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SUMMARY

Despite being a frequent cause of severe diarrheal
disease in infants and an opportunistic infection
in immunocompromised patients, Cryptosporidium
research has lagged due to a lack of facile experi-
mental methods. Here, we describe a platform for
complete life cycle development and long-term
growth of C. parvum in vitro using ‘‘air-liquid inter-
face’’ (ALI) cultures derived from intestinal epithelial
stem cells. Transcriptomic profiling revealed that
differentiating epithelial cells grown under ALI condi-
tions undergo profound changes in metabolism and
development that enable completion of the parasite
life cycle in vitro. ALI cultures support parasite
expansion > 100-fold and generate viable oocysts
that are transmissible in vitro and to mice, causing
infection and animal death. Transgenic parasite lines
created using CRISPR/Cas9 were used to complete
a genetic cross in vitro, demonstrating Mendelian
segregation of chromosomes during meiosis. ALI
culture provides an accessible model that will enable
innovative studies into Cryptosporidium biology and
host interactions.

INTRODUCTION

Cryptosporidium is a gastrointestinal parasite that causes long-

term illness in immunocompromised patients (O’Connor et al.,

2011) and contributes to malnourishment and impaired growth

in children in low- to middle-income countries (Kotloff, 2017;

Kotloff et al., 2013). Human infection is primarily caused by two

species: C. parvum that is zoonotic and C. hominis that almost

exclusively infects humans, while other species are much less

frequently found in humans (Feng et al., 2018). Cryptosporidiosis

is transmitted by an oral-fecal route, and the entire life cycle,

consisting of asexual and sexual phases, takes place within in-

testinal enterocytes of a single host (Cevallos et al., 2000; Tzipori

and Griffiths, 1998).

Biological investigations of Cryptosporidium have been

hampered due to the lack of facile experimental platforms.

Genetic modification of C. parvum using CRISPR/Cas9 requires

propagation in immunocompromised mice (Vinayak et al.,

2015), and stable transgenic parasites still cannot be selected

or propagated in vitro due to the lack of robust cell culture plat-

forms. Adenocarcinoma cell lines such as HCT-8 and Caco-2

support short-term growth, but the parasite does not complete

its life cycle and replication ceases after a few rounds of

asexual division (Upton et al., 1994). Because sexual recombi-

nation does not readily occur in vitro, little is known about the

processes of sexual differentiation, fertilization, or meiosis in

this parasite.

Studies using hollow fiber systems report complete life cycle

development and passage of C. parvum in vitro (DeCicco

RePass et al., 2017; Morada et al., 2016), but they require

specialized equipment, are not easily scalable, and are not

amenable to basic imaging techniques. A recent report that

described the propagation of C. parvum in organoids derived

from human intestinal epithelium demonstrates that complete

development is possible in culture systems that mimic the para-

site’s natural niche (Heo et al., 2018). However, this system re-

quires microinjection of individual organoids with oocysts

and hence is not readily scalable or directly amenable to

experimental manipulation. An alternative method for creating

long-term primary intestinal monolayers involves plating stem
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cells on transwells then removing the medium from the top

chamber to form an ‘‘air-liquid interface’’ (ALI) (Wang et al.,

2015). Here, we combined a modified ALI system with stem-

cell derived spheroid cultures (Miyoshi et al., 2012; Miyoshi

and Stappenbeck, 2013; VanDussen et al., 2015) to develop a

system that supports long-term growth and complete develop-

ment of C. parvum in vitro. We further demonstrate the utility of

this system by generating transgenic parasites and performing

an in vitro genetic cross, confirming the Mendelian nature of

meiosis and opening forward genetics in C. parvum.

RESULTS

ALI Monolayers Support Long-Term C. Parvum Infection
In Vitro

We adopted previous methods for stem-cell derived cultures of

mouse intestinal epithelial cells (mIECs) to differentiate mono-

layers on transwells under ALI conditions as a platform for C

parvum growth in vitro (Figure 1A). Briefly, mIECs were amplified

as spheroids (Miyoshi et al., 2012; Miyoshi and Stappenbeck,

2013; VanDussen et al., 2015), plated onto transwells that con-

tained a matrigel coating and irradiated 3T3 cell feeder layer.

mIECs monolayers were first grown submerged in conditioned

medium (see STAR Methods) for 7 days, followed by removal

of the top medium. Following the establishment of ALI condi-

tions, cells in the monolayer underwent a burst in replication,

as detected by staining with Ki-67 (Figure S1A). Additionally,

cells began to express markers consistent with enterocyte

and secretory cell lineages found in the small intestine, such

as goblet cells and Paneth cells (Figure S1A). Electron micro-

scopy of ALI monolayers processed at � 1w-eek post top me-

dium removal revealed the presence of a brush border and

formation of tight junctions between epithelial cells at the apical

side of the cells (Figure S1B). ALI cultures begin differentiating

within a few days after top medium removal but do not

reach full maturity until almost 14 days when the apical brush

border became more prominent as detected with villin staining

(Figure S1A).

To determine if ALI monolayers would support C. parvum

growth, we infected monolayers with calf-derived oocysts

Figure 1. Development of an In Vitro System for Cultivation of C. Parvum
(A) Model of air-liquid interface (ALI) culture method. See methods for details and Figures S1A and S1B for further description.

(B) Histological examination of ALI cultures. Sections of ALI 3 days post-infection (PI) stained with hematoxylin and eosin (H&E), or rabbit pAb to detectC. parvum

(referred to as Pan Cp) using immunohistochemistry (IHC). White arrows in middle panel highlight C. parvum. Scale bar, 20 mm.

(C) Growth of C. parvum in ALI cultures infected 3 days post top medium removal with 2 3 105 unfiltered C. parvum oocysts. The graph depicts qPCR mea-

surement of C. parvum and mouse GAPDH equivalents (eq). Means ± S.D. of two transwells per time point from a representative experiment. See Figure S1C for

the replicate experiment.

(D) Detection of developmental stages of C. parvum in ALI cultures. Infected ALI transwells were fixed and stained with specified mouse mAbs (i.e., 1B5, 1A5)

followed by goat antimouse IgG Alexa Fluor 488, Crypt-a-glo directly conjugated to FITC, or Pan Cp followed by goat anti-rabbit IgG Alexa Fluor 568. Hoechst

staining for DNA. Scale bar, 3 mm. See also Figure S2.
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and tracked parasite growth using microscopy and quantitative

PCR (qPCR). Examination of H&E-stained sections of ALI

monolayers showed a continuous monolayer of epithelial cells

with a height comparable to that found in vivo (Figure 1B). Par-

asites were readily discernable at the apical surface of ALI

monolayers examined by H&E staining or IHC (Figure 1B),

consistent with their normal replicative niche in vivo, which

has been described as intracellular but extracytoplasmic (Cur-

rent and Reese, 1986). Parasite growth, as measured by qPCR,

showed that C. parvum increased for at least 20 days post-

infection, amplifying �100-fold from the initial infection (Figures

1C and S1C). This level of amplification is more than 10-fold

higher than what we have observed in mIECs grown on con-

ventional transwells without ALI conditions (Wilke et al., 2018)

or that is reported in adenocarcinoma cell lines (Arrowood,

2002). Remarkably, the high parasite density in ALI cultures

did not affect overall monolayer viability as evident from

qPCR of mouse genomic DNA equivalents that increased

over time (Figures 1C and S1C), and visual inspection of the in-

fected transwells did not show signs of barrier breakdown or

leakage.

Figure 2. Electron Microscopy Images of

C. Parvum Asexual Life Cycle Stages in ALI

Cultures

(A) Trophozoite adhering to enterocyte in ALI culture

3 dpi.

(B) Type I meront on the apical surface of enterocyte

in ALI culture 1 dpi.

(C) Macrogamont (left) and type II meront (right,

denoted with arrow) on the apical surface of enter-

ocyte in ALI culture 4 dpi.

(D)Microgamont is protruding from the surface of an

enterocyte in ALI culture 3 dpi. Multiple bullet-sha-

ped microgametes.

(E) Macrogamont on the apical surface of enter-

ocyte in ALI culture 4 dpi. Arrow highlights the

presence of striated fiber.

(F) Unsporulated oocyst shed from the surface of

ALI culture 3 dpi.

ALI transwell cultures were infected with 1 mm-

filtered sporozoites 3 days post-medium removal.

Scale bars for (A–B, D–F), 1 mm. Scale bar for

(C) = 2 mm.

All Developmental Stages Of
C. Parvum Occur in ALI Monolayers
To determine the extent of development of

C. parvum in ALI cultures, we utilized a

recently described panel of mAbs that

stains intracellular stages of development

(Wilke et al., 2018). Fluorescence micro-

scopy of infected monolayers confirmed

the appearance of asexual life cycle stages

of C. parvum. Trophozoites were recog-

nized by mAb 1B5, which labels a distinc-

tive doughnut shape around trophozoites

that may reflect the modified actin

pedestal beneath the parasite (Wilke

et al., 2018) (Figures 1D and S2A). Type I

and II meronts were identified by mAb

1A5, which stains mature merozoites within meronts in a polar-

izedmanner (Wilke et al., 2018) (Figures 1D, S2B, and S2C). Sex-

ual stages of C. parvum appeared by day 2 post infection and

were abundant in the ALI cultures. Microgamonts were identified

by their multiple small nuclei (up to 16) and separate cytoplasm

detected by polyclonal antibody Pan Cp, which labels all forms

of C. parvum (Wilke et al., 2018) (Figures 1D and S2D). Macroga-

monts were identified by the presence of secretory vesicles de-

tected with Crypt-a-glo (Figures 1D and S2E), a commercial

FITC-conjugated mAb made against C. parvum oocyst outer

wall proteins, or by OW50, a mAb that stains the oocyst wall (Ar-

rowood and Sterling, 1989) (Figure S1D). These vesicular struc-

tures are known aswall-forming bodies (WFBs), and they contain

proteins that are precursors of the oocyst wall (Spano et al.,

1997). In late-stage macrogamonts, the WFBs coalesced into a

ring at the perimeter of the parasite (Figures 1D, S1D, and

S2G), which may represent a postfertilization stage before

oocyst formation.

When examined by electron microscopy, most parasites were

found in immature enterocytes (Figure 2), although occasionally

they were seen in secretory cells. Trophozoites were recognized
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by their distinctive, single-nucleated morphology (Figure 2A),

while type I meronts were contained in round parasitophorous

vacuoles containing eight merozoites (Figure 2B). Type II mer-

onts had taller, narrower, elongated vacuoles with four merozo-

ites (Figure 2C), and microgamonts contained clusters of small

bullet-shaped parasites (Figure 2D). Macrogamonts were identi-

fied based on their numerous lipid and glycogen vacuoles within

the parasite cytoplasm, as well as the striated fiber previously

described in macrogamonts (Wilke et al., 2018) (Figure 2E).

Oocysts surrounded by a convoluted wall were also recognized

in ALI cultures by electron microscopy, although a majority of

these were unsporulated (Figure 2F).

