression data Sabatier et al., 2011 GEO: GSE21653

Gene expression data Wang et al., 2005 GEO: GSE2034

Gene expression data Sotiriou et al., 2006 GEO: GSE2990

Gene expression data Symmans et al., 2010 GEO: GSE17705

Gene expression data Zhang et al., 2009 GEO: GSE12093

Gene expression data Loi et al., 2008 GEO: GSE9195

Gene expression data Miller et al., 2005 GEO: GSE3494

Gene expression data Karn et al., 2010 GEO: GSE4611

Gene expression data Nagalla et al., 2013 GEO: GSE45255

Gene expression data Minn et al., 2005 GEO: GSE2603

Gene expression data Desmedt et al., 2009 GEO: GSE16391

Gene expression data Clarke et al., 2013 GEO: GSE42568

Gene expression data Filipits et al., 2011 GEO: GSE26971

Gene expression data Li et al., 2010 GEO: GSE19615

Gene expression data Miller et al., 2007 GEO: GSE5462

Gene expression data Massarweh et al., 2011 GEO: GSE33658

Gene expression data Pereira et al., 2016 METABRIC

Experimental Models: Cell Lines

MCF7 ATCC Cat# HTB-22

ZR75.1 ATCC Cat# CRL-1500

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

HCC1428 ATCC Cat# CRL-2327

LTED Cells Bacci et al., 2016 N/A

MCF7-TAMR This paper N/A

MCF7-FULVR This paper N/A

Experimental Models: Organisms/Strains

BALB/c mice Charles River Laboratories Cat# 236CB17SCID

NSG mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) Simões et al., 2015 N/A

Oligonucleotides

anti-miR-23b-3p Ambion Cat# MH10711

siSLC1A2 Sigma Cat# Hs01_00109453

siCTR Sigma Cat# SIC001

anti-miR-negative control (anti-miR-CTR) Ambion Cat# AM17011

siGATA2 Sigma Cat# Hs01_00106117

siATG7_71 Sigma Cat# Hs02_00341471

siATG7_49 Sigma Cat# Hs01_00077649

siATG7_48 Sigma Cat# Hs01_00077648

SLC6A14 (Hs00924564_m1) Applied Biosystems Cat# 4448892

SLC1A2 (Hs01102423_m1) Applied Biosystems Cat# 4448892

GATA2 (Hs00231119_m1) Applied Biosystems Cat# 4453320

GAPDH (Hs02786624_g1) Applied Biosystems Cat# 4331182

ACTB (Id:Hs99999903_m1) Applied Biosystems Cat# 4331182

miR-23b-3-p (000400) Applied Biosystems Cat# 4427975

RNU48 (001006) Applied Biosystems Cat# 4427975

U6 (001973) Applied Biosystems Cat# 4427975

TNFAIP3 precast primer (HsaCID0012648) Bio-Rad Cat# 10025636

Beclin-1 precast primer (HsaCID0016032) Bio-Rad Cat# 10025636

GAPDH precast primer (HsaCED0038674) Bio-Rad Cat# 10025636

Software and Algorithms

Masshunter Quantitative Analysis Software Agilent Technologies RRID: SCR_015040

Masshunter Qualitative Analysis Agilent Technologies RRID:SCR_016657

Fihen Metabolomics RTL library Agilent Technologies Cat# G1676AA

7500 Real-Time PCR Software Applied Biosystems RRID:SCR_014596

Thermo XCalibur Quan Browser software Thermo Fisher Scientific RRID: SCR_014593

FiJi https://fiji.sc N/A

GraphPad Prism v8.0c https://www.graphpad.com/ N/A

KM plotter Györffy et al., 2010; Lánczky et al., 2016 http://kmplot.com/analysis/

cBioPortal https://www.cbioportal.org/ RRID:SCR_014555

Firebrowse http://firebrowse.org/ N/A

Seahorse Wave software Agilent Technologies RRID:SCR_014526

GeneSpring GX v.14.8 software Agilent Technologies RRID:SCR_010972

R Statistical Software https://www.r-project.org/ N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be made available upon reasonable

request by the Lead Contact, Andrea Morandi (andrea.morandi@unifi.it).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
MCF7, ZR75.1 and HCC1428 human female breast cancer cells were obtained from ATCC and cultured in phenol red-free RPMI

1640 medium (GIBCO #11835-063) supplemented with 10% fetal bovine serum (FBS, Euroclone #ECS0180L) 2 mmol/L glutamine

(Sigma #G7513) and 1 nmol/L 17b-estradiol (E2, Sigma #E2758). The corresponding LTED (long term estrogen deprived) derivatives

were maintained in sterol-deprived medium in phenol red–free RPMI1640 medium containing 10% dextran charcoal-stripped FBS

(Hyclone #SH30068.03) and 2 mmol/L glutamine (DCC medium). Tamoxifen- (TAMR) and fulvestrant- (FULVR) resistant cells were

cultured in DCC medium supplemented with 1 mmol/L 4-OH tamoxifen (Sigma #H7904) or 100 nmol/L fulvestrant (Sigma #I4409),

respectively. Cells were short tandem repeat tested, amplified, stocked, routinely subjected tomycoplasma testing and once thawed

were kept in culture for a maximum of 20 passages.

Mouse models and care
5- to 6-week-old female BALB/c mice were purchased from Charles River Laboratories (236CB17SCID) and used for tail vein injec-

tion experiments. Animal work was carried out under the Project licenses 1002/2017-PR and was approved by the Ministero della

Salute. All animals were monitored by staff from the Centro Stabulazione Animali da Laboratorio (CESAL) for signs of ill health.

