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Content of the supplement

Additional information about the data, models and results are presented in the sup-
plement in the following order. Section 1 lists the data for the illustrative example
in advanced colorectal cancer (aCRC). Section 2 describes the beta distribution
based prior for the between-studies correlations. Section 3 lists all details of model
1b with the derivation of the second order consistency conditions, construction of
prior distributions and WinBUGS code. The relationship between NMAmodels and
the standard surrogate model is discussed in Section 4. Additional discussion of
surrogacy criteria can be found in Section 5.
Additional results for the illustrative example in aCRC, such as correlations for the
treatment contrasts where only a small number of studies were available as well as all
heterogeneity parameters and the average effects, are presented in Section 6. Results
of a sensitivity analysis removing potentially influential observations are reported in
Section 7. Additional analysis of the simulated data sets can be found in Sections 8
for four scenarios similar to those described in the main manuscript and in Section 9
which introduces additional scenario with mixed surrogacy patterns across the treat-
ment contrasts. In Section 10 we discuss the second order consistency assumption
for data generated for the simulation study.

1 DATA FOR ILLUSTRATIVE EXAMPLE IN ACRC

Tables 1 and 2 list the data for the illustrative example in advanced colorectal cancer (ACRC), introduced in Section 2 of the
main manuscript. Three studies, which gave very large odds ratios (ORs) for the tumour response (TR) (marked by * in Table
1) were removed in the sensitivity analysis. Results of the sensitivity analysis are presented below in Section 7.
The data were modelled on the log HR scale for progression-free survival and on the log OR scale for tumour response. The

within-study correlation between log OR for TR and log HR for PFS was obtained by Elia et al (2018) by bootstrapping method,
from individual participant data of a RCT (reported by Hurwitz et al1) comparing Bevacizumab (anti-VEGF) with chemotherapy
vs. chemotherapy alone. The within-study correlation, equal -0.433, was assumed the same across treatments.
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study log HR PFS SE(log HR PFS) Re Ne Rc Nc
anti-VEGF + chemo vs. chemo
Guan (ARTIST) -0.821 0.25 49 139 11 64
Hurwitz2004 -0.6162 0.0977 180 402 143 411
Passardi 2015 (ITACA) -0.139 0.111 89 176 97 194
Saltz2008 (NO16966) -0.1863 0.0618 328 699 344 701
Saunders 2013 (AVEX) -0.635 0.193 27 140 14 140
Tebbutt 2010 (MAX) -0.478 0.119 56 147 43 142
Borner 2008 -0.1819 0.2608 28 37 28 37
Sobrero 2008 -0.3682 0.0565 106 648 27 650
Bennuona 2013 -0.3857 0.0812 22 404 16 406
Cao 2015 -0.3425 0.1589 31 65 22 77
Giantonio2007 -0.4943 0.093 65 237 25 215
Masi 2015 -0.3567 0.1517 21 92 17 92
Hecht 2007 -0.1165 0.0709 269 562 274 560
Kabbinavar2003 -0.6162 0.2822 22 68 6 36
Kabbinavar2005 (AVF2192) -0.6931 0.1949 27 104 16 105
EGFRi+chemo vs chemo
Adams 2011 (COIN) -0.0426 0.0795 232 363 209 367
Bokemeyer 2009 (OPUS) -0.5682 0.2106 37 61 27 73
Douillard 2010 (PRIME) -0.223 0.0982 177 322 157 327
Tveit 2012 (NORDIC-VII) 0.0679 0.1549 35 72 23 58
Van Cutsem 2009 (CRYSTAL) -0.3631 0.1124 181 316 139 350
Ye 2013 -0.5154 0.1919 40 70 20 68
Ciardello 2016 CAPRI-GOIM -0.2157 0.1679 16 74 10 79
Passardi 2015 ITACA -0.4507 0.3057 7 24 4 24
Peeters 2010 -0.3165 0.1077 104 297 29 285
Seymour 2013 PICCOLO -0.2488 0.1008 79 230 27 230
Amado 2008 -0.8032 0.1406 21 124 0 103
Karapetis 2008 CO17 -0.8743 0.1682 15 117 0 113
Bokemeyer 2009 (OPUS) 0.5422 0.2262 17 52 23 47
Douillard 2010 (PRIME) 0.2608 0.1131 88 221 88 219
Tveit 2012 (NORDIC-VII) -0.3318 0.1844 35 72 23 58
Van Cutsem 2009 (CRYSTAL) 0.1572 0.1414 67 214 66 183
Peeters 2010 -0.1637 0.1132 30 232 33 237
Amado 2008* -0.0036 0.1587 0 84 0 100
Karapetis 2008 CO17* -0.0073 0.1568 1 81 0 83
Bokemeyer 2009 (OPUS) -0.6351 0.344 22 38 14 49
Van Cutsem 2009 (CRYSTAL) -0.583 0.1574 118 178 73 189
Peeters 2010 -0.3552 0.1331 83 204 21 207
Amado 2008* -1.0201 0.1868 12 73 0 63
Santoro 2008 -0.1379 0.119 23 51 23 48
* studies removed for sensitivity analysis

TABLE 1 Data for the illustrative example in advanced colorectal cancer. Re andNe denote the number of responders and the
total number of patients in the experimental arm and Rc andNc denote these numbers in the control arm.
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study log HR PFS SE(log HR PFS) Re Ne Rc Nc
EGFRi+chemo vs anti-VEGF+chemo
Hecht (SPIRITT) 0.0099 0.2018 28 87 16 83
Heinemann (FIRE-3) 0.0516 0.0916 184 297 171 295
Shwartzberg (PEAK) -0.1369 0.1499 82 142 76 143
Venook (CALGB 80405) 0.0313 0.0641 381 578 319 559
EGFRi+anti-VEGF+chemo vs anti-VEGF+chemo
Hecht (PACCE) 0.3211 0.1246 131 258 142 261
Passardi 2015 (ITACA) 0.2705 0.278 4 28 9 28
Tol (CAIRO2) 0.1731 0.1253 97 158 78 156
Tournigand (DREAM) -0.2028 0.1085 48 213 24 208
anti-IGF1R+chemo vs chemo
Cohn 2013 0.001 0.2554 4 51 1 49
EGRFi+anti-VEGF+chemo vs chemo
Liu 2015 -0.4308 0.221 12 27 10 34
anti-IgG2+EGFRi+chemo vs EGFRi+chemo
Elez 0.1222 0.1896 27 73 26 72
Elez 0.1044 0.1882 25 73 26 72

TABLE 2 Data for the illustrative example in advanced colorectal cancer. Re andNe denote the number of responders and the
total number of patients in the experimental arm and Rc andNc denote these numbers in the control arm.

2 BETA DISTRIBUTION BASED PRIOR FOR THE CORRELATION

A beta distribution was used to construct prior distributions for the between-studies correlations (all models) and for the corre-
lation between effects on treatment arms (models 2a–c). A random variable drawn from a beta distribution r ∼ Beta(1.5, 1.5)
is limited to values between 0 and 1 with probability density zero on the edges and mean value of 0.5, as seen in Figure 1 (left).
Transforming this variable, such as � = 2r− 1, gives a distribution bounded by −1 and 1 with mean at zero, as shown in Figure
1 (right). This can be used as a prior distribution for the between-studies correlation, as in Burke et al (2016). The resulting prior
distribution for the correlation, such as �+1

2
∼ Beta(1.5, 1.5), allows for positive and negative values of the between-studies cor-

relation and it is relatively flat across the range of values, with the exception that values at the extreme ends of the distribution
are considered extremely unlikely.

FIGURE 1 Beta distribution
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3 DETAILS OF MODEL 1B

We assume that the treatment effect differences Yjkli between treatments k and l in study i for the two outcomes j = 1, 2 (the
surrogate endpoints and the final clinical outcome) are correlated and normally distributed:

(

Y1kli
Y2kli

)

∼ MVN
((

�1kli
�2kli

)

,�i
)

, �i =
(

�21kli �1kli�2kli�wkli
�1kli�2kli�wkli �22kli

)

(1)

To take into account the network structure of the data, we assume that the correlated true treatment effects �1kli and �2kli within
each treatment contrast kl follow a common distribution:

(

�1kli
�2kli

)

∼ MVN
((

d1kl
d2kl

)

,
(

�21kl �1kl�2kl�1kl,2kl
�1kl�2kl�1kl,2kl �22kl

))

(2)

where k and l denote baseline (control) and experimental treatment respectively in a study i, �jkli denotes the random true
treatment effect (difference between the effects of treatments k and l) on outcome j in study i and, and the djkl are mean treatment
effect differences between treatments k and l for each outcome j.
We use the first-order consistency assumptions, as described by Lu and Ades (2009), extended here to the bivariate case. For

any three treatments (b, k, l), the treatment differences (�jkli) satisfy the following transitivity relations
(

�1kli
�2kli

)

=
(

�1bli − �1bki
�2bli − �2bki

)

. (3)

Taking the expectation of the transitivity equations gives the consistency equations for the first-order moments
(

d1kl
d2kl

)