Robust C. Parvum Growth Requires ALI And Early Cell
Differentiation
To determine whether ALI conditions were required for

C. parvum growth, we compared C. parvum proliferation in in-

fected ‘‘submerged’’ mIEC monolayers grown on transwells

without removal of the topmedium (non-ALI) to ALI transwells in-

fected 3 days after removal of the top medium. C. parvum grew

significantly better in ALI transwells compared to non-ALI trans-

wells (Figures 3A and S3A), while host cell viability during infec-

Figure 3. Effects of Timing and Differentia-

tion on C. Parvum Growth in ALI Cultures

(A and B) Comparison of C. parvum growth.

(A) Transwell cultures infected three days post top

medium removal (ALI) versus continuous top me-

dium (non-ALI).

(B) ALI cultures infected with 2 3 105 unfiltered

oocysts at day 0 (ID0) versus day 3 (ID3) post me-

dium removal. Left, C. parvum genomic DNA

equivalents (Cp gDNA eq.). Right, mouse genomic

DNA equivalents (mouse gDNA eq.) measured by

qPCR. Means ± S.D. from two transwells per time

point from a representative experiment. Two-way

ANOVA comparing themeans of each group at each

time point, corrected for multiple comparisons us-

ing the Sidak method, **p < 0.01, ***p < 0.001,

****p < 0.0001. See also Figure S3 for replicate

experiments.

(C) Microscopic examination of host cell and

C. parvum proliferation in ALI versus non-ALI

transwell cultures 3 dpi after an 8-h incubation with

10 mM EdU in the bottom chamber medium.

C. parvum was stained with Pan Cp followed by

goat anti-rabbit IgG Alexa Fluor 568, DNA stained

with Hoechst. Scale bars, 50 mm.

tion was improved in ALI transwells

compared to non-ALI transwells despite

the higher infection levels in the former

(Figures 3A and S3A).

To determine the influence of cell differ-

entiation onC. parvum growth, we infected

transwells on day 0 of ALI initiation vs. day

3 postmedium removal, when monolayers

first begin to show signs of differentiation

(Figure S1A). C. parvum grew significantly

better in transwells infected 3 days after

ALI initiation compared to day 0 ALI cul-

tures, which only supported low levels of expansion (Figures

3B and S3B). Similar to the ALI vs. non-ALI experiment, host

cell viability during infection was improved in the transwells in-

fected on day 3 (Figures 3B and S3B).

The above findings suggested that enhanced C. parvum

growth was tied to improved host cell viability and proliferation

triggered by ALI growth conditions. To visualize cell proliferation

during infection, we pulsed parallel sets of infected, submerged

non-ALI and 3-day ALI cultures with EdU in the bottom chamber

medium for 8 h. Microscopy showed higher numbers of both

C. parvum and proliferating cells (EdU positive) in transwells in-

fected 3 days after ALI initiation compared to the submerged

non-ALI transwells (Figure 3C). AlthoughC. parvumwas primar-

ily found in non-EdU positive cells, this pattern was not exclu-

sive (Figure 3C). In separate experiments, we observed that

ALI monolayers are permissive to infection from days 3–6, but

that infection is less readily established after this time period,

perhaps due to the dramatic increase in mucus production

that is observed at later times points (Figure S1A). As such,

for all subsequent experiment we focused on the optimal condi-

tions of infecting ALI cultures 3 days after removal of the top

medium.
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ALI Culture Leads to Cellular Replication, Altered
Metabolism, and Differentiation
To determine the underlying changes that occur in ALI cultures

following removal of top medium, we compared RNA-seq tran-

scriptomes of mouse ileal cells replicating as spheroid cultures

to day 0 ALI (before top medium removal), day 3 non-ALI (sub-

merged transwell cultures), and day 3 ALI cultures. Analysis of

gene expression differences by principle component analysis

indicated that spheroid cultures were highly different from the

rest of the samples (Figure 4A), as might be expected from the

differences in growth conditions (i.e., they are embedded in

Matrigel in a 3-D system instead of grown on transwells). In

comparing cultures grown on transwells, day 3 ALI samples

clustered in a distinct group, while non-ALI day 3 and ALI day

0 samples were largely overlapping (Figure 4A). To more closely

examine these changes, we compared the expression of all

genes between day 3 non-ALI and ALI samples using Ingenuity

Pathway Analysis (IPA) to define pathways that were significantly

different (p < 0.05) between growth conditions based on concor-

dant changes among genes within similar pathways. A subset of

Figure 4. Pathway Analysis of Transcriptomes from Stem Cells and Differentiating ALI Cultures

(A) Principal-component analysis (PCA) of normalized expression values for all genes in stem cell spheroids (green), transwells on day 0 (ALI D0, blue) or day 3,

either after medium removal (ALI D3, red) or with continuous medium (non-ALI D3, yellow). Two independent experiments with two replicates per experiment

except for the spheroid group, in which one technical replicate was removed from downstream analyses due to poor quality reads (see STAR Methods).

(B) Bar chart of the percentage of genes upregulated (red) or downregulated (green) in day 3 ALI versus non-ALI samples for the most significant pathways

(p < 0.05) under the ‘‘generation of precursor metabolites and energy’’ and ‘‘cell cycle regulation’’ pathways, respectively. Numbers in bold indicate the total

number of genes per pathway. Performed in ingenuity pathway analysis (IPA) using expression values for all genes as input. See also Figure S4.

(C) Heatmap of expression differences between day 3 non-ALI and ALI samples. The Z-score indicates the number of standard deviations that the expression

value of each sample is above (red) or below (green) the mean expression value for all samples in the analysis. FDR-corrected p values for differential expression

were determined in Partek using gene specific analysis (GSA): *q < 0.05, ***q < 0.001.

(D) Comparison of C. parvum growth in Atoh1�/� knockout (blue) or matched floxed Atoh1f/f control (black) ALI cultures infected with 23 105 unfiltered oocysts.

C. parvum genomic equivalents (eq.) measured by qPCR for the C. parvum GAPDH gene. Means ± S.D. from two transwells per time point from a representative

experiment. See also Figure S5.
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the most prominently differentially expressed metabolism and

cell cycle pathways is illustrated in Figure 4B, highlighting the

changes in glycolysis (down regulated in day 3 ALI) vs. oxidative

phosphorylation and the TCA cycle (up regulated in day 3 ALI)

and cell cycle and replication (up regulated in day 3 ALI). Addi-

tional changes in gene expression profiles are highlighted in

Figure S4.

Histological studies indicated that secretory cell lineages

started to appear as early as day 3 in ALI cultures (Figure S1A);

therefore, we analyzed a subset of genes related to epithelial

cell differentiation includingmarkers for secretory cells (i.e., Pan-

eth, goblet, and enteroendocrine cells). Genes related to the

development of these intestinal cell lineages were significantly

upregulated in day 3 ALI versus day 3 non-ALI cultures (Fig-

ure 4C). Additionally, stem cell markers Lgr5 and HopX were

slightly decreased in day 3 ALI, while Bmi1 was elevated (Fig-

ure 4C), as were markers Sox9 and Dll1, which are highly ex-

pressed in transient amplifying cells that emerge from the crypt

after being produced from intestinal stem cells (Bankaitis et al.,

2018). These findings are consistent with the observation that

ALI cultures undergo differentiation, yet still contain proliferative

cells that are labeled by EdU and Ki-67 (Figures 3C and S1A).

Finally, because the transcription factor ATOH1 is significantly

upregulated in day 3 ALI (Figure 4C), we tested the reliance of

C. parvum growth on secretory cells that are dependent on this

transcription factor for development (i.e. Paneth, goblet, enter-

oendocrine cells) (Shroyer et al., 2007). Because Atoh1 knockout

mice die shortly after birth (Yang et al., 2001), we generated a

spheroid line from a floxed Atoh1 mouse then excised the

Atoh1 gene by the introduction of Cre-recombinase in vitro (Fig-

ure S5). Inoculation of wild type (Atoh1f/f) and Atoh1 null

(Atoh1�/�) ALI transwells revealed that C. parvum grew robustly

in both cell lines (Figure 4D), indicating that parasite growth was

not dependent on the secretory cell lineages.

ALI Monolayers Support Oocyst Development
To determine if oocysts were being produced de novo in the ALI

monolayers, we infected transwells with excysted sporozoites

passed through filters with a 1 mm pore size, a step we

determined was essential to remove all residual input oocysts

(Figure 5A). To visualize oocyst development, we stained the

monolayers with Crypt-a-glo and counted the number of oocysts

per field. Oocysts began to appear by day 3 and varied in fre-

quency within different regions of the culture (i.e., 1–10 oocysts

per high powered field) and across different experiments (Fig-

ure 5B), although occasionally they were quite numerous (Fig-

ure 5C). Based on the frequencies reported in Figure 5B, we

estimate that each transwell contained between 100-1,000 oo-

cysts starting 3 days post infection. However, oocyst numbers

went through periodic cycles over time (Figure 5B), suggesting

there are successive rounds of production followed by hatching

and reinitiation of infection. To confirm the oocysts observed by

staining were indeed newly produced in culture, we added EdU

to the culturemedium overnight and examined incorporation into

the nuclei of sporozoites. We readily identified oocysts contain-

ing four EdU-positive sporozoite nuclei in the ALI monolayers

(Figure 5D), confirming that the oocysts observed in ALI cultures

replicated and sporulated in vitro and were not the result of

contamination from the original inoculum.

It has been shown previously that C. parvum oocysts bind

the GalNAc-binding lectin Maclura pomifera agglutinin (MPA)

and the fucose-binding lectin Ulex europaeus agglutinin I

(UEA-1) (Chatterjee et al., 2010). To confirm that the in vitro-

produced oocysts shared these characteristics, we isolated

the oocysts from the ALI monolayers by bleaching the mono-

layers to remove cell debris and intracellular parasites, then

plated the remaining material on poly-L-lysine-coated cover-

slips. We stained the material with MPA and UEA-1 lectins

and observed lectin-positive oocysts (Figure 5E), confirming

the oocysts produced in vitro shared the normal characteristics

of mature oocysts.

Oocysts Produced in Vitro are Infectious to Mice
To determine whether the oocysts produced in vitro were viable

and infectious, we infected ALI monolayers with filtered sporo-

zoites and then treated the monolayers with bleach to kill all

parasites except oocysts (Fayer, 1995). Bleached material

stained with Crypt-a-glo showed that day 3 ALI cultures con-

tained numerous oocysts, while day 1 cultures were negative

(Figures 6A, 6B, and S6A). We then infected Ifngr1�/� mice,

which are highly susceptible to C. parvum (Griffiths et al.,

1998; von Oettingen et al., 2008) with bleached material from

day 1 and day 3 cultures by oral gavage. Mice that received

day 1 material survived for the duration of the experiment (Fig-

ures 6C and S6B) and did not show any evidence of oocyst

shedding above the background signal in the assay (Figures

6D and S6C). Conversely, mice that received day 3 material

began shedding oocysts by day 5 postgavage, and the number

of oocysts increased almost two logs before the animals died

(Figures 6D and S6C), which occurred by day 12 postgavage

(Figures 6C and S6B). Consistent with the shedding results, in-

testinal tissue sections from mice that received the day 3 ma-

terial showed robust infection by anti-C. parvum IHC, but no

sign of infection was seen in mice inoculated with day 1 mate-

rial (Figure 6E). We also initiated infection of new ALI mono-

layers with bleached oocysts obtained from day 3 ALI cultures,

including dilutions of the material, which readily expanded at a

similar rate to cultures initiated with calf-derived oocysts (Fig-

ures 6F and S6D).