Mice were housed under sterile conditions (five or less animals per cage) with ad libitium access to food and water.

For patient-derived xenografts (PDX), mouse studies were conducted in accordance with the UK Home Office Animals (Scientific

Procedures) Act 1986, using 8- to 10-week-old NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) female mice at the University of Manches-

ter. HBCx34 and HBCx34 TAMR PDXs have been established as previously described (Cottu et al., 2014). Serial passaging of the

PDXwas carried out by implanting small fragments of the tumor subcutaneously into dorsal flanks of NSGmice. HBCx34 breast can-

cer estrogen-dependent PDXs were administered with 8 mg/ml of E2 in drinking water at all times. HBCx34 TAMR PDXs were treated

for the entire duration of the experiments in the presence of tamoxifen (10 mg/kg/day, oral gavage). Experiments were performed

using PDX tumors between passages 5 and 8. Animal weight and tumor size were measured twice a week. Tumor chunks were

snap frozen and further processed for either RNA extraction and qRT-PCR analysis or GC-MS.

METHOD DETAILS

Cell viability assay
Sensitive and resistant cells were seeded into 12 well plates in either standard conditions (see cell culture) or experimental conditions

such as in the presence of 25 mmol/l of the autophagy inhibitor CQ (Sigma #C6628). 5 days post seeding cells, plates were stained

with crystal violet (triphenylmethane dye 4-[(4-dimethylaminophenyl)-phenyl-methyl]-N,N-dymethyl-alanine; Sigma #548-62-9),

dried overnight and the crystal violet within the adherent cells solubilized with 500 ml/well of 2% SDS. The absorbance at 595 nm

was evaluated using a microplate reader.

MTT assay
Sensitive and resistant cells transfected using siRNA against ATG7 were seeded into 24 well plates in standard medium (see cell cul-

ture). 48 hours after transfection cells were subjected to the colorimetric non-radioactive quantification of cell proliferation and

viability using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay (0,2mg/ml, Sigma #M5655). MTT was

added into the medium of each well and after 2 hours at 37�C, the cells were extensively washed with PBS, allow to dry and then

200 mL of DMSOwas added to resuspended the amount ofMTTwithin the cells and 100 mLwas subjected to absorbance wavelength

evaluation at 565 nm using a microplate reader.

Colony formation assay
To evaluate clonogenicity of breast cancer cells under stress conditions, 0.5-1 3 103 cells were seeded per well in a 6 well plate in

either the recommended medium conditions or experimental conditions such as amino acids deprivation. 15 days post seeding, the

colonies were fixed with 4% formaldehyde and stained with crystal violet staining solution. Air-dried plates were scanned at 600 dpi

and images analyzed using FiJi.

Transwell invasion assay
Invasion assay was performed using 8-mm-pore transwells (Corning #3428) coated with 10 mg/cm2 of reconstituted standard

formulation Matrigel (BD Biosciences #356334). Transfected cells (using anti-miR-23b-3p, siSLC1A2 and relative controls oligos)

were serum starved for 6 hours and then 1 3 105 cells seeded onto the upper chamber of the transwell in serum-free medium

and allow to invade overnight toward complete medium. Air-dried membranes stained with DiffQuick solution (BD Biosciences

#726443) were imaged and invasion was evaluated by counting the cells migrated to the lower surface of the filters (six randomly

chosen fields).
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Protein de novo synthesis assay
To analyze protein de novo synthesis rate in resistant cells compared to parental cells, 33 104 cells were seeded per well in a 96 well

clear bottomblack plate (Corning #3603). The following day, the culturemedia were removed and cells were incubated for 30minutes

in fresh culture medium containing O-Propargyl-Puromycin (OPP) with or without 50 mg/ml cycloheximide. OPP incorporates into the

C terminus of translating polypeptide chains, thereby stopping translation. The truncated C-terminal alkyne-labeled proteins can

subsequently be detected via copper-catalyzed click chemistry (Liu et al., 2012). Cells were then processed for detection of protein

synthesis according to the protocol of Cayman Chemicals Protein Synthesis assay (Cayman Chemicals #601100).

RNAi transfection
Cells were transfected with 15 nmol/L anti-miR-23b-3p (MH10711, Ambion), with 45 nmol/L siSLC1A2 (Hs01_00109453, Sigma),

siGATA2 (Hs01_00106117, Sigma), or siATG7 (Hs02_00341471, Hs01_00077649, or Hs01_00077648, Sigma) and respective nega-

tive controls (AM17011, Ambion; SIC001, Sigma) using Lipofectamine RNAiMAX Reagent (Thermo Fisher Scientific #13778-150) and

Opti-MEM (GIBCO #31985062) accordingly to manufacturer’s instructions and analysis was performed 3 days after transfection.

Radioactive assays
Breast cancer cells were treated as described in the figures for 3 days (see RNAi transfection). Aspartic acid, glutamic acid or amino

acids uptake was evaluated incubating the cells with uptake buffer solution (140 mmol/L NaCl, 20 mmol/L HEPES/Na, 2.5 mmol/L

MgSO4, 1 mmol/L CaCl2, and 5 mmol/L KCl, pH 7.4) containing [U-14C] radioactive metabolites for 15 minutes. Cells were subse-

quently washed with ice cold PBS and lysed with 0.1 mol/L NaOH.