=
(

d1bl − d1bk
d2bl − d2bk

)

(4)

which represent the relationships between the treatment contrasts in the population.When b = 1 is a common reference treatment
in the network, the treatment effects of each treatment k in the network relative to this common reference treatment 1; the dj,1k
are referred to as basic parameters for each outcome j, with dj,11 = 0 and the others are given prior distributions:

dj,1k ∼ N(0, 103). (5)

To assume consistency of the second-order moments, we extend the approach proposed by Lu and Ades (2009) to the bivariate
case by taking variance of the transitivity equation (3), which gives

(

�21kl �1kl�2kl�1kl,2kl
�1kl�2kl�1kl,2kl �22kl

)

=
(

var(�1bli − �1bki) cov(�1bli − �1bki, �2bli − �2bki)
cov(�1bli − �1bki, �2bli − �2bki) var(�2bli − �2bki)

)

=

⎛

⎜

⎜

⎜

⎜

⎝

�21bk + �
2
1bl − 2�1bk�1bl�1bk,1bl

�1bl�2bl�1bl,2bl + �1bk�2bk�1bk,2bk
−�1bl�2bk�1bl,2bk − �1bk�2bl�1bk,2bl

�1bl�2bl�1bl,2bl + �1bk�2bk�1bk,2bk
−�1bl�2bk�1bl,2bk − �1bk�2bl�1bk,2bl

�22bk + �
2
2bl − 2�2bk�2bl�2bk,2bl

⎞

⎟

⎟

⎟

⎟

⎠

(6)

leading to the following relationship between the variances for any three treatments (b, k, l) and for both outcomes j = 1, 2;

�2jkl = �
2
jbk + �

2
jbl − 2�jbk,jbl�jbk�jbl ≤ (�jbk + �jbl)

2, (7)

which gives the second-order consistency conditions (triangle inequalities):

|�jbl − �jbk| ≤ �jkl ≤ �jbl + �jbk. (8)

In addition, the following condition applies to the covariances:

�1kl�2kl�1kl,2kl = �1bl�2bl�1bl,2bl + �1bk�2bk�1bk,2bk
−�1bl�2bk�1bl,2bk − �2bl�1bk�2bl,1bk, (9)

which implies further constraints that are more complex than those in Eq. (8).
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To ensure that prior distributions for heterogeneous variance-covariance matrices are appropriate, i.e. to maintain the second-
order consistency condition for any three treatments in the network, ancillary parameters are used, allowing the between-studies
variance-covariance matrices to be represented as

(

�21kl �1kl�2kl�1kl,2kl
�1kl�2kl�1kl,2kl �22kl

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

21k + 
2
1l − 2�1k,1l1k1l

1k2k�1k,2k − 1k2l�1k,2l
−1l2k�1l,2k + 1l2l�1l,2l

1k2k�1k,2k − 1k2l�1k,2l
−1l2k�1l,2k + 1l2l�1l,2l

22k + 
2
2l − 2�2k,2l2k2l

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(10)

where 2jk and 
2
jl are the ancillary parameters: variances of two random effects �jki and �jli corresponding to treatment arms

k and l (for each outcome j = 1, 2); and �jk,j′l is their correlation coefficient. Prior distributions for the set of between-studies
standard deviations �jkl for each outcome j and each pair of treatments k and l can be given by constructing a prior distribution
for a variance-covariance matrix Γ composed of the standard deviations jk and correlations �jk,j′l, for j, j′ = 1, 2 and k, l =
1,… , nt, where nt is the number of treatments in the network. For the set of values of the elements of matrix Γ, together with
the relationship (10), to give a resulting set of standard deviations �jkl and correlations �1kl,2kl that satisfy the second-order
consistency rules (8) and (9), the matrix Γ has to be positive semi-definite. This can be achieved in a number of ways, for
example by spherical decomposition as proposed by Lu and Ades (2009). Such a spherical decomposition was later applied
to construct a prior distribution for a variance-covariance matrix in multivariate meta-analysis by Wei and Higgins (2013),
who also investigated use of the inverse Wishart prior distribution and a separation strategy with a Cholesky decomposition.
Here we use the latter approach where Γ = V 1∕2RV 1∕2, where V 1∕2 is a 2nt × 2nt diagonal matrix of the standard deviations
11, 21,… , 1nt , 2nt and R is a positive semi-definite 2nt × 2nt matrix of correlations �jk,j′l (block matrix consisting of nt × nt
blocks that are of 2 × 2 dimension). Matrix R can be represented, using the Cholesky separation strategy, as R = LTL with L
being a 2nt × 2nt upper triangular matrix. To obtain the elements of the matrix L, we follow the method by Wei and Higgins
(2013). The elements of the top row of the correlation matrix are

R1j = L11L1j ,

the diagonal elements are

Rjj =
j
∑

k=1
L2kj

and the remaining elements are

Rij =
i

∑

k=1
LkiLkj

wherej > i, i = 1,… , 2nt−1, j = 1,… , 2nt. Prior distributions are placed on the elements of matrix L in such a way to ensure
the correlations are constrained to the range of values between -1 and 1. This is achieved, following Wei and Higgins (2013), by
selecting plausible intervals for these elements. For the top row of matrix L we set uniform prior distributions on the following
intervals:

L1j ∈ [−1, 1]
and the intervals for the remaining off-diagonal elements are

Lij ∈
⎡

⎢

⎢

⎣

−

√

√

√

√1 −
i−1
∑

k=1
L2kl,

√

√

√

√1 −
i−1
∑

k=1
L2kl

⎤

⎥

⎥

⎦

which gives implied prior distributions for the diagonal elements:

Ljj =

√

√

√

√1 −
j−1
∑

k=1
L2kj .

Prior distributions are placed on the standard deviations, which need to be restricted to positive values, for example j,k ∼
unif (0, 2). The prior distributions placed on the ancillary variances and correlations give implied prior distributions on the
between-studies correlations and standard deviations through the formulae (10).
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3.1 WinBUGS code for model 1b
model{
for(i in 1:ns) {
prec_w[i,1:2,1:2] <- inverse(Sigma[i,1:2,1:2])
#covariance matrix for the j-th study
Sigma[i,1,1]<-pow(se[i,1],2)
Sigma[i,2,2]<-pow(se[i,2],2)
Sigma[i,1,2]<-sqrt(Sigma[i,1,1])*sqrt(Sigma[i,2,2])*rho_w[i]
Sigma[i,2,1]<-sqrt(Sigma[i,1,1])*sqrt(Sigma[i,2,2])*rho_w[i]
y[i,1:2] ~ dmnorm(delta[i,1:2],prec_w[i,1:2,1:2])
delta[i,1:2] ~ dmnorm(md[i,1:2],prec_b[i,1:2,1:2]) # trial-specific treat effects distributions
for(j in 1:2) {
md[i,j] <- d[t[i,2],j] - d[t[i,1],j] # mean of treat effects distributions
}
prec_b[i,1:2,1:2]<-inverse(Cov_b[tc[i],,])
}

for (ic in 1:nc){
for (j in 1:2) {
Cov_b[ic,j,j]<-tau.sq[ic,j]
tau.sq[ic,j]<-psi.sq[(td[ic,1]-1)*2+j]+psi.sq[(td[ic,2]-1)*2+j]
-2*rho_psi[(td[ic,1]-1)*2+j,(td[ic,2]-1)*2+j]*psi[(td[ic,1]-1)*2+j]*psi[(td[ic,2]-1)*2+j]
}
Cov_b[ic,1,2]<- psi[(td[ic,1]-1)*2+1]*psi[(td[ic,1]-1)*2+2]*rho_psi[(td[ic,1]-1)*2+1,(td[ic,1]-1)*2+2]

-psi[(td[ic,1]-1)*2+1]*psi[(td[ic,2]-1)*2+2]*rho_psi[(td[ic,1]-1)*2+1,(td[ic,2]-1)*2+2]
-psi[(td[ic,2]-1)*2+1]*psi[(td[ic,1]-1)*2+2]*rho_psi[(td[ic,2]-1)*2+1,(td[ic,1]-1)*2+2]
+psi[(td[ic,2]-1)*2+1]*psi[(td[ic,2]-1)*2+2]*rho_psi[(td[ic,2]-1)*2+1,(td[ic,2]-1)*2+2]

Cov_b[ic,2,1]<-Cov_b[ic,1,2]
rho_b[ic]<-Cov_b[ic,1,2]/sd[ic,1]/sd[ic,2]
sd[ic,1]<-sqrt(tau.sq[ic,1])
sd[ic,2]<-sqrt(tau.sq[ic,2])
lambda0[ic]<- (d[td[ic,2],2]-d[td[ic,1],2])
- (d[td[ic,2],1]-d[td[ic,1],1]) *rho_b[ic]* sd[ic,2]/sd[ic,1]
}

for(j in 1:2) {d[1,j] <- 0}

for (k in 1:nt2){
psi[k]~dunif(0,2)
psi.sq[k]<-pow(psi[k],2)
rho_psi[k,k]<-1
}
for (k in 2:nt){
d[k,1] ~ dnorm(0,0.001)
d[k,2] ~ dnorm(0,0.001)
}