Generation of Stable Transgenic Parasites
To generate transgenic parasite strains, wemodified apreviously

described nanoluciferase (Nluc) reporter fused to neomycin

resistance (NeoR) (Vinayak et al., 2015) by inserting a P2A skip

peptide to increase luciferase expression and by adding GFP

driven by the C. parvum actin promoter (Figures 7A and S7C).

Excysted sporozoites were electroporated with the TK-GFP-

Nluc-P2A-neo-TK plasmid and a newly constructed Cas9

plasmid (Table S2) containing a tk guide RNA sequence (Vinayak

et al., 2015), then added to ALI transwells. Eight h post infection

(p.i.), extracellular parasites were washed from the top of the

transwells, and bottommedium was replaced with medium con-

taining 20 mM paromomycin (PRM) for selection or PBS control.

On the first day p.i., both drug-treated and nontreated transwells

had high luminescence values, indicative of transient expression

(Figure 7B). By the fourth day of selection, luminescence values

per parasite were 23-fold higher on average in PRM vs. PBS-

treated transwells (Figure 7B), although this difference was not
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statistically significant. Staining with a Pan Cp polyclonal anti-

body that recognizes all stages of C. parvum showed that most

parasites in the culture expressed GFP, indicating that selection

enriched substantially for transgenic parasites (Figure 7D).

The C. parvum genome contains two uracil phosphoribosyl-

transferase (UPRT) enzymes capable of converting scavenged

host uridine into uridine monophosphate (Striepen et al., 2004).

For a second fluorescent parasite strain, we designed a targeting

construct to replace one of the C. parvum UPRT genes

(cgd1_1900) with a mCherry reporter upstream of the Nluc-

P2A-neo cassette described above (Figures 7E and S7F). Sporo-

zoites electroporated with the UPRT-mCh-Nluc-P2A-neo-UPRT

plasmid and a Cas9 plasmid with a UPRT gRNA were selected

for growth in ALI transwells treated with 20 mM PRM. We de-

tected an 18-fold increase in relative luminescence per parasite

on average in PRM vs. PBS-treated transwells by 3 dpi, a differ-

ence that was statistically significant (Figure 7F). Immunofluores-

cence staining confirmed that most of the parasites expressed

the mCherry transgene (Figure 7H). To generate larger numbers

of oocysts, we passaged the mixed transgenic populations in

immunocompromised mice under drug selection (16 g/L PRM

in the drinking water) and then purified the oocysts from infected

fecal pellets (Figures S7B–S7G). Using primers located inside

and outside the deleted genes, we confirmed that both the TK-

GFP and UPRT-mCherry strains had the correct insertion into

the genomic loci and were lacking the tk and uprt genes, respec-

tively (Figures S7E and S7H), indicating that the populations are

pure transgenic lines.

Crossing Reporter Strains In Vitro Produces Viable,
Recombinant Oocysts
Since the GFP and mCherry reporters were inserted into

different chromosomes (5 and 1, respectively), cross-fertilization

in vitro should result in recombinant progeny expressing both re-

porters following the first round of oocyst formation (Figure 7I).

We infected ALI transwells with equal numbers of TK-GFP

and UPRT-mCherry parasites, then examined cultures bymicro-

scopy at 3 to 5 dpi to detect the presence of parasites expressing

Figure 5. In vitro production of oocysts in ALI culture

(A) Effect of filtration on removal of residual C. parvum oocysts. Oocysts were excysted, filtered using the indicated pore sizes, added to PLL-coated coverslips,

and stained with Crypt-a-glo directly conjugated to FITC. The number of residual oocysts found in filtered samples were counted from replicate 633 fields from a

representative experiment.

(B) Detection ofC. parvum oocysts in ALI cultures. Transwells were infected on day 3 post topmedium removal with 1 mm-filtered sporozoites. On specified days

post infection, transwells were fixed and stained with Crypt-a-glo directly conjugated to FITC and Pan Cp, detected with goat anti-rabbit IgG Alexa Fluor 568.

Oocyst numbers per 633 field were counted for three independent experiments (Exp A, Exp B, Exp C). The combined mean of each time point was compared to

the combined mean of day 1 using a two-way ANOVA corrected for multiple comparisons using the Dunnett method, **** p < 0.0001.

(C) Low magnification (203) image of oocyst development in ALI transwells infected with 1 mm-filtered sporozoites 10 days or 1 day post infection (inset).

Transwells were stained with Crypt-a-glo directly conjugated to FITC to detect oocysts. DNA stained with Hoechst. Scale bars, 50 mm.

(D) Labeling of newly formed oocysts with EdU. ALI transwells were infected on day 3 post top medium removal with 1 mm-filtered sporozoites. On day 2 post

infection, 10 mM EdU was added to the bottom chamber medium and incubated overnight. Transwells were fixed and EdU was labeled using the Click-iT EdU

Alexa Fluor 488. C. parvum was labeled with Crypt-a-glo directly conjugated to FITC, DNA stained with Hoechst (white arrows denote nuclei). Scale bars, 5 mm.

(E) Lectin labeling of oocysts. Transwells were infected with 1 mm-filtered sporozoites and bleached on day 3 post infection, adhered to PLL-coated coverslips,

and stained with Pan Cp followed by goat anti-rabbit Alexa Fluor 568, Hoechst, and either lectins MPA or UEA-1 directly conjugated to FITC. DNA stained with

Hoechst (white arrows denote nuclei). Scale bars = 5 mm.
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both reporters (Figure 7J). In two independent experiments, yel-

low parasites were absent at 1 dpi but appeared by 3 or 5 dpi,

consistent with the time needed for completion of the life cycle

(Figure 7K).

Following crossing between TK-GFP and UPRT-mCherry par-

asites, oocysts should contain sporozoites of different geno-

types, based on independent segregation of the chromosomes

(Figure 7L). To test this prediction, we infected ALI transwells

with equal numbers of TK-GFP and UPRT-mCherry sporozoites,

then enriched for oocysts at 3 dpi by bleaching transwells. We

recovered and plated the oocysts on a human adenocarcinoma

cell line (HCT-8) at a low MOI such that parasites descended

from a single oocyst would form separate clusters as they

grew out. If the oocyst was a result of self-fertilization, then all

parasites in a cluster were expected to express the same color

(either green or red), whereas cross-fertilization events should

produce clusters of parasites with mixed phenotypes. After

a single round of merogony during the outgrowth phase

(15–18 hpi), we observed that 20.6%–27.9% of clusters had par-

asites with mixed phenotypes, depending on the experiment

(Figure 7M), confirming that they arose from the product of out-

crossing. This value is significantly lower than expected, pre-

sumably due to the localized nature of infection in the transwells

that limited outcrossing rather than an intrinsic defect in fertiliza-

tion, as both lines productively underwent self-fertalization in

mice (Figure S7). The contents of oocysts formed from out-

crossing are expected to initially express both markers and to

be yellow as the sporozoites are formed from a commonly in-

herited cytoplasm (Current and Reese, 1986). However, as par-

asites grow out from individual sporozoites, their phenotype (i.e.,

colors) will reflect the genotypes they inherited in the cross,

as diagrammed in Figure 7L. Importantly, the distribution of

different genotypes, and hence color patterns, among parasites

from these mixed clusters did not significantly deviate from the

expected frequency of 25% for each phenotype (Figure 7N).

DISCUSSION

Our findings establish that cultivation of stem-cell derived intes-

tinal epithelial cells under ALI conditions enables complete

development of the C. parvum life cycle and provides a platform

to investigate host-parasite interactions using forward and

reverse genetics. In a separate report (Wang and Stappenbeck,

unpublished), the use of ALI culture conditions as employed here

Figure 6. Infectivity of oocysts produced in ALI cultures

(A) Detection of oocysts in ALI cultures treated with bleach. ALI transwell cultures were infected with 1 mm-filtered sporozoites. On days 1 and 3 postinfection,

transwells were bleached, washed, pelleted, adhered to PLL-coated coverslips, and stained with Pan Cp followed by goat anti-rabbit Alexa Fluor 568 and Crypt-

a-glo directly conjugated to FITC. Each data point is the number of oocysts in a single 63X field from a single representative experiment. Data were analyzed using

a Mann-Whitney U test. **** p < 0.0001. See also Figure S6 for replicate experiment.

(B) Images of bleached oocysts isolated from ALI cultures at day 3 postinfection as described in (A). Oocysts were stained with Pan Cp followed by goat anti-

rabbit IgG Alexa Fluor 568, Crypt-a-glo directly conjugated to FITC, and Hoechst. Scale bars, 5 mm.

(C and D) Infectivity of bleached ALI monolayers for mice. ALI transwell cultures were infected with 1 mm-filtered sporozoites. On days 1 and 3 postinfection,

transwells were bleached, washed, and the material was orally gavaged into naı̈ve Ifngr1�/� mice.

(C) Survival curves of the mice analyzed using the log-rank (Mantel-Cox) test, **p < 0.01.

(D) Number of oocysts per fecal pellet asmeasured by qPCR for theC. parvumGAPDHgene. The gray line represents themean value of both groups for day 1; the

dotted lines are the day 1 standard deviations. Data was analyzed using a two-way ANOVA comparing the means of Bleach D1 vs Bleach D3 across all time

points, corrected for multiple comparisons using the Sidak method, ** p < 0.01, **** p < 0.0001. See also Figures S6B and S6C for replicate example.

(E) Histological examination of mice infected with bleached material from ALI cultures. Sections of small intestine stained with Pan Cp and revealed by IHC. Day 1

recipient was sacrificed on day 30 postgavage (image on left), day 3 recipient was sacrificed on day 9 postgavage (image on right). Scale bars, 20 mm.

(F) Passage of bleached ALImonolayers. ALI transwell cultures were infectedwith 1 mm-filtered sporozoites. Bleached day 3 ALI cultureswere used to infect naı̈ve

ALI monolayers at a 1:1, 1:2 or 1:4 passage ratio. In parallel, ALI cultures were infected with 104 calf-derived oocysts. Outgrowth of passaged C. parvum was

monitored by qPCR. Data plotted as mean ± S.D. from two transwells per time point. See Figure S6D for replicate experiment.
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is shown to induce a critical population of HopX-positive stem

cells that drives regeneration, differentiation, and restores gut

homeostasis. Following the switch to ALI culture conditions,

mIEC monolayers underwent dramatic expansion and differenti-

ation from stem cells to resemble cell lineages normally found in

the intestine. Expansion of parasites did not appear to adversely

influence the integrity of the monolayer, perhaps because of the

continual renewal of cells from stem cells. Although the infection

was seen in all cell types, C. parvum grew equally well in

Atoh1�/� cultures, which lack the capacity to develop the secre-

tory cell lineages (Bankaitis et al., 2018). Similarly, C. parvum

infection is not restricted to a specific cell type in the intestine,

although it occurs primarily in enterocytes (Moore et al., 1995;

Pereira et al., 2002; Thulin et al., 1994).