To analyze the incorporation of radioactive amino acids into proteins, lipids or DNA, culture media were changed to a deprived-

DMEM medium (GIBCO #A14430-01) with or without non-radioactive amino acids in the presence of 10% DCC, 11 mM glucose,

2 mmol/L glutamine and then supplemented with 1 mCi 14C-aspartic acid (Perkin Elmer # NEC268E050UC) or 1.5 mCi 14C-glutamic

acid (Perkin Elmer # NEC850E050UC) 24 hours prior to the end of the experiment. For radioactive incorporation into proteins, cells

were washed in ice cold PBS and then resuspended in 20% trichloroacetic acid, placed on ice for 30 minutes and centrifuged

(10000 rpm for 10 minutes at 4�C). Pellet was resuspended in dH2O, transferred to a scintillation vial and counted on the scintillation

counter. For fatty acids synthesis analysis, cells were washed three times in ice cold PBS and then lysed in methanol. Samples were

first resuspended in 4 volumes of a CHCl3:MeOH (1:1) solution and then an additional volume of dH2O was added. The solution was

then centrifuged at 1000 rpm for 5 minutes at room temperature. The lower phase was collected, transferred to a scintillation vial

and counted on the scintillation counter. For DNA incorporation analysis, cells were washed and then resuspended in Tris-Hcl

50mM/EDTA 100mM/SDS 0.5%/proteinase K lysis buffer. Samples were added to one volume of phenol:chloroform:isoamyl alcohol

(25:24:1), mixed and centrifuged (10000 rpm for 10 minutes at room temperature). The upper aqueous phase was collected, resus-

pended in 1/10 volume of 3 M NH4OAc and 2 volumes of ethanol and incubated for 3 hours at �80�C. The precipitated DNA was

pelleted (10000 rpm for 10 minutes at room temperature), washed with 70% ethanol and allowed to dry. The pellet was resuspended

in dH2O and transferred to a scintillation vial and counted on the scintillation counter. All the radioactive signals were normalized on

protein content.

Immunoblotting and immunoprecipitation
Cells were lysed using cold RIPA buffer (50 mM Tris Hcl pH7.5, 150 mM NaCL, 1% Nonidet P-40,2 mM EGTA, 1 mM sodium orto-

vanadate, 100mMNaF) supplemented with protease inhibitors (Sigma # P8340) and protein concentrations of lysate were measured

by Bradford method (Bio-Rad Protein Assay #500-006), 20-40 mg of total proteins were loaded in precast SDS-PAGE gels (Biorad

#456-8096) and then transferred onto nitrocellulose membrane by Trans-Blot Turbo Transfer Pack (Biorad #1704157). The immuno-

blots were incubated in non-fat dry milk 2%, tween 20 0.05% in PBS at room temperature and probed with primary and appropriate

secondary antibodies. The antibodies used in immunoblotting were GATA2 (Cell Signaling, #4595S) and SLC1A2 (Santa Cruz

Biotechnology, #sc-365634), SLC6A14 (Abcam, #ab99102), beclin-1 (Invitrogen, #PA1-16857), LC3 (Invitrogen, #PA1-16930) and

ubiquitin-K63 (Thermo Fisher, #14-6077-80), APG7 (Santa Cruz Biotechnology, #sc-376212), tubulin (Sigma, #T5168).

Immunoprecipitation was performed using the Protein A/G-PLUS Agarose beads (Santa Cruz Biotechnology #sc-2003) according

to the manufacturer’s instructions. Briefly, 300 mg of cell lysate were incubated overnight with beclin-1 antibody (Santa Cruz Biotech-

nology, sc-48341) prior to incubating the protein:antibody complex with the beads. Immunoprecipitated proteins:antibody:beads

complexes were dissociated using Laemmli buffer (Bio-Rad #161-0737) and subjected to SDS-PAGE.

Immunofluorescence
Glass coverslip (Nunc LabTek� Chambered CoverGlass, Thermo Scientific)-plated cells were fixed with 4% formaldehyde for

1 hours, then permeabilized with 0.1% Triton in PBS before incubation with primary antibodies. Primary antibodies were diluted

in blocking solution 1/400 (1% BSA and 2% serum in PBS) and incubated overnight at 4�C. Secondary antibodies conjugated

with Alexa Fluor 488 (Life Technologies, goat anti-rabbit #A-11034) or 633 (Life Technologies, goat anti-rabbit #A-21071) were diluted

in blocking solution (1/1000) and incubated for 1 hour at room temperature. All fluorescence samples were examined at room tem-

perature using a microscope (TCS SP5; Leica) with lasers exciting at 488, 543, and 633 nm (Leica). Lasers and spectral detection

bands were chosen for the optimal imaging of Alexa Fluor 488 and 633 signals. PMT levels were set using control samples. Multicolor
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images were collected simultaneously in two or three channels. Images were taken using a 20x/NA/air 40x/1.25 NA oil HCX Plan Apo

and 63x, 1.4–0.6 NA, oil, HCX Plan APO lens. Images were captured using the Leica LAS-AF image acquisition software. Overlays

were generated using LAS-AF software. Photo montages were generated using LAS-AF, but were not further processed. The quan-

tification was performed using FiJi: an outline was drawn around each cell and spots were counted in at least 50 cells derived from

three representative 63x images from 3 independent experiments (one per experiment).