# assigning priors to the upper triangular matrix in Cholesky decomposition
L[1,1]<-1.0
for (k in 2:nt2){
L.u[1,k]~dunif(-0.999,0.999)
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L[1,k] <- L.u[1,k]
}
for (x in 1:nt2-1){
for (k in x+1:nt2){

p[x,k]<-pow(L[x,k],2)
}
}
for (x in 3:nt2){
for (k in x:nt2){

s[x-1,k]<-sum(p[1:x-2,k])
lim[x-1,k]<- sqrt(1-s[x-1,k])
L.u[x-1,k]~dunif(-0.999,0.999)
L[x-1,k]<- lim[x-1,k] * L.u[x-1,k]
}

}
L.u[2,2]<-sqrt(1-pow(L[1,2],2))
L[2,2]<-L.u[2,2]
for (k in 3:nt2){
s2[k]<-sum(p[1:k-1,k])
L.u[k,k]<-sqrt(1-s2[k])
L[k,k]<-L.u[k,k]

}

#assigning values for the correlations:
for (k in 2:nt2){
rho_psi[1,k]<-L[1,k]
rho_psi[k,1]<-L[1,k]
}
for (x in 2:nt2-1){

for (k in x+1:nt2){
for (j in 1:x){

LL[j,x,k]<-L[j,x]*L[j,k]
}
}
}
for (x in 2:nt2-2){

for (k in x+1:nt2){
rho_psi[x,k]<-sum(LL[1:x,x,k])
rho_psi[k,x]<-rho_psi[x,k]
}
}
rho_psi[nt2-1,nt2]<- sum(LL[1:nt2-1,nt2-1,nt2])
rho_psi[nt2,nt2-1]<- rho_psi[nt2-1,nt2]
}
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##### Example of data structure #######

list(ns=30, nt=3, nt2=6, nc=3, td= structure(.Data= c(1, 2, 2, 3, 1, 3), .Dim=c(3, 2)))
# ns - number of studies, nt - number of treatments, nt2=nt*2 (size of the Gamma matrix)
# nc - number of contrasts, td - list of contrasts (designs)

t[,1] t[,2] tc[] y[,1] y[,2] se[,1] se[,2] rho_w[]
1 2 1 1.46 2.17 0.24 0.24 0.6
1 2 1 1.10 2.22 0.21 0.21 0.6
1 2 1 0.58 1.29 0.23 0.23 0.6
1 2 1 1.41 2.63 0.20 0.20 0.6
1 2 1 1.36 3.00 0.23 0.23 0.6
1 2 1 0.86 1.68 0.22 0.22 0.6
1 2 1 1.24 2.25 0.22 0.22 0.6
1 2 1 0.60 1.13 0.25 0.25 0.6
1 2 1 0.91 1.70 0.19 0.19 0.6
1 2 1 1.59 2.67 0.20 0.20 0.6
2 3 2 2.12 1.02 0.22 0.22 0.6
2 3 2 1.58 0.84 0.20 0.20 0.6
2 3 2 1.82 0.99 0.19 0.19 0.6
2 3 2 2.35 1.34 0.22 0.22 0.6
2 3 2 1.76 0.59 0.23 0.23 0.6
2 3 2 2.57 1.41 0.18 0.18 0.6
2 3 2 2.28 1.24 0.23 0.23 0.6
2 3 2 2.66 1.44 0.20 0.20 0.6
2 3 2 1.02 0.63 0.25 0.25 0.6
2 3 2 2.19 1.34 0.20 0.20 0.6
1 3 3 2.20 2.25 0.21 0.21 0.6
1 3 3 3.47 3.17 0.21 0.21 0.6
1 3 3 2.86 2.49 0.23 0.23 0.6
1 3 3 2.84 3.15 0.19 0.19 0.6
1 3 3 3.97 3.63 0.20 0.20 0.6
1 3 3 3.39 3.45 0.16 0.16 0.6
1 3 3 3.67 3.84 0.19 0.19 0.6
1 3 3 1.99 2.30 0.19 0.19 0.6
1 3 3 3.13 3.24 0.22 0.22 0.6
1 3 3 2.32 2.19 0.21 0.21 0.6
END

### initial values
list(d= structure(.Data= c(NA,NA, 0.5, 0.5, 0.5, 0.5), .Dim=c(3, 2)),
delta= structure(.Data= c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), .Dim=c(30, 2)),

psi=c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5),
L.u= structure(.Data= c(NA, 0.2, 0.2, 0.2, 0.2, 0.2, NA, NA, 0.2, 0.2, 0.2, 0.2,

NA, NA, NA, 0.2, 0.2, 0.2, NA, NA, NA, NA, 0.2, 0.2,
NA, NA, NA, NA, NA, 0.2, NA, NA, NA, NA, NA, NA), .Dim=c(6, 6)))
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4 RELATIONSHIPS BETWEEN THE MODELS

A B
n

FIGURE 2 Example network diagram: all n studies include the same treatment contrast (only two treatments) (left).

The models reduce to the standard meta-analysis model for surrogate endpoints, such as the BRMA model, in a special case
of data structure. When there are only two treatments in the network, as depicted in Figure 2, it can be shown that model 1a
reduces to BRMA. Equations (1)–(2) become

(

Y1(12)i
Y2(12)i

)

∼ N

(

(

�1(12)i
�2(12)i

)

,

(

�21(12)i �1(12)i�2(12)i�wi(12)
�1(12)i�2(12)i�wi(12) �22(12)i

))

(11)

(

�1(12)i
�2(12)i

)

∼ MVN

(

(

d1(12)
d2(12)

)

,

(

�21(12) �1(12)�2(12)�(12)
�1(12)�2(12)�(12) �22(12)

))

(12)

The index (12) denoting the two treatments does not vary across studies or contrasts and hence can be dropped, resulting in
equations for BRMA – equations (3.1)–(3.2) in the main manuscript, with dj = �j and j = 1, 2.

5 SURROGACY CRITERIA

Daniels and Hughes defined the surrogacy criteria for a Bayesian meta-analytic model where the relationship between the true
treatment effects on final clinical outcome �2i and the effect on the surrogate endpoint �1i was written in the form of a linear
regression:

�2i|�1i ∼ N(�0 + �1�1i,  2). (13)
The surrogate relationship between the two treatment effects, �2i and �1i, was perfect if the intercept �0 was zero, as then a
zero effect on a surrogate would imply a zero effect on the final outcome, the slope �1 should not be zero for the association
to be strong, with the conditional variance  2 being zero. For the complete model see Daniels and Hughes (1997). A similar
relationship and surrogacy criteria were described by Bujkiewicz et al (2015) in the framework of bivariate meta-analysis and
extended by Bujkiewicz et al (2016) to multivariate meta-analysis. In the two papers the relationship between the regression
parameters and the elements of the between-studies variance-covariance matrix was defined, similarly as in Bujkiewicz et al
(2013). The derived relationships in the bivariate case are

�1 = �
�2
�1

(14)

and
 2 = �22 − �

2
1�
2
1 . (15)

If the surrogacy relationship is perfect, the conditional variance is zero:  2 = 0 (Daniels and Hughes (1997), Bujkiewicz
et al (2015)). Hence, from (15), �22 = �21�

2
1 which gives �1 = ± �2

�1
, and from (14) it implies that the correlation � = ±1. Also

�2 = 1, which some authors refer to as the study level adjusted R-squared (Burzykowski et al (2001), Renfro et al (2012)).

If the surrogacy relationship is perfect, the intercept is also zero: �0 = 0. The intercept can be expressed in terms of the
parameters of bvMA as follows: the slope is defined by (14) and also �1 = (d2 − �0)∕d1, which leads to