Analysis of gene expression data revealed profound changes

in metabolism in ALI cultures to favor oxidative phosphorylation

over glycolysis. This change is intriguing as adenocarcinoma

cells, which only support limited growth of C. parvum, are also

highly glycolytic, a phenotype common to many cancer cells

known as the Warburg effect (Potter et al., 2016). When mIECs

were cultured in the presence of the top medium, this metabolic

shift was not evident, and they only supported modest growth.

The data suggest that changes in host cell metabolism are key

for supporting optimal growth and complete development of

C. parvum, although further studies would be needed to test

this hypothesis. Collectively, ALI monolayers likely support

C. parvum growth in vitro because they resemble the in vivo

niche of the parasite in terms of gene expression, metabolism,

and differentiation state.

In addition to all previously described asexual and sexual

stages (Wilke et al., 2018), we identified a stage we termed

‘‘late-stage macrogamonts’’ in whichWFBs organized in a circu-

lar pattern at the perimeter of the cell. A similar process occurs

during formation of the oocyst wall in the related coccidian Eime-

ria (Belli et al., 2009;Mai et al., 2009), suggesting that these ‘‘late-

stage macrogamonts’’ may represent zygotes of C. parvum that

form in ALI but not conventional cell cultures. Mature oocysts

appeared by day 3 post-infection and were present in cyclical

waves, suggesting they do not accumulate as a mature end

stage, but rather excyst to reinitiate infection. Oocysts exhibited

features of the mature oocyst wall including lectin staining, were

bleach-resistant, and were infectious to naivemonolayers and to

mice, leading to robust oocyst shedding.

The growth of C. parvum in ALI transwells has several advan-

tages over alternative in vitro methods described previously. For

example, ALI transwell cultures grown inmicrotiter format can be

easily scaled (e.g., multiples of 12 transwells can be plated

simultaneously) to test multiple conditions in parallel. The avail-

ability of long-term growth in ALI monolayers also facilitates ge-

netic approaches inC. Parvum, as demonstrated using CRISPR/

Cas9, to generate transgenic parasites in vitro that were then

further amplified in the mouse. The ability of C. parvum to com-

plete the entire life cycle in ALI cultures was also used to perform

genetic crosses in vitro, something currently not possible with

other apicomplexan parasites. To fully capitalize on this develop-

ment, it would be advantageous to develop methods for serial

propagation, for the generation of single cell clones, and for reg-

ulatable systems to study essential genes. Such barriers have

Figure 7. ALI Transwells support genetic crosses of C. parvum in vitro

(A) Diagram of targeting construct designed to replace the endogenous tk locus (cgd5_4440) with GFP and Nluc-P2A-NeoR cassette.

(B) Relative luminescence normalized to total number of parasites in ALI transwells at 1 and 4 days post infection (dpi). Transwells were infected with �1 3 107

unfiltered sporozoites that were electroporated with the TK-GFP-Nluc-P2A-neo-TK reporter and a Cas9 plasmid with a TK gRNA. Transwells were cultured in

medium containing PBS (light green) as a control or 20mMparomomycin (PRM, dark green). Data plotted as mean ± S.D. from two transwells per time point from

a representative experiment. Nonsignificant (p = 0.11), unpaired Student’s t test between PBS and PRM-treated transwells 4 dpi.

(C) Image of whole-mount ALI transwells 5 dpi with transfected C. parvum from same experiment as (B) stained with anti-GFP followed by goat anti-rabbit IgG

Alexa Fluor 488. Scale bar, 10 mm.

(D) Merged image of (C) with a Pan Cp polyclonal antibody, which recognizes allC. parvum stages, followed by goat antirat IgG Alexa Fluor 568. Scale bar, 10 mm.

(E) Diagram of targeting construct designed to replace the endogenous uprt locus (cgd1_1900) with mCherry and Nluc-P2A-NeoR cassette as (A).

(F) Relative luminescence normalized to total number of parasites in ALI transwells at 1 and 3 dpi. Transwells were infected with �13 107 unfiltered sporozoites

per transwell that were electroporated with the UPRT-mCh-Nluc-P2A-neo-UPRT reporter and a Cas9 plasmid with a UPRT gRNA. Transwells were cultured in

medium containing PBS (pink) as a control or 20mMPRM (red). Data plotted asmean ± S.D. from two transwells per time point from a representative experiment.

*p < 0.05, unpaired Student’s t test between PBS and PRM-treated transwells 3 dpi.

(G) Image of whole-mount ALI transwells 5 dpi with transfected C. parvum from same experiment as (G) stained with anti-mCherry followed by goat antirat Alexa

Fluor IgG 568. Scale bar, 10 mm.

(H) Merged image of (G) with Pan Cp polyclonal antibody followed by goat anti-rabbit IgG Alexa Fluor 488. Scale bar, 10 mm.

(I) Diagram of crossing experiments in vitro in which TK-GFP oocysts (green) and UPRT-mCh oocysts (red) are added to the same ALI Transwell.

(J) ALI transwells were infected with TK-GFP and UPRT-mCh oocysts (2.5 3 104 unfiltered oocysts per strain) and stained 5 dpi with anti-GFP followed by goat

anti-rabbit Alexa Fluor IgG 488 and anti-mCherry followed by goat antirat Alexa Fluor IgG 568. Parasites that express both markers (yellow arrows).

Scale bar, 10 mm.

(K) ALI transwells were infectedwith TK-GFP andUPRT-mCh oocysts (53 104 unfiltered oocysts per strain) and stainedwith antibodies as in (J). Images of 13 – 26

fields at 633 were acquired for 1–2 transwells per time point, and the number of parasites expressing both markers per field was counted for two independent

experiments. *p < 0.05, nonparametric Kruskal-Wallis test with a Dunn’s multiple comparison test.

(L) Predicted segregation patterns for chromosomes following meiosis.

(M) ALI transwells were infected as in (K). After one round of oocyst formation (3 dpi), transwells were scraped, bleached, and added to HCT-8 monolayers for

15 – 18 hr post infection (hpi), then fixed and stained with the same antibodies as (J) plus mouse monoclonal 1E12 followed by goat antimouse IgG Alexa Fluor

647 to detect wild type parasites. Pie chart shows the percentage of all green, all red, or mixed clusters for two independent experiments. Observed ratios

significantly deviate from the expected 50% for mixed clusters, 25% each for green and red (p < 0.001, Chi-square test).

(N) Bar graph of the ratio of parasites with each phenotype to the total number of parasites within the ‘‘mixed’’ clusters from the same two independent ex-

periments as in (M). Observed ratios do not significantly deviate from the expected 25% for each phenotype (p = 0.14 for Exp. 1 and p = 0.09 for Exp. 2, Chi-square

test). See also Figure S7.
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rapidly eroded where efforts have been applied in other parasitic

parasites, and they are likely to do so here as well.

The segregation pattern of independent markers on different

chromosomes observed following in vitro genetic crosses of

C. parvum is consistent with the fusion of haploid gametes fol-

lowed by independent segregation of chromosomes, as pre-

dicted by Mendelian genetics. A survey of the highly reduced

C. parvum genome indicates that it retains nearly all of the

conserved genes within the meiotic tool box (Schurko and Logs-

don, 2008) (Table S1). The ability to recover all four progeny from

each meiotic event could facilitate future studies to understand

the meiotic division processes used by apicomplexans. Addi-

tionally, genetic mapping and linkage analysis should be useful

for forwarding genetic analysis of complex traits in C. parvum.

In this regard, the ability of C. parvum to complete its entire life

cycle and undergo meiosis within 3 days within a single in vitro

culture offers considerable advantages over other parasitic sys-

tems that must rely on multiple invertebrate and/or vertebrate

hosts to perform such genetic crosses.
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Mouse monoclonal 4D8 Wilke et al., 2018 N/A

Mouse monoclonal 1E12 Wilke et al., 2018 N/A

Rabbit polyclonal pan Cp This paper N/A

Rabbit polyclonal anti-GFP Thermo Fisher Scientific Cat# A11122

Rat monoclonal anti-mCherry (16D7) Thermo Fisher Scientific Cat# M11217
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(Gorse, Furze) – UEA-I

EY Laboratories, Inc. Cat# F-2201-2

Bacterial and Virus Strains

NEB 5-alpha Competent E. coli (High Efficiency) New England Biolabs Cat# C2987H

Chemicals, Peptides, and Recombinant Proteins

Y-27632 dihydrochloride ROCK inhibitor Tocris Bioscience Cat# 1254

BD MatrigelTM Basement Membrane Matrix BD Biosciences Cat# 356234

Glutaraldehyde Polysciences, Inc. Cat# 01909

Osmium tetroxide Polysciences, Inc. Cat# 0972B

Formaldehyde (methanol-free), Ultrapure EM Grade Polysciences, Inc. Cat# 04018-1

Uranyl Acetate Ted Pella, Inc. Cat# 19481

Eponate 12 resin kit Ted Pella, Inc. Cat# 18012
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Paromomycin sulfate salt Sigma Cat# P9297

Sodium taurocholate hydrate Sigma Cat# 86339
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Poly-L-Lysine solution (0.01%) Sigma Cat# P4707-50mL
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, L. David

Sibley (sibley@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cryptosporidium Strain
C. parvum oocysts (AUCP-1 isolate) were maintained by repeated passage in male Holstein calves and purified from fecal material

after sieve filtration, Sheather’s sugar flotation, and discontinuous sucrose density gradient centrifugation as previously described

(Kuhlenschmidt et al., 2015). All calf procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at

the University of Illinois Urbana-Champaign. Purified oocysts were stored at 4�C in PBS + 50 mM Tris-10 mM EDTA, pH 7.2 for

up to six months before use.

Cell Lines
All cell lines were cultured at 37�C in a 5%CO2 incubator under normal atmospheric oxygen conditions. Primary ileal intestinal epithe-

lial stem cells (IECs) isolated from 8-10-week-old female C57BL/6 mice (Stappenbeck laboratory, Washington University School of

Medicine) were expanded and maintained as 3D spheroid cultures in Matrigel (BD Biosciences) and 50% L-WRN conditioned me-

dium (CM) containing 10 mMY-27632 ROCK inhibitor (Tocris Bioscience), as described previously (Miyoshi et al., 2012). L-WRN-CM

was quality controlled form batch to batch using recently definedmethods (VanDussen et al., 2019). Themediumwas changed every

2 days, and the cells were passaged every 3 days in a 1:6 split. IEC lines were determined to be mycoplasma-negative using the

e-Myco plus kit (Intron Biotechnology). For all experiments in this study, IECs were used between passages 4 and 26.

NIH/3T3 embryonic mouse fibroblast cells (ATCC, CRL-1658TM) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM

high glucose; Sigma D6429) with 10% fetal bovine serum (Sigma) and 1X penicillin/streptomycin (Sigma). Cells were passaged every

3 days in a 1:5 split.

HCT-8 human colorectal adenocarcinoma cells from a male patient (ATCC, CCL-244) were maintained in RPMI 1640 ATCCModi-

fication medium (Thermo Fisher Scientific A1409101) supplemented with 10% fetal bovine serum (Sigma). Cell were passaged twice

a week at a 1:5 – 1:20 split.