Real Time RT-PCR (qRT-PCR) and miRNA analysis
Total RNA, including small RNAs, was extracted usingmiRNeasy (QIAGEN #217004), quantified and 500 ngwere reverse transcribed

using the QuantiTect high capacity cDNA reverse transcription kit (QIAGEN #205311), for mRNA analysis, or 10 ng using Taqman

MicroRNA Reverse Transcription Kit (Applied Biosystems #43665967), for miRNA analysis. qRT-PCR was done using a 7500 Fast

Real Time PCR system (Applied Biosystems) using Taqman gene/microRNA assays (Applied Biosystems), respectively. The probes

used in the work are: SLC6A14 (Hs00924564_m1), SLC1A2 (Hs01102423_m1), GATA2 (Hs00231119_m1) and endogenous controls

GAPDH (Hs02786624_g1) and ACTB (Hs99999903_m1)) for mRNA analysis. For microRNA assay the probes used are miR-23b-3p

(ID:000400), and endogenous control RNU 48 (ID:001006) and U6 (ID:001973). TNFAIP3 (HsaCID0012648, Bio-Rad) and beclin-1

(HsaCID0016032, Bio-Rad) mRNA expression analysis was performed using SYBR green dye precast primers (Bio-Rad) and normal-

ized on the results obtained using GAPDH (HsaCED0038674, Bio-Rad). The relative quantity was determined using DDCt, according

to the manufacturer’s instructions (Applied Biosystems).

Seahorse XF MitoStress Test
Cells were seeded in XFe96 cell culture plates with 1.5-23 104 cells per well in 80 mL of culture medium and incubated at 37�C (5-8

technical replicates). 24 hours post seeding medium was replaced with 180 mL XF base medium supplemented with 25 mM glucose

(Sigma #G8644), 2 mM glutamine, 1 mM sodium pyruvate (Sigma #S8636). Cells were incubated for 1 hour at 37�C in atmospheric

CO2 to allow the cells to pre-equilibrate with the XF base medium. An accurate titration with the uncoupler FCCP was performed

for each cell type. Together with OCR measurement, values of ECAR were also recorded. Addition of Aspartate (0.15 mM,

Sigma #A9256), Glutamate (0.13 mM Sigma #G1001), the ATP synthase inhibitor oligomycin (0.8 mM), the proton uncoupler FCCP

(0.5-1 mM), the respiratory complex I inhibitor rotenone (1 mM), and the respiratory complex III inhibitor antimycin A (1 mM) was carried

out at the times indicated. Protein quantification was used to normalize the results. Basal respiration is calculated as last rate mea-

surement before injection – non-mitochondrial respiration rate. Maximal respiration is calculated as the maximum rate measurement

after FCCP injection – non-mitochondrial respiration.

High-performance liquid chromatography (HPLC)
Amino acids extraction was performed as reported by Nemkov et al. (2015). Briefly, cell pellets were extracted immediately before

analysis in ice-cold lysis/extraction buffer (methanol/acetonitrile/water, 5/3/2 v/v, Sigma) at a ratio of 2 3 106 cells/ml. Tubes were

first agitated at 4�C for 30 minutes and then centrifuged at 4�C, 10000 g for 10 minutes. The recovered supernatants were subjected

to precolumn derivatization of amino acids using 4-N,N-dimethylaminoazobenzene-4’-sulfonyl chloride (Supelco #502219) following

the manufacture instructions (DABS, Sigma). DABS-amino acids were detected at visible light wavelengths (436nm) using a DIONEX

P680-UVD170U HPLC system (column: Kinetex 5mm C18 100 Å LC column 250x4.6mm; mobile phase: A = KH2PO4 25mM pH 6.8

(Sigma), B = acetonitrile (Sigma #34851); gradient program (time:%B): 0-5 min: 20%; 5-9 min: 25%; 9-15 min: 25%; 15-18 min 30%;

18-22 30%; 22-27 35%; 27-35 60%; 35-43 70%; flow rate: 0.8ml/min; injection volume: 10ml). A reference amino acids spectrumwas

obtained by titrating a mixture of amino acids of known concentration (Sigma # A9781).

Gas chromatography–MS (GC-MS)
Snap frozen tissue samples were minced and subjected to extraction using a mixture of CHCl3:MeOH:H2O (Sigma #34854-1 and

#900688-1, Merck #102699-1000) (1:1:1). Minced tissues were quenched with 0.4 mL ice cold methanol and an equal volume of

water containing 1 mg norvaline (Sigma #53721), used as internal standard. One volume of chloroform was added, and the samples

were vortexed at 4�C for 30 minutes. Samples were centrifuged at 3000 g for 10 minutes, and the aqueous phase was collected in a

new tube and evaporated at room temperature. Dried polar metabolites were dissolved in 60 mL of 2%methoxyamine hydrochloride

(Sigma #226904) in pyridine (25104 Thermo), and held at 30�C for 2 hours. After dissolution and reaction, 90 mL MSTFA + 1% TMCS

(69478-10x Sigma) were added and samples were incubated at 37�C for 60minutes. Gas chromatographic runs were performedwith

helium as carrier gas at 0.6 mL/min. The split inlet temperature was set to 250�C and the injection volume of 1 mL. A split ratio of 1:10

was used. The GC oven temperature ramp was from 60�C to 325�C at 10�C/min. The data acquisition rate was 10 Hz. For the Quad-

rupole, an EI source (70 eV) was used, and full-scan spectra (mass range from 50 to 600) were recorded in the positive ion mode. The

ion source and transfer line temperatures were set, respectively, to 250�C and 290�C. TheMassHunter data processing tool (Agilent)

was used to obtain a global metabolic profiling. Fihen Metabolomics RTL library (Agilent G1676AA)

13C-tracing experiments using liquid-chromatography-MS (LC-MS)
Parental and LTEDMCF7 cells were incubated for 48 hours with 0.15 mM [U-13C]-aspartic acid (Cambridge Isotope Laboratories) or

0.13 mM [U-13C]-L-glutamic acid (Sigma Aldrich). The cells were washed once with ice cold 0.9% NaCl solution. The metabolite
e6 Cell Reports 28, 104–118.e1–e8, July 2, 2019



extraction was performed using 80% methanol. After 5 minutes of incubation cells were scraped and collected in a new tube.