�0 = d2 − d1��2∕�1. (16)
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6 ADDITIONAL RESULTS: ACRC EXAMPLE

model AB AC BC BD

log OR (TR)
BRMA 0.53 (0.36, 0.71)
bvNMA 1a 0.48 (0.25, 0.71) 0.79 (0.55, 1.07) 0.32 (0.09, 0.57) 0.17 (-0.66, 0.93)
bvNMA 1b 0.47 (0.22, 0.73) 0.77 (0.51, 1.05) 0.3 (0.02, 0.6) 0.16 (-0.69, 0.93)
bvNMA 1c 0.47 (0.23, 0.7) 0.76 (0.53, 1) 0.3 (0.05, 0.55) 0.21 (-0.23, 0.62)
bvNMA 1d 0.49 (0.21, 0.77) 0.74 (0.49, 0.99) 0.25 (-0.08, 0.59) 0.2 (-0.38, 0.77)
bvNMA 2a 0.45 (0.22, 0.68) 0.73 (0.48, 0.99) 0.28 (0.05, 0.52) 0.12 (-0.45, 0.65)
bvNMA 2b 0.44 (0.18, 0.69) 0.71 (0.45, 0.98) 0.27 (0, 0.54) 0.11 (-0.44, 0.62)
bvNMA 2c 0.43 (0.21, 0.66) 0.7 (0.48, 0.94) 0.27 (0.05, 0.5) 0.17 (-0.22, 0.54)
bvNMA 2d 0.44 (0.18, 0.71) 0.68 (0.44, 0.93) 0.24 (-0.07, 0.55) 0.13 (-0.34, 0.61)
log HR (PFS)
BRMA -0.24 (-0.32, -0.15)
bvNMA 1a -0.36 (-0.46, -0.26) -0.3 (-0.41, -0.19) 0.06 (-0.04, 0.19) 0.08 (-0.33, 0.47)
bvNMA 1b -0.36 (-0.47, -0.26) -0.29 (-0.4, -0.17) 0.08 (-0.05, 0.21) 0.08 (-0.27, 0.44)
bvNMA 1c -0.36 (-0.46, -0.26) -0.29 (-0.39, -0.19) 0.07 (-0.04, 0.19) 0.08 (-0.12, 0.28)
bvNMA 1d -0.37 (-0.49, -0.25) -0.27 (-0.38, -0.17) 0.1 (-0.05, 0.25) 0.1 (-0.15, 0.35)
bvNMA 2a -0.34 (-0.44, -0.24) -0.28 (-0.38, -0.17) 0.06 (-0.04, 0.18) 0.1 (-0.15, 0.36)
bvNMA 2b -0.34 (-0.45, -0.23) -0.27 (-0.38, -0.16) 0.07 (-0.05, 0.2) 0.1 (-0.14, 0.34)
bvNMA 2c -0.34 (-0.43, -0.24) -0.27 (-0.36, -0.17) 0.07 (-0.04, 0.18) 0.09 (-0.08, 0.26)
bvNMA 2d -0.34 (-0.46, -0.23) -0.26 (-0.36, -0.16) 0.09 (-0.05, 0.22) 0.12 (-0.09, 0.33)
Var(log OR) (TR)
BRMA 0.29 (0.15, 0.49)
bvNMA 1a 0.22 (0.07, 0.56) 0.57 (0.23, 1.22) 0.1 (0, 0.68) 0.76 (0.03, 3.18)
bvNMA 1b 0.3 (0.1, 0.66) 0.44 (0.2, 0.86) 0.15 (0, 0.67) 0.63 (0.03, 2.85)
bvNMA 1c 0.23 (0.09, 0.47) 0.33 (0.16, 0.6) 0.08 (0, 0.34) 0.12 (0, 0.49)
bvNMA 1d 0.3 (0.15, 0.52)
bvNMA 2a 0.22 (0.07, 0.54) 0.55 (0.22, 1.2) 0.11 (0, 0.75) 0.7 (0.02, 3.11)
bvNMA 2b 0.3 (0.1, 0.65) 0.43 (0.2, 0.83) 0.14 (0, 0.6) 0.53 (0.03, 2.47)
bvNMA 2c 0.23 (0.09, 0.48) 0.3 (0.14, 0.56) 0.07 (0, 0.26) 0.12 (0, 0.45)
bvNMA 2d 0.29 (0.15, 0.5)
Var(log HR) (PFS)
BRMA 0.08 (0.04, 0.13)
bvNMA 1a 0.03 (0.01, 0.09) 0.1 (0.04, 0.2) 0.03 (0, 0.23) 0.21 (0.01, 1.36)
bvNMA 1a 0.04 (0.01, 0.11) 0.08 (0.04, 0.15) 0.04 (0, 0.13) 0.14 (0.01, 0.8)

0.03 (0.01, 0.08) 0.06 (0.03, 0.11) 0.02 (0, 0.07) 0.02 (0, 0.08)
0.05 (0.03, 0.09)

bvNMA 2a 0.03 (0.01, 0.09) 0.1 (0.04, 0.19) 0.02 (0, 0.17) 0.16 (0, 1)
bvNMA 2b 0.04 (0.01, 0.11) 0.08 (0.04, 0.14) 0.03 (0, 0.12) 0.11 (0.01, 0.52)
bvNMA 2c 0.03 (0.01, 0.08) 0.05 (0.02, 0.1) 0.02 (0, 0.07) 0.02 (0, 0.08)
bvNMA 2d 0.05 (0.03, 0.09)

TABLE 3 Mean effects and the between-studies variances for each model in the aCRC example. A – chemotherapy alone, B –
anti-VEGF therapies + chemotherapy, C – EGFRi + chemotherapy, D – EGFRi + anti-VEGF therapies + chemotherapy.
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model AE AD CF
log OR (TR)
bvNMA 1a 1.4 (-1.8, 4.66) 0.64 (-0.19, 1.42) -0.01 (-1.51, 1.46)
bvNMA 1b 1.42 (-2.05, 4.82) 0.64 (-0.23, 1.42) -0.03 (-1.6, 1.53)
bvNMA 1c 1.4 (-1.04, 3.85) 0.67 (0.18, 1.14) -0.02 (-0.72, 0.67)
bvNMA 1d 1.38 (-1.06, 3.86) 0.68 (0.07, 1.3) -0.02 (-0.93, 0.88)
bvNMA 2a 0.58 (-0.41, 1.82) 0.57 (-0.01, 1.14) -0.14 (-0.83, 0.51)
bvNMA 2b 0.54 (-0.47, 1.78) 0.55 (-0.02, 1.1) -0.16 (-0.89, 0.56)
bvNMA 2c 0.59 (-0.3, 1.8) 0.6 (0.17, 1.01) -0.11 (-0.62, 0.42)
bvNMA 2d 0.57 (-0.32, 1.79) 0.57 (0.08, 1.09) -0.12 (-0.73, 0.54)
log HR (PFS)
bvNMA 1a 0 (-2.55, 2.55) -0.28 (-0.7, 0.12) 0.11 (-1.24, 1.44)
bvNMA 1b 0 (-2.59, 2.57) -0.28 (-0.64, 0.09) 0.12 (-1.24, 1.48)
bvNMA 1c 0 (-0.68, 0.68) -0.28 (-0.49, -0.06) 0.11 (-0.25, 0.48)
bvNMA 1d 0 (-0.67, 0.68) -0.27 (-0.54, -0.01) 0.11 (-0.3, 0.53)
bvNMA 2a -0.17 (-0.68, 0.38) -0.23 (-0.5, 0.03) 0.08 (-0.27, 0.46)
bvNMA 2b -0.18 (-0.71, 0.36) -0.24 (-0.49, 0) 0.07 (-0.31, 0.45)
bvNMA 2c -0.11 (-0.47, 0.3) -0.24 (-0.43, -0.06) 0.09 (-0.16, 0.35)
bvNMA 2d -0.1 (-0.46, 0.32) -0.22 (-0.45, -0.01) 0.1 (-0.18, 0.4)
correlations
bvNMA 1a 0 (-0.88, 0.88) -0.02 (-0.89, 0.88) -0.03 (-0.9, 0.9)
bvNMA 1b -0.07 (-0.88, 0.83) -0.31 (-0.94, 0.73) -0.04 (-0.85, 0.81)
bvNMA 1c -0.42 (-0.95, 0.65) -0.44 (-0.95, 0.6) -0.16 (-0.87, 0.74)
bvNMA 2a 0.01 (-0.88, 0.89) -0.02 (-0.9, 0.88) -0.04 (-0.91, 0.88)
bvNMA 2b -0.07 (-0.89, 0.84) -0.33 (-0.95, 0.71) -0.06 (-0.85, 0.8)
bvNMA 2c -0.43 (-0.95, 0.64) -0.47 (-0.95, 0.57) -0.13 (-0.86, 0.75)
intercepts
bvNMA 1a -0.41 (-6.44, 6.4) 0.17 (-3.31, 2.82) 1.67 (-1.56, 25.47)
bvNMA 1b 0.11 (-3.61, 3.85) -0.18 (-0.78, 0.43) 0.12 (-1.2, 1.46)
bvNMA 1c 0.29 (-0.75, 1.68) -0.14 (-0.54, 0.31) 0.11 (-0.29, 0.51)
bvNMA 1d 0.45 (-0.28, 1.24) -0.05 (-0.28, 0.17) 0.11 (-0.21, 0.43)
bvNMA 2a -0.17 (-2.82, 2.27) -1.47 (-3.02, 2.38) 0.19 (-0.73, 1)
bvNMA 2b -0.15 (-1.35, 1.03) -0.15 (-0.62, 0.32) 0.07 (-0.5, 0.63)
bvNMA 2c 0.01 (-0.48, 0.65) -0.12 (-0.46, 0.26) 0.09 (-0.22, 0.41)
bvNMA 2d 0.08 (-0.28, 0.58) -0.04 (-0.24, 0.15) 0.06 (-0.18, 0.32)
Var(log OR) (TR)
bvNMA 1a 1.34 (0, 3.81) 0.98 (0, 3.65) 0.79 (0, 3.56)
bvNMA 1b 1.67 (0.08, 5.17) 0.8 (0.03, 3.25) 0.95 (0.01, 3.79)
bvNMA 1c 0.3 (0.03, 1.02) 0.27 (0.02, 0.83) 0.13 (0, 0.56)
bvNMA 2a 1.21 (0, 3.76) 0.95 (0, 3.63) 0.56 (0, 3.13)
bvNMA 2b 1.5 (0.07, 4.92) 0.7 (0.03, 2.86) 0.7 (0.01, 3.39)
bvNMA 2c 0.29 (0.03, 0.97) 0.27 (0.03, 0.83) 0.11 (0, 0.49)
Var(log HR) (PFS)
bvNMA 1a 1.33 (0, 3.81) 0.8 (0, 3.56) 0.66 (0, 3.45)
bvNMA 1b 1.37 (0.02, 4) 0.16 (0.01, 0.84) 0.71 (0, 3.5)
bvNMA 1c 0.05 (0, 0.2) 0.05 (0, 0.14) 0.03 (0, 0.13)
bvNMA 2a 0.86 (0, 3.6) 0.79 (0, 3.54) 0.33 (0, 2.69)
bvNMA 2b 0.91 (0.01, 3.67) 0.13 (0.01, 0.58) 0.39 (0, 2.74)
bvNMA 2c 0.05 (0, 0.17) 0.04 (0, 0.14) 0.03 (0, 0.11)