Mouse Lines
For the bleach, ALI infectivity assays, female 8- to 10-week-old Ifngr1-/- mice (C57BL/6 genetic background) were purchased directly

from Jackson Laboratories (#003288) and housed separately for the duration of the experiment to avoid cross-infection. For ampli-

fication of transgenicC. parvum parasites, male and female 7- to 14-week-old Ifngr1-/- mice andmale and female 12- to 17-week-old

Nod scid gammamice (NSGTM, Jackson Laboratories #005557) were bred in house atWashington University School of Medicine and

co-housed based on sex. Mice were reared in a specific-pathogen-free facility on a 12:12 light-dark cycle and received irradiated

laboratory rodent chow (Purina 5053) and water ad libitum. For amplification of transgenic parasites, water was replaced with filtered

tap water containing 16 g/L paromomycin sulfate salt (Sigma). Animals that lost more than 20% of their body weight or became non-

ambulatory during the course of infection were humanely euthanized in a SMARTBOX Auto CO2 euthanasia chamber. All mouse

studies were approved by the Institutional Animal Studies Committee at the School of Medicine, Washington University in St. Louis.

Continued

REAGENT OR RESOURCE SOURCE IDENTIFIER

Plasmid: pACT1:Cas9-GFP, U6:sgTK This paper; Addgene Cat# 122852

Plasmid: pACT1:Cas9-GFP, U6:sgUPRT This paper; Addgene Cat# 122853

Plasmid: pUC19 vector New England Biolabs, Inc. Cat# N3041S

Software and Algorithms

Partek Flow Partek, Inc. http://www.partek.com/partek-flow/

Ingenuity Pathway Analysis QIAGEN https://www.qiagenbioinformatics.com/

products/ingenuity-pathway-analysis/

SnapGene GSL Biotech https://www.snapgene.com/

Eukaryotic Pathogen CRISPR guide RNA/DNA design tool EuPaGDT http://grna.ctegd.uga.edu

FIJI (ImageJ) Schindelin et al., 2012 https://fiji.sc/

GraphPad Prism GraphPad Software https://www.graphpad.com/scientific-

software/prism/
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METHOD DETAILS

Generating the Air-Liquid Interface Mouse Intestinal Epithelial Cell Culture System
Irradiating 3T3 Fibroblast Cells

Mouse fibroblast cells (NIH/3T3; CRL-1658TM ATCC) were trypsinized, suspended in growth medium, and irradiated at 3,000 rads

using the Small Animal Radiation Research Platform (SARRP, Xstrahl). After cell viability was assessed with Trypan Blue staining

(Thermo Fisher), irradiated cells were quantified, aliquoted in freezing medium (growth medium with 30% FBS and 5% DMSO)

and stored at -80�C for short-term use (weeks) or in liquid nitrogen for long-term use (months).

Seeding Irradiated 3T3 Feeder Cell Layer on Transwells

Transwells (polyester membrane, 0.4 mm pore; Corning Costar) were coated with Matrigel (Corning) diluted 1:10 in cold PBS, then

incubated at 37�C for 15-20min. Excess Matrigel solution was aspirated immediately before adding irradiated 3T3 (i3T3) cells, which

were thawed, resuspended in growth medium, and seeded onto transwells at 8x104 cells/ transwell. Growth medium was added to

the top and bottom of the transwell and incubated at 37 �C for approximately 24 hr before seeding the mIEC spheroids.

Seeding the Mouse Intestinal Epithelial Cell Monolayers and Creating Airliquid Interface

Mouse ileal spheroids from 3-day-old stem cell cultures were recovered fromMatrigel and dissociated with trypsin as described pre-

viously (Moon et al., 2014). Cells were quantified, suspended in 50% CM with 10 mM Y-27632, and plated onto i3T3 monolayers at

5x104 cells/ transwell. 3T3 growth medium was replaced with 50% CM with 10 mM Y-27632 in both the top and bottom compart-

ments and replenished every other day. After 7 days, the medium in the top compartment was removed to create the air-liquid

interface (ALI). Medium in the bottom compartment of the transwell continued to be changed every other day. Liquid/mucus that

appeared in top compartment was removed every other day.

Generating Mouse Atoh1-/- Knockout Spheroid Lines

Spheroids were established from the jejunum of Atoh1 flox mice (Jackson Laboratory Stock # 008681) (Shroyer et al., 2007). For

Tat-Cre mediated recombination, 5 mM Tat-Cre recombinase (Millipore Sigma) was added to a single-cell suspension of spheroid

epithelial cells in 50% L-WRN CM with 10 mM ROCK Inhibitor (Y-27632; Tocris Bioscience) overnight. The following day, the cells

were pelleted, plated in Matrigel containing 1 mM Jag1 peptide (AnaSpec), and cultured as described above. Single spheroids

were selected, expanded, and then genotyped for recombination of the flox alleles by PCR with the following primers (Bjerknes

et al., 2012): Atoh1-P1 5’-GCGCAGCGCCTTCAGCAACC-3’; Atoh1-P2 5’-GACCTGTCGCCTTCGCTGCC-3’; Atoh1-P3 5’-GCGC

GCTAGGAAGGGCATTTGG-3’.

RNA Sequencing of Uninfected ALI vs Non-ALI Monolayers
RNA Collection and Purification

RNA was harvested from uninfected transwells seven days post IEC seeding on the day of top medium removal (ALI D0), ten days

post IEC seeding with continuous top medium (non-ALI), and ten days post IEC seeding with three days of ALI (ALI D3). To collect

RNA, transwells were scraped in RLT buffer (QIAGEN) + 10 ml/ml 2-mercaptoethanol, transferred to a Qiashredder column (QIAGEN),

spun at max speed for two mins, then stored at -80 �C until further processing. Two transwells were combined per column with two

replicates at each timepoint from two independent experiments for a total of 12 samples. Concurrently, RNA from stem-cell spher-

oids were harvested 3 days post seeding, one well per Qiashredder column, two replicates per experiment from two independent

experiments for a total of four spheroid samples. RNA was extracted and purified from all samples using the RNeasy Mini kit

(QIAGEN) then treated with the DNase DNeasy kit (Thermo Fisher Scientific) to remove residual DNA.

Library Preparation and Sequencing

Total RNA was submitted to the Genome Access Technology Center (Washington University School of Medicine) for library prep and

sequencing. RNA integrity was determined using an Agilent Bioanalyzer and ribosomal RNA was removed using a Ribo-ZERO kit

(Illumina-EpiCentre). mRNA was then fragmented and reverse-transcribed using the SuperScript III RT enzyme (Life Technologies)

and random hexamers. A second strand reaction was performed to yield ds-cDNA, which was then blunt-ended and ligated to

Illumina sequencing adapters. Ligated fragments were amplified for 12 cycles using primers incorporating unique index tags. Two

biological replicates per sample (eight samples total) were multiplexed for single-end, 50 bp reads on a single lane of an Illumina

HiSeq3000. To increase coverage and sample size, the other two biological replicates per sample were independently processed

and sequenced with identical parameters to the first set.

Demultiplexed fastq files were imported into Partek Flow (Partek, Inc.) with a mean of 43,115,081 reads per sample (range:

31,092,799 – 50,130,171 reads). Five bases were trimmed from the 50 end of all reads to increase the average quality score across

samples from 38.92 to 39.45. Trimmed readswere thenmapped to theMusmusculusmm10 genome build (NCBI GenBank assembly

IDGCA_000001635) using the STAR aligner with default parameters (Dobin et al., 2013), and the number of reads per genewas quan-

tified based on themouse Ensembl Transcripts release 90. On average, 88.9 ± 6.1% (mean ± S.D.) of reads per sample weremapped

to the genome with an average coverage of 577.76 reads per gene (13,889 genes total).

Analysis of RNA-Seq Data

For differential expression analyses, we first normalized gene expression values by dividing the number of reads per gene by the total

number of reads per sample to obtain counts per million (CPM) values. These normalized expression values were used in a principal

component analysis to visualize the variation in expression differences between all replicates and sample types. Pair-wise compar-

isons of sample types (4 replicates each) were performed using the Partek gene-specific analysis (GSA) algorithm, which is a
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multimodel approach that determines the best response distribution (e.g. lognormal, Poisson, or negative binomial) for each gene

based on Akaike information criteria (AICc) model selection rather than fitting all data to one distribution. Genes were not included

in the analysis if their mean CPM value over all samples was less than 1. Genes were considered significantly differentially expressed

if the FDR-corrected P value was less than 0.05 and the absolute fold change was greater than 2.

For molecular pathway analyses of day 3 ALI and non-ALI samples, the expression fold change and FDR-corrected P value for all

genes from Partek Flowwere imported into Ingenuity Pathway Analysis (QIAGEN). A core analysis was performed using the Ingenuity

Knowledge Database to identify canonical pathways and gene networks that changed significantly (Z-score < 0.05) under ALI growth

conditions. A separate core analysis was also performed using as input only genes that were significantly differentially expressed

between day 3 ALI and non-ALI (FDR-corrected P value < 0.05, absolute fold change > 2).

C. parvum Oocyst Preparation, Excystation, and Infection of ALI Transwells
Before infection, purified C. parvum oocysts were treated with a 40% bleach solution (commercial laundry bleach containing 8.25%

sodium hypochlorite) diluted in Dulbecco’s Phosphate Buffered Saline (DPBS; Corning Cellgro) for 10 min on ice. Oocysts were then

washed 4 times in DPBS containing 1% (wt/vol) bovine serum albumin (BSA; Sigma) before resuspending to a final concentration of

1x108 oocyst/ml in DPBS with 1% BSA. For some experiments, oocysts were excysted prior to infection by incubating the oocysts

with 0.75% sodium taurocholate (w/v; Sigma) in DPBS at 37�C for 60 min. As indicated, excysted oocysts were filtered through a

membrane with 1 mm pore size (Whatman, VWR International) to remove unexcysted oocysts from sporozoites. Sporozoites were

spun down at 1,250 x g for 3min and then resuspended in 50%CMprior to adding to ALI monolayers. Oocysts or filtered sporozoites

were added to monolayers in 30 ml of 50% CM three days post top medium removal. After 3 hr, monolayers were washed twice with

DPBS to remove extracellular parasites and re-establish the air-liquid interface.

Measuring C. parvum Growth and Host Cell Viability by qPCR
To monitor infection by quantitative PCR, DNA was collected and purified from infected transwells using the QIAamp DNA Mini kit

(Qiagen). Briefly, 100 ml Buffer ATL (provided by kit) was added tomonolayer, then cells were scraped into buffer using a blunt pipette

tip. Lysed cells were incubated in Buffer ATL and proteinase K (both reagents provided by kit) in a 56�Cwater bath for 3-24 hr before

column purification. Purified DNA was eluted in 100 ul Buffer AE then diluted 1:10 with H2O. Two ml of the diluted DNA was used

as template in a qPCR reaction with TB GreenTM Advantage� qPCR premix (Takara, Clontech). Primer sequences targeting C. par-

vum GAPDH were as follows: forward primer 5’-CGGATGGCCATACCTGTGAG-3’ and reverse primer 5’-GAAGATGCGCTGGGAA

CAAC-3’. A standard curve for C. parvum genomic DNA was generated by purifying DNA from a known number of oocysts and

creating a dilution series. Primer sequences targeting mouse GAPDH were as follows: forward primer 5’-GCCATGAGTG

GACCCTTCTT-3’ and reverse primer 5’-GAAAACACGGGGGCAATGAG-3’. A standard curve for mouse genomic DNA was gener-

ated by purifying DNA from a known number of mouse ileal stem cells and creating a dilution series. Reactions were performed on a

QuantStudio 3 Real-Time PCR System (Thermo Fisher) with the following amplification conditions: priming at 95�C for 2 min then 40

cycles of denaturing at 95�C for 10 sec, annealing at 60�C for 20 sec, extension at 72�C for 30 sec, followed by amelt curve analysis to

detect non-specific amplification. Genomic DNA equivalents in each sample were determined by the QuantStudio Design & Analysis

software based on the standard curve samples present on each plate.