Following a centrifugation at 20000 g for 10 minutes at 4�C, the supernatant was transferred to a new vial for MS analysis. Pellet

was used for protein quantification. 5 ml of each sample was loaded into a Dionex UltiMate 3000 LC System (Thermo Scientific Bre-

men) equipped with a C-18 column (Acquity UPLC -HSS T3 1. 8 mm; 2.13 150 mm, Waters) coupled to a Q Exactive Orbitrap mass

spectrometer (Thermo Scientific) operating in negative ion mode. A step gradient was carried out using solvent A (10 mM TBA and

15 mM acetic acid) and solvent B (100% methanol). The gradient started with 0% of solvent B and 100% solvent A and remained at

0%B until 2 minutes post injection. A linear gradient to 37%Bwas carried out until 7 minutes and increased to 41% until 14 minutes.

Between 14 and 26 minutes the gradient increased to 100% of B and remained at 100% B for 4 minutes. At 30 minutes the gradient

returned to 0% B. The chromatography was stopped at 40 minutes. The flow was kept constant at 250 mL/min and the column was

placed at 25�C throughout the analysis. The MS operated in full scan - SIM (negative mode) using a spray voltage of 3.2 kV, capillary

temperature of 320�C, sheath gas at 10.0, auxiliary gas at 5.0. For full scan - SIMmode, AGC target was set at 1e6 using a resolution

of 70.000, with a maximum IT of 256 ms. For the data analyses we integrated the peak areas using the Thermo XCalibur Quan

Browser software (Thermo Scientific).

Lung retention assay
MCF7-LTED anti-miR-CTR, anti-miR-23b-3p, siCTR and siSLC1A2 cells were labeled with CellTracker Red CMTPX or Green

CMFDA dyes (Molecular Probes), trypsinized, mixed at a 1:1 ratio, and a total of 1 3 106 cells injected into the tail veins of 5- to

6-week-old BALB/c mice. Mice were sacrificed at 1 and 5 hours post injection, and lungs were examined on a Leica TCS SP5 mi-

croscope using x10 lens. Six images were taken for each lung. Tumor cell colonization of the lung was quantified in the Fiji open plat-

form for image analysis, by converting the red and green images into separate binary images andmeasuring total tumor cell coverage

per field of view.

Gene and miRNA expression analysis
MCF7 cells were cultured in either the recommended medium conditions or E2 deprived for 3 days and compared to MCF7-LTED

cells cultured in standard medium. Triplicate samples from 3 independent experiments were assessed for global miRNA and gene

expression by Microarrays. Specifically, 9 samples were hybridized on Agilent whole human genome microarray (Agilent Technolo-

gies #G4851A), which represents 60k unique human transcripts. The same samples were hybridized also on Agilent human miRNA

microarray v16 (Agilent Technologies #G4870A). One-color gene expression was performed according to the manufacturer’s pro-

cedure as previously described (Ferracin et al., 2013).

Bioinformatic analyses
Microarray data were normalized and analyzed using GeneSpring GX v.14.8 software (Agilent Technologies). Data transformation

was applied to set all the negative raw values at 1.0, then the quantile normalization was applied. The probes detected in at least

one sample were used for statistical analyses. Differentially expressed genes were selected to have aR 2-fold expression difference

between groups and an adjusted P-value% 0.05 at ANOVA test, with Benjamini and Hoechberg correction. Supervised hierarchical

clustering was performed for OS samples with GeneSpring clustering tool using the list of differentially expressed genes and

Euclidean correlation as a measure of similarity.

The mRNA and miRNA anti-correlation network analyses described in Figure 1C were performed using the R software. Briefly,

mRNAs and miRNAs found as differentially expressed in each pairwise comparison (FDR < 0.05, FC < �2 or > 2) were initially

used to filter candidate interactors emerging from the PITA miRNA/target predictor tool (Kertesz et al., 2007). To ensure the identi-

fication of relevant interactors and limit the size of the network, the filtered collection of mRNA/miRNA pairs was further purged from

experimentally validated pairs, according to the miRTarBase repository (Chou et al., 2018). The expression values of the remaining

candidate interactors (taken from the whole set of samples rather than from those relevant for the differentially expressed analysis)

were tested for mRNA/miRNA expression anti-correlation (correlation test, Benjamini-Hochberg correction, adjusted p < 0.05 and

correlation < 0). The resulting networks were graphically annotated and represented using functions from the igraph R package.

Analysis of human datasets
The BRCA TCGA dataset analyzed in Figures 1A, 1B, and 4I is available in The Cancer Genome Atlas (TCGA) data portal (https://

www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). Gene and miRNA expression data and the

corresponding clinical information for ER+ BRCA from TCGA provisional dataset were obtained through Firebrowse (http://

firebrowse.org/) data portal. The normalized reads count for mRNA (RSEM) and mature miRNAs (RPM) were downloaded and

log2 transformed. From the BRCA dataset, we selected samples with miRNA-mRNA and overall survival (OS) data. Survival analysis

was performed using Kaplan-Meier curve log-rank testing, using Cutoff finder (Budczies et al., 2012) for best miR-23b-3p/SLCA6A14

high- and low-expression selection. For mRNA analysis in Figure S1C, overall survival (OS) of untreated breast cancer patients

belonging to the METABRIC dataset were retrieved using Km-plotter (http://kmplot.com) (Lánczky et al., 2016). For SLC6A14 (Fig-

ure S1B), TNFAIP3 (Figure S1E) survival analysis, the curated dataset of ER+ breast cancers was created using Km-plotter and

included the relapse free survival data of patients belonging to the following datasets: GSE6532 (Loi et al., 2007), GSE20711 (Dedeur-

waerder et al., 2011), GSE7390 (Desmedt et al., 2007), GSE21653 (Sabatier et al., 2011), E-MTAB-365 (Rème et al., 2013), GSE2034
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(Wang et al., 2005), GSE2990 (Sotiriou et al., 2006), GSE17705 (Symmans et al., 2010), GSE12093 (Zhang et al., 2009), GSE9195 (Loi

et al., 2008), GSE3494 (Miller et al., 2005), GSE4611 (Karn et al., 2010), GSE45255 (Nagalla et al., 2013), GSE2603 (Minn et al., 2005),

GSE16391 (Desmedt et al., 2009), GSE42568 (Clarke et al., 2013), GSE26971 (Filipits et al., 2011) and GSE19615 (Li et al., 2010).