TABLE 4 Mean effects and the between-studies correlations and variances for each model in the aCRC example (contrasts AE,
AD and CF). A – chemotherapy alone, C – EGFRi + chemotherapy, D – EGFRi + anti-VEGF therapies + chemotherapy, E –
anti-IGF1R , F – anti-IgG2 + chemotherapy
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Figure 3 shows the predicted effects obtained from BRMA and model 2d along with the observed estimates of the effects on
PFS. The improvement in predictions was not substantial due to the weak association patterns between the treatment effects on
the two outcomes.

FIGURE 3 Predicted effects obtained from BRMA and model 2d along with the observed estimates of the effects on PFS for
aCRC data
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7 SENSITIVITY ANALYSIS (ACRC EXAMPLE)

Sensitivity analysis was carried out investigating the effect of potentially influential observations (three studies with largest
treatment effect on TR, due to no events in the control arm, were removed). Figure 4 shows the scatter plot. Tables 6 and 7 show
the between studies correlations of the heterogeneity parameters.

B A

D C F

E
15

21

4

4

1

1

2

FIGURE 4 Scatter plot and network diagram for the advanced colorectal cancer example, A – chemotherapy alone, B – anti-
VEGF therapies + chemotherapy, C – EGFRi + chemotherapy, D – EGFRi + anti-VEGF therapies + chemotherapy, E – anti-
IGF1R , F – anti-IgG2 + chemotherapy
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model AB BC AC BD
log OR (TR)
BRMA 0.48 (0.31, 0.65)
bvNMA 1a 0.42 (0.19, 0.65) 0.68 (0.44, 0.92) 0.26 (0, 0.5) 0.18 (-0.67, 0.94)
bvNMA 1b 0.42 (0.17, 0.67) 0.66 (0.41, 0.9) 0.24 (-0.06, 0.5) 0.17 (-0.66, 0.94)
bvNMA 1c 0.41 (0.19, 0.63) 0.66 (0.44, 0.88) 0.24 (0, 0.48) 0.22 (-0.2, 0.62)
bvNMA 1d 0.45 (0.2, 0.71) 0.62 (0.38, 0.85) 0.16 (-0.14, 0.47) 0.21 (-0.32, 0.73)
bvNMA 2a 0.39 (0.15, 0.62) 0.63 (0.37, 0.87) 0.24 (-0.02, 0.47) 0.12 (-0.43, 0.64)
bvNMA 2b 0.38 (0.13, 0.63) 0.6 (0.35, 0.85) 0.22 (-0.05, 0.47) 0.11 (-0.41, 0.61)
bvNMA 2c 0.38 (0.15, 0.6) 0.6 (0.37, 0.82) 0.23 (-0.01, 0.45) 0.17 (-0.19, 0.52)
bvNMA 2d 0.41 (0.16, 0.66) 0.57 (0.33, 0.8) 0.16 (-0.13, 0.45) 0.12 (-0.31, 0.57)
log HR (PFS)
BRMA -0.2 (-0.28, -0.12)
bvNMA 1a -0.34 (-0.44, -0.24) -0.23 (-0.34, -0.12) 0.11 (0, 0.25) 0.08 (-0.34, 0.48)
bvNMA 1b -0.34 (-0.45, -0.24) -0.22 (-0.32, -0.12) 0.12 (0, 0.26) 0.08 (-0.28, 0.43)
bvNMA 1c -0.34 (-0.43, -0.24) -0.22 (-0.31, -0.13) 0.12 (0.01, 0.23) 0.07 (-0.12, 0.27)
bvNMA 1d -0.35 (-0.46, -0.25) -0.2 (-0.3, -0.11) 0.15 (0.02, 0.27) 0.09 (-0.12, 0.3)
bvNMA 2a -0.32 (-0.42, -0.2) -0.22 (-0.33, -0.12) 0.1 (-0.01, 0.23) 0.1 (-0.15, 0.36)
bvNMA 2b -0.32 (-0.42, -0.2) -0.21 (-0.31, -0.11) 0.11 (-0.01, 0.23) 0.1 (-0.13, 0.34)
bvNMA 2c -0.31 (-0.41, -0.21) -0.2 (-0.29, -0.12) 0.11 (0, 0.22) 0.09 (-0.07, 0.26)
bvNMA 2d -0.32 (-0.43, -0.22) -0.19 (-0.29, -0.1) 0.13 (0.02, 0.25) 0.12 (-0.06, 0.3)
Var(log OR) (TR)
BRMA 0.24 (0.13, 0.41)
bvNMA 1a 0.22 (0.07, 0.53) 0.38 (0.16, 0.81) 0.11 (0, 0.77) 0.79 (0.03, 3.25)
bvNMA 1b 0.26 (0.09, 0.56) 0.33 (0.15, 0.64) 0.13 (0, 0.57) 0.61 (0.03, 2.8)
bvNMA 1c 0.2 (0.08, 0.41) 0.25 (0.12, 0.46) 0.07 (0, 0.26) 0.11 (0, 0.42)
bvNMA 1d 0.23 (0.12, 0.41)
bvNMA 2a 0.23 (0.07, 0.55) 0.38 (0.16, 0.8) 0.12 (0, 0.84) 0.69 (0.02, 3.06)
bvNMA 2b 0.26 (0.09, 0.56) 0.33 (0.15, 0.63) 0.12 (0, 0.54) 0.52 (0.03, 2.39)
bvNMA 2c 0.2 (0.08, 0.4) 0.25 (0.12, 0.45) 0.06 (0, 0.26) 0.1 (0.01, 0.37)
bvNMA 2d 0.23 (0.12, 0.4)
Var(log HR) (PFS)
BRMA 0.06 (0.03, 0.1)
bvNMA 1a 0.03 (0.01, 0.09) 0.06 (0.02, 0.13) 0.06 (0, 0.41) 0.22 (0, 1.5)
bvNMA 1b 0.04 (0.01, 0.09) 0.05 (0.02, 0.1) 0.03 (0, 0.1) 0.14 (0.01, 0.77)
bvNMA 1c 0.03 (0.01, 0.06) 0.03 (0.01, 0.07) 0.02 (0, 0.06) 0.02 (0, 0.08)
bvNMA 1d 0.03 (0.01, 0.06)
bvNMA 2a 0.03 (0.01, 0.1) 0.05 (0.02, 0.13) 0.05 (0, 0.3) 0.16 (0, 0.87)
bvNMA 2b 0.04 (0.01, 0.09) 0.05 (0.02, 0.1) 0.02 (0, 0.09) 0.1 (0.01, 0.53)
bvNMA 2c 0.03 (0.01, 0.07) 0.03 (0.01, 0.07) 0.02 (0, 0.06) 0.02 (0, 0.09)
bvNMA 2d 0.03 (0.01, 0.06)