Bleaching ALI Monolayers for Microscopy, Animal Infection and In Vitro Passage
ALI monolayers were infected on day 3 post topmedium removal with filtered sporozoites. After 2 hr, monolayers were washed twice

with DPBS. On specified days post infection, monolayers were scraped into cold 40%bleach diluted in DPBS, combined into a single

Eppendorf tube, and bleached on ice for 10-15 min before spinning down at maximum speed for 2 min. The bleach solution was

removed, and the pellet was washed 6 times in 1 ml cold DPBS, repeating the centrifugation step each time, before resuspending

in the desired volume of cold DPBS.

Generating the Pan Cp Polyclonal Antiserum
Antigen for the pan Cp polyclonal antiserum was generated by excysting 8 x 108 bleached oocysts in 0.75% sodium taurocholate at

37�C for 1 hr; excysted oocysts were then freeze-thawed 6 times (3 min on dry ice mixed with ethanol, then 3 min at 37�C). Sample

was sent to Covance (Princeton, N.J, USA) for immunization. One rabbit was injected subcutaneously with 250 mg antigen with

Freund’s Complete Adjuvant (FCA) then boosted three times at 21-day intervals with 125mg antigen in Freund’s Incomplete Adjuvant

(FIA). All immunofluorescent staining experiments used the terminal bleed pan Cp antiserum at a 1:1,000 dilution.

Immunofluorescence Microscopy
Transwells were moved to a new 24-well plate with DPBS in the bottom chamber. Monolayers were fixed by adding 100 ml 4% form-

aldehyde (Polysciences) for 10-15 min. Cells were washed twice with DPBS and then permeabilized and blocked with DPBS con-

taining 1% BSA and 0.1% Triton X-100 (Sigma) for 20 min. Primary antibodies were diluted in blocking buffer for staining: 1B5

and 1A5 (purifiedmousemAbs) were used at 1:500 (Wilke et al., 2018), panCp (rabbit pAb) was used at 1:1000, Crypt-a-gloTM (mouse

mAb, Waterborne, Inc) was used at 1 drop per 2 transwells, and 4D8 (hybridoma supernatant) was used at 1:5 (Wilke et al.,

2018).Cells were incubated with primary antibodies for 60 min at room temperature, washed twice with PBS, then incubated for

60 min at room in secondary antibodies conjugated to Alexa Fluor dyes (Thermo Fisher Scientific) diluted 1:1,000 in blocking buffer.
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Nuclear DNA was stained with Hoechst (Thermo Fisher Scientific) diluted 1:1,000 in blocking buffer for 10 mins at room temperature,

then the membrane was cut out of the transwell insert using a scalpel and mounted on a glass slide with Prolong Diamond Antifade

Mountant (Thermo Fisher Scientific).

For lectin staining of bleached ALI monolayers, bleached material was pipetted onto 0.01% poly-L-lysine (Sigma) treated cover-

slips in a 24-well plate (150-200 ml total volume per well), allowed to settle for 30 min, then fixed and permeabilized as described

above. Coverslips were stained with specified lectin for 30 minutes, followed by pan Cp staining for 60 min and secondary antibody

staining for 60 min, all at room temperature. Lectins used were FITC-conjugated Maclura pomifera (MPA) lectin (E Y Laboratories,

F-3901-1) and FITC-conjugated Ulex europaeus (UEA-1) lectin (E Y Laboratories, F-2201-2), both used at 100 mg/ml.

For EdU staining of replicating DNA, 10 mMEdUwas added tomedium in the bottom chamber of the transwell. After a defined time

period, the transwell was fixed with 4% formaldehyde and permeabilized as described above. EdUwas labeled with the Click-iT Plus

EdU Alexa Fluor 488 (Thermo Fisher Scientific, C10637) or 594 (Thermo Fisher Scientific, C10339) Imaging Kits. Primary and second-

ary antibody staining were done after EdU labeling.

Imaging was performed on a Zeiss Axioskop Mot Plus fluorescence microscope equipped with a 100X, 1.4 N.A. Zeiss Plan

Apochromat oil objective and an AxioCam MRm monochrome digital camera. Images were acquired using Axiovision software

(Carl Zeiss Inc.) and manipulated in ImageJ or Photoshop.

Sectioning and Staining Transwells for Histology
Transwells were treated with 4% formaldehyde or 4% paraformaldehyde in both top and bottom chambers for 20 min at room tem-

perature, washed three times in 70% ethanol, then incubated for 20 min in 70% ethanol (top and bottom chambers). The transwell

membranes were cut from the insert using a scalpel and embedded in 1% agar and then processed for paraffin embedding. For he-

matoxylin and eosin (H&E) staining and immunohistochemistry, five mm transverse sections were cut and processed for staining

following standard procedures of the Digestive Disease Research Core Center (DDRC, Washington University in St. Louis). Sections

were imaged using a Zeiss Observer.D1 inverted wide-field fluorescence microscope with Axiocam 503 dual B/W and color camera.

For immunostaining, slides were deparaffinized, and antigen retrieval was performed with Trilogy. Slides were then stained as

described above using the following antibodies: mouse anti-villin (1:1000, Abcam) with goat anti-mouse IgG Alexa Fluor 488 (Thermo

Fisher Scientific); rabbit anti-Chromogranin A antibody (1:1000, Abcam), rabbit anti-mucin 2 (1:200, SantaCruz), and rabbit anti-Ki-67

(1:400, Abcam) with goat anti-rabbit IgG Alexa Fluor 568 (Thermo Fisher Scientific); goat anti-lysozyme (1:100, SantaCruz) with

donkey anti-goat IgG Alexa Fluor 568 (Thermo Fisher Scientific); and Hoechst for nuclear staining. Images were taken using a 40x

oil immersion objective (N.A. 1.30) on a Zeiss Axioskop 2 equipped for epifluorescence.

Transmission Electron Microscopy
For ultrastructural analyses, ALI cultures were fixed in a freshly prepared mixture of 1% glutaraldehyde (Polysciences, Inc) and 1%

osmium tetroxide (Polysciences, Inc.) in 50 mM phosphate buffer at 4�C for 30 min. Samples were then rinsed multiple times in cold

dH20 prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc.) at 4�C for 3 hr. Transwell membranes were removed

from insert using a scalpel. Following several rinses in dH20, samples were dehydrated in a graded series of ethanol and embedded in

Eponate 12 resin (Ted Pella, Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems, Inc.),

stained with uranyl acetate and lead citrate, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA, Inc.)

equipped with an AMT 8-megapixel digital camera and AMT Image Capture Engine V602 software (Advanced Microscopy

Techniques).

Testing Infectivity of Bleached ALI Cultures in Ifngr1-/- Mice
Female 8- to 10-week-old Ifngr1-/- mice from Jackson Laboratories were orally gavaged with 200 ml of bleached ALI material (equiv-

alent to 4-5 transwells) from either day 1 (n = 4 mice) or day 3 (n = 4 mice) post-infection cultures. After gavaging, mice were housed

separately for the duration of the experiment to avoid cross-infection. One mouse infected with bleached, day 1 ALI culture material

was sacrificed on day 30 post-infection and one mouse infected with bleached, day 3 ALI culture material was sacrificed on day 9

post-infection to collect the small intestine for histology as described above. Mouse pellets were collected every 2-3 days, and the

mice were monitored for signs of sickness. Mouse pellets were kept at -80�C until they were processed for DNA extraction, which

was performed using the QIAamp DNA Stool Kit (QIAGEN). Pellets were moved to Lysing Matrix E 2 ml tubes (MP Biomedicals) and

1.4 ml ASL Buffer (from kit) was added. Samples were homogenized using the FastPrep-24TM 5G High-Speed Homogenizer, then

processed according to the kit’s directions. qPCR was used to quantify the number of C. parvum genomic DNA equivalents present

in the sample using the C. parvum GAPDH primers and cycling protocols as described above.

Cloning of C. parvum CRISPR/Cas9 and Targeting Plasmids
To generate a CRISPR/Cas9 plasmid for use inC. parvum, we used restriction cloning with SacI to insert theC. parvumU6 gene into a

pUC19 vector (New England Biosciences) to create pUC19-CpU6. We then inserted the C. parvum actin promoter (984 bp upstream

of cgd5_3160) upstream of Cas9-NLS-GFP (Jinek et al., 2013; Shen et al., 2014), followed by the C. parvum actin 3’ UTR region

(562 bp downstream of cgd5_3160) into puc19-CpU6 by Gibson assembly (New England Biosciences) to create pACT1:Cas9-

GFP. This plasmid (pACT1:Cas9-GFP) was further modified by inserting the thymidine kinase (TK, cgd5_4440) guide RNA (sgRNA)

and the tracrRNA amplified from the Aldolase_Cas9 plasmid (Vinayak et al., 2015) downstream of the CpU6 promoter using Gibson
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assembly to create pACT1:Cas9-GFP, U6:sgTK (Addgene 122852). The plasmid pACT1:Cas9-GFP, U6:sgUPRT (Addgene 122853)

was generated by replacing the TK sgRNA with a sgRNA targeting the C. parvum uracil phosphoribosyltransferase gene (uprt,

cgd1_1900) using Q5 site-directed mutagenesis (New England Biosciences). The UPRT sgRNA was designed using the Eukaryotic

Pathogen CRISPR guide RNA/DNA Design tool (http://grna.ctegd.uga.edu) searching against the C. parvum IowaII CryptoDB-28

genome to avoid off-target effects.

To generate tk knockout mutants that express GFP, we made a TK-GFP-Nluc-P2A-neo-TK targeting plasmid by first deleting the

Cas9 and NLS sequences from the pACT1:Cas9-GFP plasmid described above using Q5 mutagenesis. This generated a GFP

construct expressed under the C. parvum actin promoter that was then inserted between the 5’ tk homology flank and the

enolase-Nluc-neoR reporter in the previously published C. parvum tk targeting plasmid (Vinayak et al., 2015) by Gibson assembly.

A P2A skip peptide (Doherty et al., 1999; Tang et al., 2016) was inserted between the nanoluciferase and neomycin resistance

CDS by Q5mutagenesis, then the entire construct was subcloned into a high copy-number vector (pUC19) to increase plasmid yield.

To make uprt knockout mutants that express mCherry, we edited the tk targeting construct by swapping the GFP CDSwith mCherry

from pLoxP-DHFR-TS-mCherry (Behnke et al., 2015) using Gibson assembly and replacing the tk homologous flanks with uprt ho-

mologous flanks (800 bp upstream and 913 bp downstream of cgd1_1900) by restriction cloning with XmaI and PstI (New England

Biosciences).

