Identification of a pro-angiogenic functional role for FSP1 positive fibroblast subtype in wound healing

Sarika Saraswati^{1*}, Stephanie MW Marrow¹, Lester A Watch¹, and Pampee P Young^{1.2*}

- 1. Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- 2. American Red Cross, National Headquarters, Washington, D.C

Vanderbilt University Medical Center

1161 21st Ave S.

MCN C2217

Nashville TN, USA 37232-2561

*Corresponding Authors: pampee.young@redcross.org; sarika.saraswati@vanderbilt.edu Supplementary Figure 1.

Supplementary Figure 1. FSP1 is expressed by endothelial, hematopoietic, as well as non-endothelial/hematopoietic cell populations post-infarct. A. Representative micrograph of the confocal analysis of FSP1 and CD45 co-immunostaining from murine heart 8 days post myocardial infarction (MI). FSP1 detected by Cy3 (red) fluorescence and CD45 by 488 (green). Arrow depicts the CD45 positive cells (hematopoietic cells) co-stained with FSP1 antibody. **B.** Representative dot plot of freshly isolated cells from FSP1-GFP mice left ventricle 10 days after MI. GFP+ fibroblasts were gated as GFP+/CD45-APC+, GFP+/CD31-PE+, GFP+/CD45-APC+/CD31-PE+ and GFP+/CD45-APC+/APC-/CD31-PE- (n=3).

Supplementary Figure 2.

Supplementary Figure 2. Post-infarct cardiac FSP1⁺ fibroblasts are not recruited from the bone marrow but are activated at the site of injury. A (left panel). Flow cytometric evaluation of freshly isolated cells from FSP1-GFP mice left ventricle 10 days after MI represented by dot plot. B (left panel). Flow cytometric evaluation of freshly isolated cells from C57BI/6) FSP1-GFP mice left ventricle 10 days after MI represented by dot plot. GFP⁺ cells were gated as GFP⁺/CD45-APC⁺, GFP⁺/CD31-PE⁺, and GFP⁺/CD45-APC⁻/CD31-PE⁻. A and B (right panel).

Quantification graphed as the % distribution of GFP⁺ CD45^{+/-} CD31^{+/-} cells before (A) and after BMT (B).

Supplementary Figure 3.

Supplementary Figure 3. Flow cytometric evaluation of freshly isolated cells from α SMA-GFP mice hearts representing % of α SMA expressing cells co-expressing GFP protein and GFP expressing cells co-expressing α SMA protein prior to MI and 4 and 10 days following MI (n=3).

Supplementary Figure 4.

Supplementary Figure 4. (A, B, and C) Representative gating scheme of FACS analyses demonstrating %GFP+ live cells co-expressing CD31, CD45, or AN2 from αSMA-GFP mice uninjured hearts (B) or injured hearts (A) 10 days following myocardial infarction (MI). Atleast 5 separate isolations were done from individual mouse hearts.

The cells were freshly isolated and not pre-plated prior to analysis. The graphical quantification of the data is presented (C).

Supplementary Figure 5.

Supplementary Figure 5. (A, B, and C) Representative gating scheme of FACS analyses demonstrating %GFP+ live cells expressing CD31 or CD45 markers from FSP1-GFP mice uninjured hearts (B) or injured hearts (A) 10 days following myocardial infarction (MI). GFP+/CD31-/CD45- cells were then analyzed for the expression of pericyte marker AN2. Atleast 5 separate isolations were done from individual mouse

hearts. The cells were freshly isolated and not pre-plated prior to analysis. The graphical quantification of the data is presented (C).

Supplementary Figure 6.

Supplementary Figure 6. (A and B) Gating strategy used for cell sorting. (A) Gating strategy to FACS sort GFP+ live cells from αSMA-GFP mice injured hearts10 days following myocardial infarction (MI). (B) Gating strategy to FACS sort GFP+/CD31-/CD45- live cells from FSP1-GFP mice injured hearts 10 days following MI. Atleast 5 separate isolations were done from 4-5 mouse hearts.

Supplementary Figure 7.

Supplementary Figure 7. Positive control for CD45 and CD31 immunostaining. Representative micrograph of immunostained cells detecting CD45 and CD31 by 488 (green) and DAPI (blue) for nuclear staining. Endothelial and hematopoietic cells (P0) were isolated from FSP1-GFP mice hearts 10 days after MI and cytospun on slides for immunostaining. (n=3).

Supplementary Figure 8.