TABLE 6 Between-studies correlations for each model in the aCRC example. Where only one value is given (models BRMA,
1d and 2d), the parameters are common across the treatment contrasts.
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model AE AD CF
log OR (TR)
bvNMA 1a 1.41 (-1.82, 4.68) 0.6 (-0.25, 1.38) -0.02 (-1.44, 1.39)
bvNMA 1b 1.39 (-1.98, 4.76) 0.59 (-0.26, 1.38) -0.02 (-1.57, 1.56)
bvNMA 1c 1.4 (-1.02, 3.86) 0.63 (0.17, 1.08) -0.02 (-0.67, 0.65)
bvNMA 1d 1.42 (-0.95, 3.84) 0.66 (0.09, 1.23) -0.02 (-0.84, 0.8)
bvNMA 2a 0.5 (-0.42, 1.69) 0.5 (-0.04, 1.06) -0.12 (-0.78, 0.53)
bvNMA 2b 0.49 (-0.43, 1.7) 0.49 (-0.05, 1.04) -0.13 (-0.8, 0.55)
bvNMA 2c 0.53 (-0.29, 1.67) 0.55 (0.14, 0.95) -0.09 (-0.58, 0.4)
bvNMA 2d 0.51 (-0.32, 1.65) 0.53 (0.08, 1.01) -0.09 (-0.65, 0.51)
log HR (PFS)
bvNMA 1a 0 (-2.55, 2.56) -0.26 (-0.69, 0.15) 0.11 (-1.19, 1.38)
bvNMA 1b 0 (-2.57, 2.59) -0.26 (-0.62, 0.1) 0.11 (-1.24, 1.46)
bvNMA 1c 0.01 (-0.62, 0.63) -0.26 (-0.47, -0.05) 0.11 (-0.22, 0.45)
bvNMA 1d 0 (-0.6, 0.6) -0.26 (-0.49, -0.03) 0.11 (-0.25, 0.48)
bvNMA 2a -0.16 (-0.64, 0.32) -0.21 (-0.48, 0.05) 0.06 (-0.3, 0.4)
bvNMA 2b -0.15 (-0.63, 0.34) -0.22 (-0.46, 0.03) 0.06 (-0.31, 0.41)
bvNMA 2c -0.09 (-0.42, 0.29) -0.22 (-0.4, -0.04) 0.08 (-0.16, 0.33)
bvNMA 2d -0.08 (-0.41, 0.31) -0.21 (-0.41, -0.02) 0.08 (-0.17, 0.36)
correlations
bvNMA 1a 0 (-0.88, 0.88) -0.02 (-0.9, 0.88) -0.04 (-0.92, 0.89)
bvNMA 1b -0.05 (-0.87, 0.83) -0.28 (-0.94, 0.73) -0.03 (-0.84, 0.81)
bvNMA 1c -0.37 (-0.94, 0.7) -0.38 (-0.95, 0.68) -0.11 (-0.84, 0.75)
bvNMA 2a 0.02 (-0.88, 0.89) -0.03 (-0.9, 0.88) -0.03 (-0.91, 0.89)
bvNMA 2b -0.05 (-0.88, 0.84) -0.3 (-0.94, 0.73) -0.04 (-0.84, 0.8)
bvNMA 2c -0.36 (-0.94, 0.72) -0.39 (-0.94, 0.67) -0.11 (-0.84, 0.75)
intercepts
bvNMA 1a -1.91 (-6.85, 6.32) -0.47 (-3.09, 2.49) -0.4 (-3.84, 1.69)
bvNMA 1b 0.06 (-3.76, 3.86) -0.18 (-0.77, 0.41) 0.11 (-1.23, 1.44)
bvNMA 1c 0.25 (-0.76, 1.5) -0.15 (-0.54, 0.25) 0.11 (-0.26, 0.49)
bvNMA 1d 0.36 (-0.28, 1.08) -0.09 (-0.3, 0.12) 0.11 (-0.19, 0.41)
bvNMA 2a -0.44 (-2.29, 1.89) -0.31 (-2.81, 2.38) 0.22 (-0.77, 0.91)
bvNMA 2b -0.13 (-1.25, 0.94) -0.14 (-0.58, 0.32) 0.06 (-0.48, 0.6)
bvNMA 2c -0.01 (-0.46, 0.56) -0.13 (-0.46, 0.24) 0.07 (-0.22, 0.38)
bvNMA 2d 0.05 (-0.28, 0.49) -0.07 (-0.26, 0.11) 0.06 (-0.17, 0.31)
Var(log OR) (TR)
bvNMA 1a 1.34 (0, 3.8) 0.98 (0, 3.67) 0.74 (0, 3.47)
bvNMA 1b 1.58 (0.06, 4.92) 0.74 (0.03, 3.13) 0.93 (0.01, 3.75)
bvNMA 1c 0.24 (0.02, 0.84) 0.21 (0.02, 0.69) 0.11 (0, 0.48)
bvNMA 2a 1.23 (0, 3.76) 0.93 (0, 3.63) 0.56 (0, 3.18)
bvNMA 2b 1.47 (0.06, 4.76) 0.64 (0.03, 2.7) 0.67 (0.01, 3.34)
bvNMA 2c 0.24 (0.02, 0.8) 0.21 (0.02, 0.64) 0.09 (0, 0.4)
Var(log HR) (PFS)
bvNMA 1a 1.34 (0, 3.8) 0.8 (0, 3.55) 0.63 (0, 3.42)
bvNMA 1b 1.36 (0.02, 3.92) 0.15 (0, 0.8) 0.7 (0, 3.48)
bvNMA 1c 0.04 (0, 0.15) 0.03 (0, 0.11) 0.02 (0, 0.1)
bvNMA 2a 0.84 (0, 3.57) 0.8 (0, 3.54) 0.32 (0, 2.48)
bvNMA 2b 0.87 (0.01, 3.62) 0.12 (0, 0.56) 0.37 (0, 2.68)
bvNMA 2c 0.03 (0, 0.13) 0.03 (0, 0.12) 0.02 (0, 0.09)

TABLE 7 Between-studies correlations and variances for each model in the aCRC example (contrasts AE, AD and CF).
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8 ILLUSTRATION USING SIMULATED DATA

8.1 Data simulation
To demonstrate scenarios where use of bvNMAmethods has an advantage over the standard surrogacy models, data were simu-
lated under different assumptions. In particular, we simulated data where the surrogate pattern across all studies and treatments
differed from the patterns within treatment contrasts, which is detectable by mvNMA but not by BRMA. The treatment effects
on two outcomes were simulated from a bivariate normal distribution:

(

Y1kli
Y2kli

)

∼ N
{(

d1kl
d2kl

)

,
(

�21kli + �
2
1kl �1kli�2kli�wkli + �1kl�2kl�1kl,2kl

�1kli�2kli�wkli + �1kl�2kl�1kl,2kl �22kli + �
2
2kl

)}

,

as in model 1a. Two sets of network data were generated, each consisting of 30 studies, three treatments and three treatment
contrasts with 10 studies per contrast (AB, BC and AC), under different scenarios (illustrated in Figure 5).

Scenario 1 was simulated assuming weak study-level surrogacy when ignoring treatment contrasts but strong study-level
surrogacywithin each treatment contrast, with the following parameters: dAB = (1, 2), dBC = (2, 1), dAC = (3, 3); �jAB(AC,BC)i ∼
Unif (0.15, 0.25), j=1,2; �wABi = �wBCi = �wACi = 0.6; �1AB = 0.3, �1BC = �1AC = 0.6, �2BC = 0.3, �2AB = �2AC = 0.6;
�AB = �AC = �BC = 0.98.

Scenario 2 was simulated assuming a strong study-level surrogacy relationship when ignoring treatment contrasts as well
as a strong surrogate relationships within each treatment contrast, with the following parameters: dAB = (1, 1), dBC = (2, 2),
dAC = (3, 3); �jAB(AC,BC)i ∼ Unif (0.05, 0.15), j=1,2; �wABi = �wBCi = �wACi = 0.98; �1AB = 0.2, �1BC = 0.25, �1AC = 0.3,
�2AB = 0.3, �2BC = 0.25, �2AC = 0.2; �AB = �AC = �BC = 0.98.

Scenario 3 was simulated assuming weak study-level surrogacy when ignoring treatment contrasts as well as within each
treatment contrast, with the following parameters: dAB = (1, 2), dBC = (2, 1), dAC = (3, 3); �jAB(AC,BC)i ∼ Unif (0.15, 0.25),
j=1,2; �wABi = �wBCi = �wACi = 0.6; �1AB = �1BC = �1AC = �2BC = �2AB = �2AC = 0.4; �AB = �AC = �BC = 0.0.

Scenario 4 was simulated assuming a strong study-level surrogacy relationship when ignoring treatment contrasts but no
study-level surrogate relationship within each treatment contrast, with the following parameters: dAB = (1, 1), dBC = (2, 2),
dAC = (3, 3); �jAB(AC,BC)i ∼ Unif (0.05, 0.15), j=1,2; �wABi = �wBCi = �wACi = 0.6; �1AB = 0.2, �1BC = 0.25, �1AC = 0.3,
�2AB = 0.3, �2BC = 0.25, �2AC = 0.2; �AB = �AC = �BC = 0.0.

8.2 Results of the analysis of the simulated data
Table 8 shows the between-studies correlations obtained by applying all models to the data simulated under all four scenarios.
Additional parameters, that include the heterogeneity parameters and the implied intercepts, obtained from these analyses of all
the simulated data scenarios are shown in Tables 10–13. Table 9 shows a range of statistics (described in Section 4.3.1 in the
main manuscript) comparing the models in terms of their value in predicting the treatment effect on the final outcome from the
treatment effect measured on the surrogate endpoint in a cross-validation procedure in all four scenarios. The results from each
scenario are discussed in turn in the following sections.