Transfection of C. parvum Sporozoites and Selection in ALI
Oocysts were excysted as described above (1.25 x 107 oocysts per cuvette), then sporozoites were pelleted by centrifugation and

resuspended in SF buffer (Lonza) containing 50 ug targeting plasmid and 30 ug CRISPR/Cas9 plasmid for a total volume of 100 ml.

Sporozoites were then transferred to a 100 ml cuvette (Lonza) and electroporated on an AMAXA 4D-Nucleofector System (Lonza) us-

ing program EH100. Electroporated sporozoites were transferred to 50% L-WRN conditioned medium then added to the top of eight

ALI transwells per cuvette (30 ml volume, approx. 6.25 x 106 sporozoites per transwell). At 8 hpi, top media was removed, transwells

were washed 2X on top with sterile DPBS, and bottom media was replaced with 50% CM + 20 mM paromomycin (Sigma) with

1M NaOH added to bring the pH to �7.4. Bottom media with drug was replaced every two days.

Amplifying Transgenic Parasites in Immunodeficient Mice
Transgenic parasites were drug-selected for 5 – 7 days in ALI transwells with paromomycin in the bottommedium before transferring

to mice for amplification. To prepare samples for gavage, 1 – 2 transwells per mouse were scraped in DPBS, combined in a single

Eppendorf tube, and syringe-lysed five times with a 20-gauge needle, then five times with a 23-gauge needle. Sample volume was

brought up to 200 ml per mouse in DPBS and orally gavaged into 3 – 4 Infgr1-/- mice per transgenic C. parvum line. Mice infected with

same transgenic parasite strain were co-housed but separated by sex. All mice received drinking water with 16 g/L paromomycin for

the entirety of the experiment. Paromomycin dose was based on published protocols for selecting transgenic C. parvum strains

in vivo (Pawlowic et al., 2017; Vinayak et al., 2015). Fecal pellets were collected in microcentrifuge tubes every 3 days for qPCR

(stored at -80�C) and luciferase assays (4�C) and extra fecal pellets were collected and stored at 4�C starting 6 dpi. Mice were eutha-

nized by CO2 asphyxiation once they became overtly ill, immobile, or lost 20% of their body weight.

A second round of amplification was performed by orally gavaging 3 – 4 Nod scid gamma (NSG) mice per transgenic line with a

fecal slurry from the infected Ifngr1-/- mice. Fecal slurries were produced by grinding a single pellet (9 dpi) in DPBS, then centrifuging

at low speed (200 rpm) for 10mins to pellet large particulates. The supernatant was then diluted in DPBS to achieve a concentration of

approx. 1 x 104 oocysts per mouse based on the number of oocysts per mg feces for a separate pellet from the same mouse on the

same day as measured by qPCR. Experimental setup and execution were the same as with Infgr1-/- mice, including selection with

16 g/L paromomycin drinking water for the entirety of the experiment. Fecal pellets for oocyst purification were collected every day

starting 12 dpi and stored at 4�C. For purification, fecal samples from all mice were pooled and oocysts extracted as previously

described (Zhang et al., 2018). Purified oocysts were stored in PBS at 4�C and used within six months of extraction.

Luciferase Assay
All luciferase assays were performed with the Nano-Glo Luciferase Assay kit (Promega). For infected ALI cultures, transwells were

incubated in 100 ml Nano-Glo Luciferase buffer (top compartment only) at 37�C for 15 mins. Cells were then scraped from the trans-

well membranewith a blunt pipette tip and transferred to a single well of a white 96-well plate (Greiner Bio-One). 100 ml of a 25:1 Nano-

Glo Luciferase buffer to Nano-Glo Luciferase substrate mix was added to each well, and the plate was incubated for 3 min at room

temperature. Luminescence values were read on a Cytation 3 Cell Imaging Multi-Mode Reader (BioTek). For mouse fecal pellets in

1.7 ml microcentrifuge tubes, pellets were ground with a pestle, then 3-mm glass beads (Fisher Scientific) and 1 ml fecal lysis buffer

(50 mM Tris pH7.6, 2 mM DTT, 2 mM EDTA pH 8.0, 10% glycerol, 1% Triton X-100 prepared in water) (Pawlowic et al., 2017) were

added to the tube. Tubes were incubated at 4�C for 30 mins, vortexed for 1 min, then spun at 16,000 x g for 1 min to pellet debris.

100 ml supernatant was added to twowells of a white 96-well plate, then substrate addition and luminescence readingwas performed

as above.

Fecal Pellet DNA Extraction, Oocyst Quantification and Insert PCR
For DNA extraction from fecal pellets, each frozen pellet was transferred to a 2 ml tube containing Lysing Matrix E beads (MP

Biomedicals) and 1.4 ml ASL buffer (Qiagen), then homogenized using a FastPrep-24 5G benchtop homogenizer (MP Biomedicals).
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DNA was extracted after homogenization using the QIAamp DNA stool kit (Qiagen) according to manufacturer’s protocols. Oocyst

numbers were quantified using qPCR with the C. parvum GAPDH primers as described above. To check for the successful insertion

of the target sequence into either the tk or uprt locus, PCR was performed on 1 ml purified fecal DNA using Q5 Hot Start High-Fidelity

2Xmaster mix (New England Biosciences) with primers listed in Table S2 at a final concentration of 500 nM each. PCR reactions were

performed on a Veriti 96-well Thermal Cycler (Applied Biosystems) with the following cycling conditions: 98�C for 30 secs, followed by

35 cycles of 98�C for 15 secs, 64�C for 30 secs, and 72�C for 1.5 mins, with a final extension of 72�C for 2 mins. PCR products were

run on 1.5% agarose gel containing GelRed (Biotium, diluted 1:10,000) and imaged on a ChemiDoc MP Imaging System (Bio-Rad).

Crossing Transgenic C. parvum in ALI and Quantifying Recombination Events
ALI transwells were infected three days post media removal with 5 x 104 TK-GFP and 5 x 104 UPRT-mCh oocysts (bleached and

excysted as described above) in 30 ml 50% L-WRN conditioned medium added to the top compartment. Approximately six hpi, par-

asites were removed, and the top compartment was washed twice with sterile DPBS. At 1, 3 and 5 dpi, transwells were fixed in 4%

formaldehyde and stained for immunohistochemistry as described above using polyclonal rabbit anti-GFP (Thermo Fisher Scientific)

with goat anti-rabbit IgG Alexa Fluor 488 secondary and a monoclonal rat anti-mCherry 16D7 (Thermo Fisher Scientific) with goat

anti-rat IgG Alexa Fluor 568. All antibodies were diluted 1:1000 in PBS + 0.1% Triton-X + 1%BSA. To quantify recombinant parasites

expressing both GFP and mCherry, fields of mixed red and green parasites were imaged at random using a 63X oil immersion objec-

tive on a Zeiss Axioskop 2 equipped for epifluorescence. Red and green channels were then merged in ImageJ (Schindelin et al.,

2012), and the number of yellow parasites per field was recorded. 13 – 26 fields were imaged from 1-2 transwells per experiment,

and the experiment was performed twice.

To determine the frequency of oocysts produced from selfing versus crossing events, transwells were infected with TK-GFP and

UPRT-mCh oocysts as described above. Three days p.i., 4 – 6 infected transwells were scraped and bleached as described above.

Bleached material was used to infect two coverslips that had been plated with 4 x 105 HCT-8 cells (ATCC CCL-244) 24 hrs prior to

infection. Approximately 16 hpi with the bleached ALI material, HCT-8 coverslips were fixed and stained as described above with

rabbit anti-GFP and goat anti-rabbit IgG Alexa Fluor 488; rat anti-mCherry and goat anti-rat IgG Alexa Fluor 568; and mouse mono-

clonal antibody 1E12 and goat anti-mouse IgG Alexa Fluor 647, which detects all intracellular stages ofC. parvum (Wilke et al., 2018).

Oocysts from the bleachedmaterial were plated at a low enoughMOI that parasites originating from a selfing event versus a crossing

event could be distinguished by the formation of parasite ‘‘clusters’’ containing parasites of all one color (selfing event) or with more

than one color (crossing event). For clusters with parasites of more than one color, the number of parasites expressing GFP only

(green), mCherry only (red), both reporters (yellow), or no reporter (‘‘wild type’’ identified by staining with 1E12) per cluster was re-

corded. The number of each type of parasite was summed across all clusters per coverslip and expressed as a ratio of the total num-

ber of parasites counted. Data depicts results from two independent experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in GraphPad Prism 7 (GraphPad Software) unless otherwise specified. Non-parametric tests

were used when available if data did not pass a Shapiro-Wilk test for normality or sample sizes were too low. A Mann Whitney U test

was used when comparing the mean of two groups, while a Kruskal-Wallis test with a Dunn’s multiple comparisons test was used

when comparing the means of one variable across three or more groups. When comparing the means of two or more groups across

time, we used a two-way ANOVA corrected for multiple comparisons using either the Sidak method if means from two groups at the

same time point were compared to each other or the Dunnett method if means for all time points were compared to the mean of the

earliest time point. Statistical parameters for each experiment including statistical test used, technical replicates (n), independent

biological replicates (N) and standard error are reported in the figure legends and associated method details.

Blinding and Inclusion/Exclusion
Samples were not blinded for analysis although they were repeated independently as stated in the text and figure legends. All sam-

ples were included in the analysis with one exception: In the RNA-seq studies, one of the spheroid samples had a high percentage of

readsmap to intergenic regions (38.03% of reads) indicative of DNA contamination, and hence it was removed from further analyses.

DATA AND SOFTWARE AVAILABILITY

Raw RNA-seq reads and analyzed data generated in this study have been deposited in the Gene Expression Omnibus database un-

der accession numbersGSM3554371-GSM3554385. The plasmids pACT1:Cas9-GFP, U6:sgUPRT and pACT1:Cas9-GFP, U6:sgTK

have been submitted to Addgene and accession numbers are pending.
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Figure S1 Development of ALI cultures for C. parvum cultivation.  Related to Figure 1. 
(A) Immunofluorescence staining of intestinal epithelial cell lineages in ALI monolayers over 

time. Mouse intestinal epithelial cells (mIECs) propagated as spheroids were plated on 

transwells (2 x 105 cells per transwell) and cultivated under ALI conditions. At the indicated 

times post top medium removal, ALI cultures were fixed, embedded in paraffin, and sectioned. 

Immunofluorescence staining was performed on de-paraffinized sections with mouse anti-villin 

(stains the apical brush border) followed by goat anti-mouse IgG Alexa Fluor 488; rabbit anti-

chromogranin A (stains enteroendocrine cells), rabbit anti-Ki-67 (stains replicating cells), and 

rabbit anti-mucin 2 (stains goblet cells) followed by goat anti-rabbit IgG Alexa Fluor 568; and 

goat anti-lysozyme (stains Paneth cells) followed by donkey anti-goat IgG Alexa Fluor 568; and 

Hoechst for nuclear staining. Scale bars = 20 µm. 
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(B) Transmission electron micrograph of mIECs grown on a transwell under ALI conditions for 6 

days. The transwell membrane at the base of the cell monolayer is visible in the upper left (M). 

Epithelial cells displayed a typical columnar appearance with brush border (black arrows) and 

apical junctions (*) at the apical surface. Scale bar = 5 µm. 