Supplementary Figure 8. Uninjured, FSP1, and aSMA FBs are ultrastructurally similar. **A.** FSP1 and α SMA expressing fibroblasts were isolated from mice 10 days following MI. Uninjured fibroblasts and endothelial cells were isolated from C57Bl/6 mice. Electron microscopy of α SMA, FSP1, and uninjured cardiac fibroblasts (FB), and endothelial cells (P0-P1) from mice. Scale bar=100 nM; 67000X magnification. Organelles including golgi apparatus (Golgi), mitochondria (Mito), rough endoplasmic reticulum (ER), cytoplasm (Cyt) and nucleus (Nuc) can be identified. **B.** Relative fold change of *Col1* α 1 (n=7 for uninjured, n=6 for FSP1⁺, and n=9 for α SMA⁺ fibroblasts), *Col3* (n=2 for uninjured, n=2 2for FSP1⁺, and n=3 for α SMA⁺ fibroblasts), and *Pdgfra*1, (n=2 for uninjured, n=3 for FSP1⁺, and n=3 for α SMA⁺ fibroblasts), and *Pdgfra*1, (n=2 for uninjured, n=3 for α SMA⁺ fibroblasts), real uninjured by real uninj

time RT-PCR in cultured uninjured, FSP1, and α SMA fibroblasts (P3-P5); ^{ns}p>0.05, *p <0.05, and ***p <0.0001 was calculated by one way ANOVA, n=3 experiments were performed; bar represent mean ±SD.

Supplementary Figure 9.

Supplementary Figure 9. FSP1⁺ and α SMA⁺ fibroblasts are responsive to profibrotic cytokines. FSP1 and α SMA expressing fibroblasts were isolated from mice 10 days following MI. Cells were cultured and treated with treated with TGF β or WNT3A proteins for 24 hours in 2% serum (P3-P5). Immunoblot analysis of COL1 α 1, pSMAD2, SMAD2, pLRP6, and LRP6 in FSP1 and α SMA fibroblast cell lysates. β -actin was used as loading control (n=3).

Supplementary Figure 10.

Supplementary Figure 10. Uninjured fibroblasts express FSP1 after treatment with different growth factors. Relative expression of *Fsp1* in uninjured fibroblasts (P3) untreated (n=4) and treated with WNT3A (50 ng/ml; n=2), TGF β (10ng/ml; n=4), or FGF-2 (25 ng/ml; n=3), PDGFBB (1:1000; n=2) for 24 hours measured by semi-quantitative RT-PCR. ***p <0.0001 was calculated by one way ANOVA; bar represent mean ±SD.

Supplementary Figure 11.

Supplementary Figure 11. Expression profile of angiogenesis-related proteins in FSP1 and α SMA fibroblasts. Immunoblot for angiogenesis-related proteins present in 300 µg of FSP1 and α SMA fibroblast cell lysates cultured for 72 hours (P3-P5) in 0.5% serum. Mouse angiogenesis proteome profiler array was used to perform the assay (n=2 technical replicates). Corresponding pixel density of each spot is provided in Supplementary Table 1.

Supplemenary Table 1.

Coordinate	Analyte/Control	FSP1 Lysate	αSMA Lysate	
A1	Reference Spot	145869.5	147160	
A2	Reference Spot	147185	144083	
A3		16	14	
A4		0	4	
A5	ADAMTS1	16363	4705	
A6	ADAMTS1	16726	2764	
A7	Amphiregulin	3	15	
A8	Amphiregulin	6	2	
A9	Angiogenin	10	11	
A10	Angiogenin	40	6	
A11	Angiopoietin-1	560	3	
A12	Angiopoietin-1	292	2	
A13	Angiopoietin-3	181	2	
A14	Angiopoietin-3	47	0	
A15	Coagulation Factor III	46945	47004	
A16	Coagulation Factor III	47437	46869	
A17	CXCL16	13635	93	
A18	CXCL16	14118	15	
A19		66	4	
A20		3	0	
A21	Reference Spot	140365	148495	
A22	Reference Spot	139409	149055	
B1		44	0	
B2		17	155	
B3	Cyr61	99674	104713	
B4	Cyr61	99376	98541	
B5	DLL4	921	53	
B6	DLL4	3	4	
B7	DPPIV	2456	29696	
B8	DPPIV	2452	29338	
B9	EGF	2	0	
B10	EGF	8	0	
B11	Endoglin	33618	9835	
B12	Endoglin	30026	9260	
B13	Endostatin/Col XVIII	5970	104	
B14	Endostatin/Col XVIII	5108	25	
B15	Endothelin-1	57748	6261	
B16	Endothelin-1	60339	6793	
B17	FGF acidic	1956	2411	