8.2.1 Scenario 1
As shown in the top part of Table 8, the between-studies correlation obtained from BRMA (across all studies) was not very
high: 0.57 (95% CrI: 0.25, 0.77). Bivariate NMA with the covariance matrix varying across treatment contrasts models the
data in more detail and reveals strong correlation between outcomes within the treatment contrasts, namely 0.79 (0.23, 0.99)
for treatment contrast AB, 0.73 (0.01, 0.99) for BC and 0.84 (0.47, 0.98) for AC when using model 1a. Placing additional
constraints on the covariance matrix by assuming second order consistency in models 1b and 1c reduced uncertainty around the
correlations. Model 1d resulted in a common correlation obtained with the highest precision, however it did not take into account
the differences in the between-studies variances across the treatment contrasts, in contrast to models 1a-c. The heterogeneity
parameters are presented in Table 10 along with the implied intercepts, whose intervals include zero for all models apart from
BRMA and models 1d and 2d (for some contrasts) which also ignore the differences in the heterogeneity patterns of the data.
The right-hand-side column of Table 8 shows the across-treatment correlations �t indicating a weak treatment-level surrogate
relationship. This is due to the differences in the study-level surrogacy patterns across the treatment contrasts as well as the
small number of treatment contrasts.



18 Sylwia Bujkiewicz ET AL

A

B C

FIGURE 5 Scatter plots of the artificial data simulated under scenario 1 (top left), scenario 2 (top right), scenario 3 (bottom
left), scenario 4 (bottom right)and network diagram corresponding to the structure of data for both scenarios.

The top part of Table 9 lists a range of statistics indicating the superiority of the NMA methods in terms of their predictive
valuewhen applying themethods in a cross-validation procedure to data from scenario 1. The largewidth of the predicted interval
obtained from BRMA compared to the width of the CI of the observed treatment effect estimate is due to high uncertainty, but
the ratiowpred∕wobs is reduced when using NMAmodels. Predicted intervals obtained from NMAmodels are between 50% and
58% narrower compared to those obtained from BRMA. The distance between the point estimate of the observed effect from the
predicted effect is also much reduced when using NMA models compared to BRMA. Figure 6 shows predicted effects obtained
(a) using BRMA and (b) from model 1a obtained with higher precision.
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8.2.2 Scenario 2
The second section of Table 8 shows the between-studies correlations for the data simulated under scenario 2. The overall
correlation obtained from BRMA is high: 0.99 (95% CrI: 0.98, 1.00). Bivariate NMA with the variance-covariance matrix
varying across treatment contrasts resulted in high correlations within each treatment contrast, but obtained with much higher
uncertainty compared to BRMA, due to fewer data points within each treatment contrast. The heterogeneity patterns in this
scenario were similar within each treatment contrast and the whole data set. The heterogeneity parameters are shown in Table
11 along with the implied intercepts which in this scenario have intervals containing zero for BRMA and most NMA models
(apart from 1d and 2d which ignore some subtle differences in the heterogeneity patterns across the treatment contrasts) The
across-treatment correlations �t in the right-hand-side column of Table 8 are obtained with high uncertainty due to the small
number of treatment contrasts to estimate the correlation.
The second section of Table 9 shows the statistics for the model comparison in terms of their predictive value, obtained from

the cross-validation procedure. In this scenario, the results obtained from the NMA based models appear similar to those from
BRMA due to the strong study-level surrogacy across all studies as well as within each treatment contrast. Predicted intervals
from NMA models were obtained with only a modest improvement in precision (likely resulting from additional borrowing
of information through the indirect effects), with the reduction in uncertainty between 2% and 9% obtained from BRMA. The
distance between the point estimate of the observed effect and the predicted effect is slightly increased when using NMAmodels
1a-c and 2a-c compared to BRMA, due to reduced data within treatment contrasts.

8.2.3 Scenario 3
The third section of Table 8 shows the between-studies correlations for the data simulated under scenario 3, which indicate the
lack of surrogate relationship at the study level overall (BRMA) and within each treatment contrast (NMA models) as well as
at the treatment level. Heterogeneity parameters and the implied intercepts are shown for completeness in Table 12.
When the surrogate relationship is weak, in practice the cross validation procedure is not carried out. However, for complete-

ness and the methodological considerations we present the relevant statistics in Table 9, which for scenario 3 are in the third
section of the table. The absolute bias of the predicted effects was reduced by over 50% when using the NM models compared
to BRMA. In addition the uncertainty around the predicted effects was also reduced by between 52% and 61%. The assumption
of normality of all data across all studies made in BRMA is unlikely to be satisfied in this data scenario, whereas assuming sep-
arate bivariate normal distributions for each subset of data within each treatment contrast, as in the NMAmodels, is much more
plausible. This more detailed modelling of the distribution of the data, along with the added borrowing of information through
indirect effects, leads to better predictions when using NMA modelling approach.

8.2.4 Scenario 4
The bottom section of Table 8 shows the between-studies correlations for the data simulated under scenario 4, whilst the het-
erogeneity parameters and the implied intercepts are shown in Table 13. The correlation obtained from BRMA is very high;
0.86 (0.73, 0.94). However, as expected, the correlations within each contrast indicate no surrogate relationship at the study
level within these contrasts. Also the interval of the implied intercept obtained from BRMA includes zero, but not the inter-
vals obtained from the NMA models due to the lack of correlation (lack of slope in the data results in positive intercepts for all
contrasts).
The bottom part of Table 9 shows the statistics for model comparison obtained from the cross-validation procedure. Despite

the lack of correlation within each treatment contrast but high correlation across all studies, the predictions obtained from the
NMA models were obtained with higher precision compared to BRMA reducing the absolute bias by 30% and the uncertainty
around the predicted effect by between 28% and 39%. This is largely due to the impact of the indirect effects contributing to the
predicted effects as well as more detailed modelling technique as explained in scenario 3.
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Between-studies correlations
model AB BC AC �t
scenario 1
BRMA 0.54 (0.25, 0.77) NA
bvNMA 1a 0.79 (0.23, 0.99) 0.73 (0.01, 0.99) 0.84 (0.47, 0.98) NA
bvNMA 1b 0.87 (0.55, 0.99) 0.73 (0.14, 0.97) 0.89 (0.66, 0.99) NA
bvNMA 1c 0.85 (0.49, 0.99) 0.68 (0.04, 0.96) 0.88 (0.63, 0.98) NA
bvNMA 1d 0.88 (0.71, 0.97) NA
bvNMA 2a 0.80 (0.27, 0.99) 0.73 (0.03, 0.99) 0.84 (0.44, 0.98) 0.46 (-0.30, 0.93)
bvNMA 2b 0.88 (0.56, 0.99) 0.73 (0.15, 0.97) 0.89 (0.65, 0.99) 0.44 (-0.34, 0.93)
bvNMA 2c 0.86 (0.50, 0.99) 0.67 (0.03, 0.96) 0.87 (0.63, 0.98) 0.45 (-0.34, 0.93)
bvNMA 2d 0.88 (0.72, 0.97) 0.47 (-0.29, 0.93)
scenario 2
BRMA 0.99 (0.98, 1) NA
bvNMA 1a 0.8 (0.29, 0.97) 0.79 (0.16, 0.97) 0.89 (0.61, 0.99) NA
bvNMA 1b 0.82 (0.44, 0.97) 0.83 (0.36, 0.98) 0.89 (0.69, 0.98) NA
bvNMA 1c 0.77 (0.28, 0.96) 0.76 (0.18, 0.97) 0.87 (0.65, 0.98) NA
bvNMA 1d 0.86 (0.72, 0.94) NA
bvNMA 2a 0.79 (0.26, 0.97) 0.81 (0.32, 0.97) 0.89 (0.6, 0.99) 0.61 (-0.19, 0.99)
bvNMA 2b 0.82 (0.44, 0.97) 0.83 (0.35, 0.98) 0.89 (0.69, 0.98) 0.60 (-0.22, 0.99)
bvNMA 2c 0.76 (0.27, 0.96) 0.74 (0.15, 0.97) 0.87 (0.66, 0.98) 0.55 (-0.31, 0.99)
bvNMA 2d 0.86 (0.71, 0.94) 0.53 (-0.26, 0.99)
scenario 3
BRMA 0.4 (0.05, 0.68) NA
bvNMA 1a -0.44 (-0.94, 0.31) -0.14 (-0.88, 0.61) 0.08 (-0.62, 0.7) NA
bvNMA 1b -0.42 (-0.92, 0.31) -0.09 (-0.75, 0.58) 0.01 (-0.65, 0.62) NA
bvNMA 1c -0.5 (-0.94, 0.15) -0.17 (-0.79, 0.48) -0.07 (-0.69, 0.53) NA
bvNMA 1d -0.21 (-0.68, 0.28) NA
bvNMA 2a -0.43 (-0.94, 0.31) -0.12 (-0.84, 0.62) 0.07 (-0.62, 0.7) 0.45 (-0.33, 0.93)
bvNMA 2b -0.43 (-0.93, 0.29) -0.09 (-0.75, 0.58) 0 (-0.65, 0.63) 0.46 (-0.32, 0.93)
bvNMA 2c -0.5 (-0.94, 0.17) -0.16 (-0.78, 0.49) -0.06 (-0.69, 0.55) 0.45 (-0.32, 0.93)
bvNMA 2d -0.21 (-0.68, 0.28) 0.45 (-0.31, 0.93)
scenario 4
BRMA 0.86 (0.73, 0.94) NA
bvNMA 1a -0.04 (-0.66, 0.58) -0.34 (-0.84, 0.34) -0.27 (-0.78, 0.38) NA
bvNMA 1b -0.1 (-0.69, 0.52) -0.32 (-0.8, 0.3) -0.3 (-0.78, 0.32) NA
bvNMA 1c -0.12 (-0.68, 0.46) -0.34 (-0.79, 0.23) -0.32 (-0.77, 0.25) NA
bvNMA 1d -0.3 (-0.65, 0.12) NA
bvNMA 2a -0.05 (-0.66, 0.57) -0.34 (-0.84, 0.32) -0.27 (-0.79, 0.38) 0.55 (-0.27, 0.98)
bvNMA 2b -0.11 (-0.69, 0.52) -0.32 (-0.8, 0.3) -0.3 (-0.78, 0.32) 0.58 (-0.23, 0.99)
bvNMA 2c -0.12 (-0.68, 0.46) -0.34 (-0.79, 0.23) -0.31 (-0.77, 0.26) 0.58 (-0.23, 0.99)
bvNMA 2d -0.29 (-0.64, 0.12) 0.57 (-0.23, 0.99)