(C) Growth of C. parvum in ALI cultures. mIECs grown on transwells under ALI conditions were 

infected 3 days post top medium removal with 2 x 105 unfiltered C. parvum oocysts. Graph 

depicts qPCR measurement of C. parvum and mouse GAPDH equivalents (eq) from the same 

experiment. Mean ± S.D. of two transwells per time point. Replicate of experiment shown in 

Figure 1C. 

(D) Immunofluorescence staining of oocyst wall forming bodies. ALI monolayers were infected 

with 1 µm-filtered C. parvum sporozoites 3 days post-medium removal and cultured for 7 days 

before processing for IFA. Monolayers were stained with mouse mAb OW50 followed by goat 

anti-mouse IgG Alexa 488; rabbit anti-Toxoplasma RH followed by goat anti-rabbit IgG Alexa 

568; and Hoechst for nuclear staining. Scale bars = 5 µm. 
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Figure S2 Individual channels for images of C. parvum asexual life cycle stages in ALI 
cultures.  Related to Figure 1D. 
(A-G) Infected ALI cultures were fixed and stained with Pan Cp followed by goat anti-rabbit IgG 

Alexa Fluor 568 to visualize all stages of C. parvum development. 

(A) Trophozoites stained with mouse mAb 1B5, which recognizes the actin pedestal 

surrounding the parasite, followed by goat anti-mouse IgG Alexa Fluor 488.  

(B) Type I meronts stained with mouse mAb 1A5, which recognizes the apical end of the eight 

mature merozoites, followed by goat anti-mouse IgG Alexa Fluor 488.  

(C) Type II meront stained with mouse mAb 1A5, which recognizes the apical end of the four 

mature merozoites, followed by goat anti-mouse IgG Alexa Fluor 488. Hoechst staining confirms 

the presence of four nuclei.  

(D) Microgamont stained with Hoechst to show the many small nuclei. 

(E) Early macrogamonts display oocyst wall-forming bodies visualized with FITC-conjugated 

Crypt-a-gloTM. 

(F-G) In late stage macrogamonts, oocyst wall-forming bodies coalesce into a single ring as 

visualized with FITC-conjugated Crypt-a-gloTM.    

Scale bars = 3 µm  
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Figure S3 Effects of ALI growth conditions and time of infection post medium removal on 
C. parvum growth. Related to Figure 2.   
(A-B) Comparison of C. parvum growth in (A) transwell cultures infected three days post 

medium removal (ALI) vs. transwells infected at the same time but with continuous top medium 

(Non ALI) or in (B) ALI cultures infected on day 0 (ID0) vs day 3 (ID3) post-medium removal. All 

transwells were infected with 2 x 105 unfiltered oocysts. Left graphs depict C. parvum genomic 

DNA equivalents (Cp gDNA eq.) and right graphs depict mouse genomic DNA equivalents 

(mouse gDNA eq.) from the same respective experiment as measured by qPCR of the 

respective GAPDH genes. Means ± S.D. from two transwells per time point. Replicate 

experiments of Figure 2A and 2B, respectively. Statistical analysis was conducted using two-

way ANOVA corrected for multiple comparisons using the Sidak method, ** P < 0.01, *** P < 

0.001, **** P < 0.0001. 
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Figure S4 Analysis of major pathway differences in transcriptomes of ALI vs non-ALI 
cultures.  Related to Figure 3. 
(A-B) Bar chart of the percentage of genes upregulated (red) or downregulated (green) in 

biological pathways significantly enriched for differentially-expressed genes from day 3 ALI 

versus non-ALI samples when canonical pathway analysis is performed in Ingenuity Pathway 

Analysis (IPA) using (A) expression values for all genes as input or (B) only differentially 

expressed genes (false discovery rate < 0.05, absolute value fold change > 2) as input.  In A, 

the major pathways identified by IPA analysis included increased expression of genes 

controlling protein translation (e.g. eIF2, tRNA, eIF4), signaling (e.g. mTOR, sirtuin signaling), 

cell cycle and replication (e.g. cell cycle, G2/M checkpoint, G1/S checkpoint, ATM signaling), 

and changes in metabolism (e.g. oxidative phosphorylation, adipogenesis, glutaryl coA 

degradation). In B, in addition to identifying similar changes in metabolism and cell proliferation 

noted above, induction of genes encoding nuclear receptor hormones (e.g. RAR, AHR, RXR, 

FxR, RxR) was seen in day 3 ALI cultures. Numbers in bold above each pathway indicates the 
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number of total genes in that pathway. Pathway significance cutoffs are P < 0.00001 for (A) and 

P < 0.001 for (B). 
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Figure S5 Validation of Atoh1-deficient spheroid line. Related to Figure 3.  
(A) Representative images of ethidium bromide-stained agarose gels showing PCR genotyping 

products from the Atoh1-P2 and Atoh1-P3 (top) and Atoh1-P1 and Atoh1-P2 (bottom) primer 

combinations. Band sizes for the DNA ladder and expected PCR products are indicated in base 

pairs (bp). Positive control reactions used genomic DNA template from untreated Atoh1flox/flox and 

Atoh1WT/WT spheroids or bulk populations of Tat-Cre-treated spheroids (Bulk spheroid 1 & 2), 

which contained the Flox/Flox, Flox/Δ, and Δ/Δ genotypes. NTC, no template control. Six clonal 

jejunal spheroid lines are shown. Genotypes were determined to be as follows: Clones 1-4 = 

Flox/Flox; Clone 5 = Δ/Δ; Clone 6 = Flox/Δ. 

(B) Whole-mount images of ALI transwells plated with clonal Atoh1flox/flox spheroids (left) or 

Atoh1Δ/Δ spheroids (right). Transwells were fixed and stained 7 days post media removal with an 

FITC-conjugated UEA-1 lectin (detects mucus-secreting goblet cells) and Hoechst DNA stain. 

Scale bar = 50 µm 
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Figure S6 Infectivity of oocysts produced in ALI cultures.  Related to Figure 5 
(A-D) ALI transwell cultures were infected with 1 µm-filtered sporozoites. On the indicated days 

post infection, transwells were bleached, washed and (A) adhered to PLL-coated coverslips, (B-

C) gavaged into Ifngr1-/- mice or (D) used to infect fresh ALI transwells. 

(A) Detection of oocysts in ALI cultures treated with bleach. Coverslips with day 1 or day 3 

bleached material were stained with Pan Cp followed by goat anti-rabbit Alexa Fluor 568 and 

Crypt-a-gloTM directly conjugated to FITC. Each data point is the number of oocysts in a 

separate field from a single experiment. Replicate experiment of Figure 5A. Data was analyzed 

using a Mann-Whitney U test. *** P < 0.001.  

(B) Survival curves of the mice infected with day 1 versus day 3 bleached material. Data was 

analyzed using the log-rank (Mantel-Cox) test. ** P < 0.01.  

(C) Number of C. parvum oocysts per fecal pellet (one pellet per mouse) as measured by 

qPCR. The gray line represents the mean value of both groups for day 1, the dotted lines 

denote the standard deviations. Data was analyzed using a two-way ANOVA comparing the 

mean of each group across all time points, corrected for multiple comparisons using the Sidak 

method *** P < 0.001. 

(D) Passage of bleached ALI monolayers. Naïve ALI monolayers were infected with day 3 

bleached material at a 1:1, 1:2 or 1:4 old to new transwell passage ratio or with 104 calf-derived 

oocysts. Total C. parvum genome eq. per transwell was measured by qPCR. Data plotted as 

mean ± S.D. from two transwells per timepoint. Replicate experiment of Figure 5F.  
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Figure S7 Amplification of transgenic parasites in immunocompromised mice. Related to 
Figure 6.   
(A) Relative luminescence of C. parvum parasites 8 or 24 hrs after transfection with an Nluc-neo 

plasmid either with (dark gray) or without (light gray) the P2A skip peptide inserted between the 

Nluc and neo coding sequences.  

(B) Following selection for transgenic parasites in ALI cultures, oocysts were amplified by 

passage in immunodeficient mice. Infected transwells were syringed lysed at day 4-6 post-

infection and gavaged into Ifngr1-/- mice treated with paromomycin in the drinking water (16 g/L). 

A second round of amplification was conducted in NOD Scid gamma (NSG) immunodeficient 

mice. Oocysts were purified from NSG fecal pellets. 

(C) Diagram of the TK-GFP-Nluc-P2A-neo-TK targeting plasmid and its insertion into the tk 

locus (cgd5_4440) when transfected with a CRISPR/Cas9 plasmid containing a TK gRNA.  

(D) The number of oocysts per mg of feces was measured by qPCR. Each data point 

represents a single pellet and each connecting line represents an individual NSG mouse 

infected with TK-GFP-Nluc-P2A-neo-TK parasites.  

(E) PCR confirmation that TK-GFP-Nluc-P2A-neo-TK oocysts amplified in mice have the correct 

insert and lack the tk gene.  

(F) Diagram of the UPRT-mCh-Nluc-P2A-neo-UPRT targeting plasmid and its insertion into the 

uprt locus (cgd1_1900) when transfected with a CRISPR/Cas9 plasmid containing a UPRT 

gRNA.  

(G) The number of oocysts per mg of feces was measured by qPCR. Each data point 

represents a single pellet and each connecting line represents an individual NSG mouse 

infected with UPRT-mCh-Nluc-P2A-neo-UPRT parasites. 

(H) PCR confirmation that UPRT-mCh-Nluc-P2A-neo-UPRT oocysts amplified in mice have the 

correct insert and lack the uprt gene.  
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Table S1 Meiosis genes in C. parvum. Related to Figure 6 
 

Meiosis 
Genes 

C. parvum 
Gene ID 

CryptoDB gene 
annotation 

Annotated 
homolog as 

query for blastp 

blastp 
query 

coverage 

blastp 
E-

value 

blastp 
% 

identity 
Spo11 cgd8_1350 Spo11/ DNA 

topoisomerase 6 
subunit A 

P. falciparum 
PF3D7_1217100 

86% 1E-39 32% 

Mnd1 cgd1_840 Meiotic nuclear 
division protein 1 

P. falciparum 
PF3D7_1461500 

30% 3E-08 45% 

Dmc1 cgd7_1690 Rad51/DMC1/RadA 
DNA repair protein 

P. falciparum 
PF3D7_0816800 

100% 4E-173 65% 

Rad51 cgd5_410 Rad51 T. gondii 
TGME49_272900 

91% 0 73% 

Rec8/rad21 cgd8_1020 Rad21/Rec8-like     
Rec8/rad21 cgd7_290 Rad21/Rec8-like     
Hop1 cgd5_1750 HORMA domain 

containing protein 
S. cerevisiae 
Hop1p 

39% 6E-22 30% 

Hop2 cgd2_510 Homologous-pairing 
protein 2 

S. cerevisiae 
Hop2p 

28% 3E-06 35% 

Msh2 cgd8_3950 MutS-like ABC 
Atpase 

P. falciparum 
PF3D7_0706700 

89% 4E-140 33% 

Msh6 cgd8_370 DNA mismatch 
repair protein MutS 
family domain 
containing protein 

P. falciparum 
PF3D7_0505500 

73% 0 38% 

Msh4 absent N/A     
Msh5 absent N/A     
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