For GATA2 (209710_at; Figure 3I) overall survival analysis the curated dataset comprises the following datasets: GSE20711,

GSE7390, GSE45255, GSE42568, GSE3494. For SLC6A14 (219795_at; Figure 7G), TNFAIP3 (202643_s_at; Figure 7H) survival anal-

ysis, the curated dataset of ER+ breast cancers that have been treated with adjuvant tamoxifen was created using Km-plotter and

included patients that belong to the following datasets GSE6532, GSE2990, GSE17705, GSE12093, GSE9195, GSE45255,

GSE16391, GSE3494, GSE26971 and GSE19615. SLC1A2 data in 52 paired ER+ breast cancer samples pre- and post-2-week le-

trozole treatment (Figure 7I) were retrieved using GEO (GSE5462) (Miller et al., 2007) and normalized log2 expression values are

shown either pre- or post letrozole treatment for each patient. Correlation data on patients that have been treated with adjuvant ful-

vestrant (Figure 7J) were from the GSE33658 dataset (Massarweh et al., 2011). SLC1A2 and AURKA log2 normalized expression

levels were reported. Changes were obtained by subtracting from the expression value of tumor that have been treated with fulves-

trant that of baseline expression. Correlation analysis was performed using Spearman correlation test.

QUANTITATION AND STATISTICAL ANALYSIS

Statistics were performed using GraphPad Prism 8. Unless stated otherwise, all numerical data are expressed as the mean ± error of

the mean (SEM) and noted in figure legends. Unless stated otherwise, comparisons between 2 groups were made using the two-

tailed, unpaired Student’s t test. Comparisons between multiple groups were made using one-way analysis of variance (ANOVA),

and two-way ANOVA for comparisons between multiple groups with independent variables. Bonferroni post-testing (unless other-

wise stated) with a confidence interval of 95% was used for individual comparisons. Multivariate Cox Analyses on the cohort of pa-

tients analyzed in Figure 7G and 7H were generated using KM-plotter and are reported in Table S3. Statistical significance was

defined as: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant.

DATA AND CODE AVAILABILITY

mRNA and miRNA data derived from microarray analysis are deposited in NCBI Gene Expression Omnibus (GEO) database: acces-

sion number GSE120931. Feature Extraction 10.7.3.1 software (Agilent Technologies) was used to obtain the microarray raw-data

and data.

The R script (mM_Net.R) for the interactor network analysis displayed in Figure 1C is available and can be downloaded (https://

github.com/matteoramazzotti/TransTools).
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Figure S1 (related to Figure 1). SLC6A14 and miR-23b-3p network and clinical 

relevance.  

(A) The integration analysis of deregulated miRNA and mRNA in MCF7-LTED cells compared 

to parental cells was obtained using the web tool MAGIA2 (Bisognin et al. 2012). The network 

centered on the SLC6A14 gene revealed that, among the deregulated miRNAs in LTED cells, 

four show predictive interaction with the SLC6A14 transcript. Of the four miRNAs, only the 

miR-23b-3p has a negative correlation, as you would expect for a miRNA and its target gene 

(i.e. miR-23b-3p enhanced expression and SLC6A14 reduced expression in MCF7-LTED 

cells). (B,C) Lower SLC6A14 and higher miR-23b expression identifies a subset of ER+ 

breast cancer patients characterized by worse prognosis. Kaplan-Meier analysis of relapse-

free (B) or overall (C) survival of ER+ breast cancer patients based on (B) SLC6A14 or (C) 

miR-23b expression. The curated cohort of patients is generated as detailed in (Lánczky et al. 

2016). The miRNA cohort of patients is the METABRIC (untreated samples) as detailed in KM 

plotter. Hazard ratio (HR) and log-rank Mantel-Cox P-value are shown. (D) miR-23b-3p and 

SLC6A14 expression levels are inversely correlated in the TCGA dataset. Correlation 

analysis between miR-23b-3p and SLC6A14 was performed on the patients selected based 

on higher (upper quartile) and lower (lower quartile) expression levels of miR-23b-3p (n=104). 

The correlation is significant and negative (Spearman r = -0.7369, (CI: -0.8159—0.6309), p-

value (two-tailed)<0.0001). Importantly, it is worth noticing that SLC6A14 expression is 

completely lost in the high miR-23b-3p tumors. This support our hypothesis that SLC6A14 

and miR-23b-3p expression are tightly linked in breast cancer specimens. (E) Lower 

TNFAIP3 expression identifies a subset of ER+ breast cancer patients characterized by 

worse prognosis. Kaplan-Meier analysis of relapse-free survival of ER+ breast cancer 

patients based on TNFAIP3 expression. The curated cohort of patients is generated as 

detailed in (Lánczky et al. 2016). 
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Figure S2 (related to Figure 2)  

Figure S2 (related to Figure 2). Transfection efficiency of miR-23b-3p inhibitor and miR 

mimic and cell survival after miR-23b-3p silencing.  

