Table S1. Various parameters used in the metformin PBPK model and reported *in vitro* Km

 values for transporters of metformin

Parameter (unit)	Value	Reference
Physicochemical		
рКа	12.3	1
logP	-1.25	1
Absorption-related		
FaFg*		
250 mg	0.84	2, 3
1,500 mg	0.57	3
Distribution-related		
f _{u,met}	1	4
K _{p,adipose}	0.27	4
K _{p,muscle}	2.09	4
K _{p,skin}	1.46	4
k _{in,RBC} (/h)	0.006	5
k _{out,RBC} (/h)	0.02	5
Liver-related		
membrane potential (mV)	- 40	6
CL _{int,all} (L/h)	10.7**	3
R _{dif}	0.186	7
β_{liver}	0.5 (fixed)**	-
R _{OCT1, inf/eff}	1.32	8
Kidney-related		
P _d (m/h)	1.8*10 ⁻⁵	9
R _{OCT2,inf/eff}	1.32	8

Parameters used in the metformin PBPK model

in vitro Km (μ M) values for metformin

Transporter	geometric mean	range	Reference
OCT1	1,470	1,470	10
OCT2	1,178	810-1,465	10, 11, 12
MATEs	740	283-1,980	13, 14, 15

 k_a , absorption rate constant; k_{trans} , transit rate constant; FaFg, intestinal availability; $f_{u,met}$, unbound metformin fraction in plasma; $K_{p,adipose}$, adipose/plasma concentration ratio; $K_{p,muscle}$, muscle/plasma centration ratio; $K_{p,skin}$, skin/plasma concentration ratio; $k_{in,RBC}$, plasma-to-erythrocyte partitioning rate constant; $k_{out,RBC}$, erythrocyte-to-plasma partitioning rate constant; CLint,all, overall hepatic intrinsic clearance ; R_{dif} , passive-to-active clearance ratio; $R_{OCT1,inf/eff}$, OCT1 influx-to-efflux clearance ratio; CL_{met}, hepatic metabolic clearance; P_d , permeability value; $R_{OCT2,inf/eff}$, OCT2 influx-to-efflux clearance ratio *: FaFg was back calculated from bioavailability. Total clearance and hepatic availability was calculated using non-renal clearance in 250 mg i.v. dose study as hepatic clearance assuming non-renal clearance is independent from dose.

**: CL_{int,all} was calculated from the reported clinical data,³ and used as fixed. The β_{liver} value was initially set at three different values (0.2, 0.5, and 0.8) in order to obtain the fitted values of R_{MATE/dif}, k_a, and k_{trans}. However, the optimized values and goodness of the fitting were similar regardless of the β_{liver} value. Thus, the β_{liver} value was set to be 0.5 in subsequent simulations.

Reference in Table S1

- 1. Value from SciFinder®
- 2. Somogyi, A., Stockley, C., Keal, J., Rolan, P., Bochner, F. Reduction of metformin renal tubular secretion by cimetidine in man. *Br. J. Clin. Pharmacol.* **23**, 545-551 (1987).
- 3. Tucker, G.T., Casey, C., Phillips, P.J., Connor, H., Ward, J.D., Woods, H.F. Metformin

kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol.

12, 235-246 (1981).

- Rodgers, T., Leahy, D., Rowland, M. Physiologically based pharmacokinetic modeling
 1: predicting the tissue distribution of moderate-to-strong bases. *J. Pharm. Sci.* 94,
 1259–1276 (2005).
- Xie, F., Ke, A.B., Bowers, G.D., Zamek-Gliszczynski, M.J. Metformin's intrinsic blood-to-plasma partition ratio (B/P): Reconciling the perceived high *in vivo* B/P > 10

with the *in vitro* equilibrium value of unity. *J. Pharmacol. Exp. Ther.* **354**, 225-229 (2015).

- Saito S., Murakami Y., Miyauchi S., Kamo N. Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: correction of probe intracellular binding and mitochondrial accumulation. *Biochim. Biophys. Acta.* **1111**, 221-230 (1992).
- Sogame Y., Kitamura A., Yabuki M., Komuro S. A Comparison of Uptake of Metformin and Phenformin Mediated by hOCT1 in Human Hepatocytes. *Biopharm. Drug Dispos.* 30,476–484 (2009)
- Chien, H.C. *et al.*, Rapid method to determine intracellular drug concentrations in cellular uptake assays: Application to metformin in organic cation transporter
 1-transfected human embryonic kidney 293 cells. *Drug. Metab. Dispos.* 44, 356-364 (2016).
- Balimane, P.V., Chong, S. Evaluation of permeability and P-glycoprotein interactions: industry outlook. In *Biopharmaceutics Applications in Drug Development*. (eds. Krishna, R., and Yu, L.) 101-138 (Springer, New York, 2008).
- Kimura, N., Okuda, M., Inui, K. Metformin transport by renal basolateral organic cation transporter hOCT2. *Pharm Res.* 22, 255-259 (2005).

- Chen, L. *et al.*, Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. *Pharmacogenet Genomics*. **20**, 687–699 (2010).
- Shen, H. *et al.*, Cynomolgus Monkey as a Clinically Relevant Model to Study Transport Involving Renal Organic Cation Transporters: In Vitro and In Vivo Evaluation. *Drug Metab Dispos.* 44, 238-249 (2016).
- Masuda, S. *et al.*, Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. *J Am Soc Nephrol.* **17**, 2127-2135 (2006).
- Tanihara Y., Masuda S., Sato T., Katsura T., Ogawa O., Inui K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. *Biochem Pharmacol.* 74, 359-371 (2007).
- Yin, J., Duan, H., Wang, J. Impact of substrate-dependent inhibition on renal organic cation transporters hOCT2 and hMATE1/2-K-mediated drug transport and intracellular accumulation. *Pharmacol. Exp. Ther.* **359**, 401-410 (2016).