B18	FGF acidic	1438	3467
B19	FGF basic	13618	2037
B20	FGF basic	15808	2309
B21		35	0
B22		1	0
C1		355	0
C2		76	39
C3	KGF	6082	585
C4	KGF	7208	1297
C5	Fractalkine	48287	37949
C6	Fractakine	46467	36728
C7	GM-CSF	35	2
C8	GM-CSF	0	0
C9	HB-EGF	3901	9864
C10	HB-EGF	3482	9245
C11	HGF	545	1374
C12	HGF	393	986
C13	IGFBP-1 46		0
C14	IGFBP-1 208		1
C15	IGFBP-2	70810	37264
C16	IGFBP-2	66097	35377
C17	IGFBP-3	47282	12669
C18	IGFBP-3	44843	10439
C19	IL-1a	42	7
C20	IL-1a	77	5
C21	IL-1b	3	11
C22	IL-1b	0	0
D1		52	1
D2		0	0
D3	IL-10	511	40
D4	IL-10	807	55
D5	IP-10	19444	46360
D6	IP-10	19376	44902
D7	KC	180	14
D8	KC	112	98
D9	Leptin	36	1
D10	Leptin	109	4
D11	MCP-1	67828	62634
D12	MCP-1	66127	61391
D13	MIP-1a	33	3
D14	MIP-1a	27	5
D15	MMP-3	37937	13

D16	MMP-3	37605	15
D17	MMP-8	149	4
D18	MMP-8	54	2
D19	MMP-9	24	5
D20	MMP-9	90	138
D21	NOV	48329	49160
D22	NOV	48824	48128
E1		39	0
E2		0	28
E3	Osteopontin	3256	29137
E4	Osteopontin	2899	29398
E5	PD-ECGF	115	3
E6	PD-ECGF	76	4
E7	PDGF-AA	22759	6240
E8	PDGF-AA	23113	6338
E9	PDGF-AB/PDGF-BB	8401	10118
E10	PDGF-AB/PDGF-BB	8623	9960
E11	Pentraxin-3	37687	22722
E12	Pentraxin-3	37000	21366
E13	Platelet Factor 4	513	19
E14	Platelet factor 4	293	2
E15	pIGF-2	2561	1605
E16	PIGF-2	3098	1140
E17	Prolactin	18	3
E18	Prolactin	29	7
E19	Proliferin	421	4
E20	Proliferin	516	24
E21		1	0
E22		0	0
F1	Reference Spots	122164	132011
F2	Reference Spots	110704	121897
F3	SDF-1	113140	85949
F4	SDF-1	112142.5	94331
F5	Serpin E1	85047	104152
F6	Serpin E1	95081	100574
F7	Serpin F1	5866	4868
F8	Serpin F1	6062	4478
F9	Thrombospondin-2	24931	63
F10	Thrombospondin-2	25168	6
F11	TIMP-1	24918	22589
F12	TIMP-1	24753	23302
F13	TIMP-4	8	4

F14	TIMP-4	-1	14	
F15	VEGF	0	15	
F16	VEGF	0	14	
F17	VEGF-B	432	7	
F18	VEGF-B	321	0	
F19	Negative Control	0	0	
F20	Negative Control	5	0	

Supplementary Table 1. Pixel density of the immunoblot of angiogenesisrelated proteins present in FSP1+ and α SMA+ fibroblast cell lysates identified by mouse angiogenesis proteome profiler array (n=2).

Supplementary Table 2.

Oligo Name	Forward (5'-3')	Reverse (5'-3')		
Alpha SMA	CAGGCATGGATGGCATCAATCAC	ACTCTAGCTGTGAAGTCAGTGTCG		
Angpt1-1	CACGTGGAGCCGGATTTCT	ATCTGGGCCATCTCCGACTT		
Col1α1	GCCAGATGGGTCCCCGAGGT	GGGGGTCCAGCAGCACCAAC		
Collagen 3	GAAAAAACCCTGCTCGGAATT	GGATCAACCCAGTATTCTCCACTCT		
Fgf1-1	AGGAAACGTCCACAGTCAGG	CTCCTACGCCCACTCTTCAG		
Fn-1	CGAGGTGACAGAGACCACAA	CTGGAGTCAAGCCAGACACA		
Fsp1	CGGTTACCATGGCAAGACCC	TGTGCGAAGAAGCCAGAGTAAG		
Gremlin	AGCAAAAGGGTTTTCCTGAT	AATGGTCAGCATTTCACCCT		
AN2/NG2-1	CCTCAGAGCCCTATCTCCACGTAGC	CATCACCAAGTAGCCAGCGTTCG		
PDGFRα	CAAACCCTGAGACCACAATG	TCCCCCAACAGTAACCCAAG		
VEGF-A-2	AAAGGCTTCAGTGTGGTCTGAGAG	GGTTGGAACCGGCATCTTTATC		
VEGF-B-2	TTAGAGCTCAACCCAGACACCTGTA	CCTGTGAAGCAGGGCCATAA		
18S	CGCCGCTAGAGGTGAAATTCT	CGAACCTCCGACTTTCGTTCT		