(A,B) Cells were transfected with either mimic CTR and mimic miR-23b-3p (for parental 

MCF7 cells, A) or anti-CTR and anti-miR-23b-3p (for MCF7 LTED cells, B) and subjected to 

qRT-PCR to assess the expression of miR23b-3p as described in the Methods section. (C,D) 

LTED and TAMR MCF7 cell derivatives transfected for 72 hours with the oligos described in 

figure were subjected to crystal violet cell viability assay and subsequent quantification as 

detailed in Methods. Student t-test was used for statistical analysis. n=3 biological replicates. 

* P < 0.05.  



MCF7-LTED 

siCTR siGATA2

0.00

0.25

0.50

0.75

1.00

1.25

G
A

T
A

 2
 e

x
p

re
s
s
io

n

***

MCF7-TAMR 

siCTR siGATA2

0.00

0.25

0.50

0.75

1.00

1.25

G
A

T
A

 2
 e

x
p

re
s
s
io

n
***

MCF7-FULVR 

siCTR siGATA2

0.00

0.25

0.50

0.75

1.00

1.25

G
A

T
A

 2
 e

x
p

re
s
s
io

n

***

MCF7-LTED 

siCTR siGATA2

0.00

0.25

0.50

0.75

1.00

1.25

S
L

C
1

A
2
 e

x
p

re
s
s
io

n

*

A 

B 

Figure S3 (related to Figure 3)  

Figure S3 (related to Figure 3). GATA2 and SLC1A2 expression levels after GATA2 

silencing. 

Transfection efficacy of siRNA against GATA2 was demonstrated in ETR cells. LTED, 

TAMR and FULVR MCF7 cells were transfected with siCTR or siGATA2 oligos as described 

in Methods. 72 hours post transfection cells were lysed, RNA extracted and subjected to 

qRT-PCR for GATA2 (A) or SLC1A2 (B). Student t-test was used for statistical analysis. 

n=3 biological replicates. * P < 0.05 *** P < 0.001. 
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Figure S4 (related to Figure 4). Autophagy activation together with selective import 

of aspartate and glutamate compensates for reduction in amino acid upload in 

ETR cells.  

(A,B) Comparison of MCF7 and MCF7-LTED cells survival and protein content. (A) No 

significant reduction in cell survival between LTED and parental MCF7 cells was 

observed by Trypan Blue dye exclusion test within the (7 days) time range. However, 

estrogen (E2) deprivation resulted in a significant (versus MCF7) cell growth reduction 

starting at day 4. (B) Cells were lysed and protein quantification was measured using 

Bradford (Bio-Rad Protein Assay). Total protein content was divided by the number of 

cells lysed to obtain an estimation of the protein content per cell. n were at least 3 

biological replicates per condition performed in duplicate. Two-way ANOVA Bonferroni’s 

corrected test was used, *P<0.05, ** P < 0.01 and *** P < 0.001. (C,D) Representative 

images of LTED and parental cells (ZR75.1 -c- and HCC1428 -d-) that were cultured in 

basal medium (-) or treated (+) with 25 µmol/L of CQ for 16 hours and subjected to 

confocal analysis (green: LC3; blue: TO-PRO-3, nuclei). LC3 puncta were quantified as 

described in Methods and the quantification analysis is shown in Figure 4. Scale bar: 20 

M. (E-H) ATG7 silencing impairs cell survival of MCF7-LTED cells. LTED and parental 

MCF7 cells were transfected as described in Methods using 3 different siRNA designed 

to target the ATG7 (Autophagy Related 7) transcript (siATG7, Sigma) and a non targeting 

control (siCTR). Mock transfected cells were incubated in the lipo-cationic agent used for 

transfection. E, ATG7 is significantly overexpressed in LTED cells when compared to 

parental MCF7 cells. F, ATG7 knock-down efficiency was monitored by Western blot 

analysis (Santa Cruz Biotechnology antibody, sc-376212). (G,H) Parental and MCF7-

LTED cells were transfected and allowed to grow for 48 hours prior to subject the cells to 

the colorimetric non-radioactive quantification of cell proliferation and viability by MTT (3-

[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay (Sigma) using the 

manufacturer’s instruction. siCTR transfected cells were used as comparator. n=3 

biological replicates. One-way ANOVA Dunnett’s corrected test was used. **P<0.01; *** 

P<0.001. (I) CQ treatment impairs essential amino acids intracellular levels in MCF7-

LTED cells but not aspartate (Asp) and glutamate (Glu). Intracellular amino acids were 

extracted from LTED cells maintained in culture medium or in medium containing 25 

µmol/L chloroquine (CQ) for 16 hours. Amino acids derivatization was performed using 4-

N, N-dimethylaminoazobenzene-4’-sulfonyl chloride (DABS). DABS-amino acids were 

detected at visible light wavelengths using HPLC as described in Methods. The 

quantification of essential amino acids from 4 biological replicates is represented in a box 

and whiskers graph (mean, 25- and 75-percentile are shown and + indicates the median 

of the values). n=4 biological replicates. Student paired t-test * P<0.1; **P<0.5. The 

essential amino acids quantified are phenylalanine (Phe), valine (Val), tryptophan (Trp), 

methionine (Met), leucine (Leu), isoleucine (Ile), lysine (Lys), and histidine (His).  
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Figure S5 (related to Figure 5)  

Figure S5 (related to Figure 5). miR-23b-3p and SLC1A2 targeting reduces in vitro 