Supplementary Table 2. Primers used to analyze the gene expression changes by quantitative real time RTPCR analysis.

Supplementary Table 3. Tabular presentation of flow cytometry data at baseline and 10 days following myocardial injury in αSMA-GFP mice hearts.

Freshly isolated	GFP+ from live	GFP+/AN2+	GFP+/AN2-	GFP+/CD31+	GFP+/CD45+	GFP+/CD31-/CD45-
cardiac cells	cells					
asma GER MI (n=5)	15.20%	0.24%	99.40%	2.98%	3.78%	91.60%
$u_{\text{SIMA-GFF}}$ with (II=3)	8.79%	0.03%	99.40%	5.05%	4.35%	89.10%
	21.10%	0.09%	99.60%	2.87%	4.76%	91.20%
	15.30%	0.30%	99.10%	3.10%	2.18%	92.80%
	10.50%	0.11%	99.60%	4.98%	0.84%	92.00%
Average	14.18%	0.15%	99.42%	3.80%	3.18%	91.34%
Std Dev	0.0482	0.0011	0.0020	0.0112	0.0164	0.0138
αSMA-GFP Uninjured	0.02%	0%	100%	11.10%	0%	88.90%
heart (n=6)	0%	0%	0%	0%	0%	0%
	0%	0%	0%	0%	0%	0%
	0%	0%	0%	0%	0%	0%
	9.21E-05	0%	100%	25.00%	0%	75.00%
	0.03%	0%	100%	0%	30.00%	70.00%
Average	0.01%	0.00%	50.00%	6.02%	5.00%	38.98%
Std Dev	0.0001	0.0000	0.5477	0.1031	0.1225	0.4315

Supplementary Table 3. Flow cytometric evaluation of %GFP+ live cells present in the αSMA-GFP mice hearts at baseline (uninjured; n=6; bottom) or 10 days following myocardial infarction (MI; n=5; top). Percentage of GFP+ cells expressing markers of hematopoietic cells (CD45), endothelial cells (CD31) and pericytes/vascular smooth muscle cell marker (AN2) were also evaluated in both uninjured and injured hearts.

Supplementary Table 4. Tabular presentation of flow cytometry data at baseline and 10 days following myocardial injury in FSP1-GFP mice hearts.

Freshly isolated	GFP+ from	GFP+/CD31+	GFP+/CD45+	GFP+/CD45-	GFP+/CD31-/CD45-
cardiac cells	live cells			/CD31-	/AN2+
ESP1 CED MI (n-5)	17.00%	5.04%	8.99%	12.20%	0.82%
	12.60%	8.29%	12.00%	12.40%	0.29%
	10.60%	11.10%	12.80%	19.00%	1.32%
	5.31%	7.72%	18.40%	11.40%	0.15%
	14.80%	8.75%	11.30%	17.50%	0.10%
Average	12.06%	8.18%	12.70%	14.50%	0.54%
Std Dev	0.0447	0.0218	0.0349	0.0348	0.0052
ESP1-GEP Uninjured					
hoart $(n-5)$	0%	0%	0%	0%	0%
neart (n=5)	0.02%	0%	0%	0%	0%
	0%	0%	0%	0%	0%
	0.33%	19.70%	18.00%	14.00%	0%
	0.04%	28.00%	32.00%	0%	0%
Average	0.08%	9.54%	10.00%	2.80%	0.00%
Std Dev	0.0014	0.1339	0.1456	0.0626	0.0000

Supplementary Table 4. Flow cytometric evaluation of %GFP+ live cells present in the FSP1-GFP mice hearts at baseline (uninjured; n=5; bottom) or 10 days following myocardial infarction (MI; n=5; top). Percentage of GFP+ cells expressing markers of hematopoietic cells (CD45) and endothelial cells (CD31) were also evaluated. Gated GFP+/CD45-/CD31- cells were analyzed for the presence of pericytes/vascular smooth muscle cell marker (AN2) in both uninjured and injured hearts.