MCF7-LTED cells invasion ability. (A) MCF7-LTED cells were transfected with either 

siCTR or siSLC1A2 or (B) anti-miR-23b-3p or a non-targeting control (anti-miR-CTR) and 

subjected to invasion assay overnight as described in Methods. Data represent mean ± 

SEM. n=3 biological replicates. Each dot represents one of the 4 fields of view analyzed 

per biological experiment.  Student t test; ** P < 0.01. 
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Figure S6 (related to Figure 6). Metabolic plasticity of ETR cells is sustained by aspartate and 
glutamate. (A-D), FULVR and MCF7 cells were subjected to 14C radioactive aspartate uptake (A) or 
cultured for 24 hours in a medium containing radioactive aspartate. Lipids, proteins or DNA were 
extracted in parallel and radioactive signal measured to monitor the amount of aspartate that is 
incorporated into lipids (B), proteins (C) and DNA (D) as detailed in Methods. Each value was 
normalized on protein content. (E-H), FULVR and MCF7 cells were subjected to 14C radioactive 
glutamate uptake (E) or cultured for 24 hours in a medium containing radioactive glutamate. Lipids, 
proteins or DNA were extracted in parallel and radioactive signal measured to monitor the amount of 
glutamate that is incorporated into lipids (F), proteins (G) and DNA (H) as detailed in Methods. Each 
value was normalized on protein content. Data represent mean ± SEM, n = 3. Student t test; *, P < 
0.05; ** P < 0.01; *** P < 0.001; ns = not significant. (I) Schematic overview of metabolism of 
downstream 13C-labeled aspartate and fluxes and relative incorporation of 13C carbons derived from 
aspartate in the metabolites reported in figure. U-13C-Asp was administrated together with unlabeled 
Glu to evaluate whether the addition of Glu may impact on the metabolic fluxes as described in main 
Figure 6 when a single amino acid was used for the flux analysis; (J) Schematic overview of 
metabolism of downstream 13C-labeled glutamate (Glu) and fluxes and relative incorporation of 13C 
carbons derived from glutamate in the metabolites reported in figure. U-13C-glutamate was 
administrated together with unlabeled aspartate (Asp) to evaluate whether the addition of Asp may 
impact on the metabolic fluxes as described in main Figure 6 when a single amino acid was used for 
the flux analysis; n=3 biological replicates. Two-way ANOVA, Sidak’s corrected. * P < 0.05; ** P < 0.01; 
*** P < 0.001; ns = not significant. (K,L). FULVR MCF7 cells were subjected to Seahorse XFe96 Mito 
Stress Test analysis and Oxygen Consumption Rate (OCR) was measured in real time in the presence 
(complete) or absence of the indicated amino acids. Basal (K) and maximal (L) respiration was 
calculated as detailed in the Methods. Data represent mean ± SEM. n=3 biological replicates. One-
way ANOVA Dunnett’s corrected test; *P<0.05, ** P < 0.01 and *** P < 0.001. 
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METABRIC (2051 breast cancer cases):  D 

Figure S7 (related to Figure 7)  

Figure S7 (related to Figure 7). Tail vein injection and in vivo “dye swap” lung 

retention assay. (A-C) MCF7-LTED cells were transfected with either anti-miR-23b-3p (A) 

or siSLC1A2 (C) and/or with the respective non-targeting control (anti-miR-CTR and 

siCTR). qRT-PCR analyses were performed on the cells that were used in the lung retention 

assays shown in Figure 7 (as detailed in Methods) to control that the injected cells were 

silenced for the gene of interest. Only a silencing efficiency control was done prior to 

injection. (B) anti-miR-CTR and anti-miR-23b-3p transfected MCF7-LTED cells were 

labelled with CellTracker dyes (Red for anti-miR-CTR and Green for anti-miR-23b-3p) 

before injecting a mixture of anti-miR-23b-3p and anti-miR-CTR transfected cells in a 1:1 

ratio into the tail vein of SCID mice (n=3 per group) as described in Methods. The lungs 

were recovered at the time indicated and imaged to analyze the number of fluorescent cells 

that colonize the lungs. Data shown are mean for tumor cells coverage per field of view 

(FOV); n=3 mice per group per time point ± SEM. Representative images are shown, scale 

bar, 200 μm. ns= not significant, ** P < 0.01. (D) SLC6A14 and SLC1A2 genetic alteration in 

breast cancer clinical specimens. METABRIC data were retrieved using cBioPortal 

(http://www.cbioportal.org). SLC1A2 and SLC6A14 were altered in 157 (8%) of 2051 

sequenced cases/patients. Of these 157 patients, 137 show amplification or overexpression 

of SLC1A2. Only 2 cases show concomitant alterations of both genes: one shows 

concordant upregulation of both genes and another shows the upregulation of SLC1A2 and 

downregulation of SLC6A14.  



Table S3 (related to Figure 7). Multivariate Cox Regression Analysis of the analysis 

of tamoxifen-treated samples for SLC6A14 and TNFAIP3. 

Table S3 (related to Figure 7)  

 

parameters P value Hazard Ratio (HR) 

MKI67 0.135 1.29 (0.92 – 1.79) 

ESR1 0.520 1.91 (0.26 – 13.81) 

HER2 (ERBB2) 0.007 1.83 (1.18 – 2.85) 

SLC6A14 0.002 0.57 (0.4 – 0.81) 

 

parameters P value Hazard Ratio (HR) 

MKI67 0.099 1.33 (0.95 – 1.85) 

ESR1 0.468 2.08 (0.29 – 14.99) 

HER2 (ERBB2) 0.008 1.83 (1.17 – 2.82) 

TNFAIP3 0.005 0.57 (0.39 – 0.85) 
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