TABLE 8 Between-studies correlations, representing study-level surrogacy, for each model under all simulation scenarios. �t
is the correlation corresponding to the treatment-level surrogate relationship.Where only one value is given (models BRMA, 1d
and 2d), the parameters are common across the treatment contrasts.
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poverlap |mobs − mpred| wpred∕wobs � %red.

scenario 1
BRMA 0.98 0.69 4.11 0.24
bvNMA 1a 0.97 0.23 2.05 0.50 50.24
bvNMA 1b 0.96 0.23 1.85 0.53 54.84
bvNMA 1c 0.94 0.25 1.73 0.56 57.89
bvNMA 1d 0.95 0.24 1.76 0.54 57.12
bvNMA 2a 0.97 0.23 2.04 0.50 50.35
bvNMA 2b 0.96 0.23 1.86 0.53 54.80
bvNMA 2c 0.94 0.25 1.73 0.56 57.85
bvNMA 2d 0.95 0.24 1.76 0.54 57.08
scenario 2
BRMA 0.97 0.09 1.9 0.52
bvNMA 1a 0.97 0.11 1.86 0.54 2.33
bvNMA 1b 0.97 0.10 1.83 0.54 4.30
bvNMA 1c 0.94 0.11 1.74 0.56 9.01
bvNMA 1d 0.95 0.11 1.76 0.55 7.73
bvNMA 2a 0.97 0.11 1.86 0.54 2.35
bvNMA 2b 0.97 0.10 1.82 0.55 4.53
bvNMA 2c 0.94 0.11 1.74 0.55 8.95
bvNMA 2d 0.95 0.11 1.76 0.55 7.69
scenario 3
BRMA 0.99 0.79 4.8 0.21
bvNMA 1a 0.92 0.34 2.25 0.42 53.13
bvNMA 1b 0.92 0.34 2.17 0.43 54.59
bvNMA 1c 0.87 0.34 1.87 0.47 60.84
bvNMA 1d 0.90 0.33 1.98 0.46 58.46
bvNMA 2a 0.92 0.34 2.25 0.42 52.99
bvNMA 2b 0.92 0.34 2.18 0.43 54.51
bvNMA 2c 0.88 0.34 1.88 0.47 60.70
bvNMA 2d 0.90 0.33 1.98 0.46 58.43
scenario 4
BRMA 0.96 0.34 5.1 0.2
bvNMA 1a 0.92 0.24 3.76 0.26 27.69
bvNMA 1b 0.92 0.24 3.58 0.27 31
bvNMA 1c 0.89 0.24 3.15 0.3 39.19
bvNMA 1d 0.91 0.24 3.12 0.31 39.21
bvNMA 2a 0.92 0.24 3.76 0.26 27.78
bvNMA 2b 0.92 0.24 3.57 0.27 31.1
bvNMA 2c 0.89 0.24 3.15 0.3 39.23
bvNMA 2d 0.91 0.24 3.12 0.31 39.19

TABLE 9 Comparison of models based on all simulation scenarios.
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model AB BC AC
heterogeneity parameters for surrogate endpoint Y1
BRMA 0.91 (0.52, 1.57)
bvNMA 1a 0.11 (0.01, 0.33) 0.21 (0.05, 0.62) 0.46 (0.15, 1.16)
bvNMA 1b 0.12 (0.03, 0.36) 0.21 (0.07, 0.49) 0.43 (0.18, 0.87)
bvNMA 1c 0.07 (0.02, 0.2) 0.15 (0.05, 0.32) 0.29 (0.13, 0.55)
bvNMA 1d 0.24 (0.12, 0.43)
bvNMA 2a 0.11 (0.01, 0.37) 0.22 (0.05, 0.62) 0.45 (0.15, 1.12)
bvNMA 2b 0.13 (0.03, 0.35) 0.21 (0.07, 0.5) 0.43 (0.18, 0.86)
bvNMA 2c 0.08 (0.02, 0.2) 0.14 (0.05, 0.29) 0.28 (0.13, 0.53)
bvNMA 2d 0.24 (0.12, 0.42)
heterogeneity parameters for final outcome Y2
BRMA 0.93 (0.53, 1.60)
bvNMA 1a 0.35 (0.11, 0.96) 0.07 (0, 0.25) 0.39 (0.13, 1.00)
bvNMA 1b 0.30 (0.12, 0.66) 0.08 (0.01, 0.26) 0.42 (0.17, 0.87)
bvNMA 1c 0.20 (0.08, 0.4) 0.05 (0.00, 0.16) 0.28 (0.12, 0.54)
bvNMA 1d 0.24 (0.12, 0.44)
bvNMA 2a 0.36 (0.11, 0.98) 0.07 (0.00, 0.24) 0.38 (0.13, 0.97)
bvNMA 2b 0.30 (0.12, 0.66) 0.09 (0.01, 0.27) 0.42 (0.16, 0.86)
bvNMA 2c 0.20 (0.08, 0.42) 0.05 (0.01, 0.15) 0.27 (0.12, 0.53)
bvNMA 2d 0.24 (0.12, 0.44)
intercepts �0
BRMA 0.9 (0.16, 1.62)
bvNMA 1a 0.32 (-1.41, 1.58) 0.2 (-0.69, 1.09) 0.65 (-0.52, 1.93)
bvNMA 1b 0.42 (-0.64, 1.23) 0.17 (-0.64, 0.98) 0.33 (-0.59, 1.31)
bvNMA 1c 0.39 (-0.83, 1.29) 0.27 (-0.52, 1.07) 0.43 (-0.48, 1.42)
bvNMA 1d 1.07 (0.76, 1.38) -0.77 (-1.29, -0.24) 0.3 (-0.49, 1.08)
bvNMA 2a 0.25 (-1.44, 1.5) 0.22 (-0.67, 1.12) 0.66 (-0.48, 1.97)
bvNMA 2b 0.41 (-0.67, 1.22) 0.16 (-0.66, 0.97) 0.33 (-0.59, 1.32)
bvNMA 2c 0.38 (-0.78, 1.24) 0.27 (-0.54, 1.08) 0.41 (-0.49, 1.38)
bvNMA 2d 1.06 (0.76, 1.37) -0.77 (-1.29, -0.24) 0.29 (-0.48, 1.08)

TABLE 10 Heterogeneity parameters and intercepts for each model under simulation scenario 1. Where only one value is given
(models BRMA, 1d and 2d), the parameters are common across the treatment contrasts.
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model AB BC AC
heterogeneity parameters for surrogate endpoint Y1
BRMA 0.82 (0.49, 1.35)
bvNMA 1a 0.03 (0, 0.08) 0.04 (0.01, 0.11) 0.1 (0.04, 0.25)
bvNMA 1b 0.03 (0.01, 0.1) 0.06 (0.01, 0.17) 0.08 (0.03, 0.16)
bvNMA 1c 0.02 (0, 0.06) 0.04 (0.01, 0.1) 0.06 (0.03, 0.11)
bvNMA 1d 0.06 (0.03, 0.1)
bvNMA 2a 0.03 (0, 0.08) 0.04 (0.01, 0.12) 0.1 (0.04, 0.26)
bvNMA 2b 0.03 (0.01, 0.1) 0.06 (0.01, 0.17) 0.08 (0.03, 0.15)
bvNMA 2c 0.02 (0, 0.06) 0.04 (0.01, 0.1) 0.06 (0.03, 0.11)
bvNMA 2d 0.06 (0.03, 0.1)
heterogeneity parameters for surrogate endpoint Y2
BRMA 0.78 (0.47, 1.29)
bvNMA 1a 0.06 (0.01, 0.15) 0.04 (0, 0.11) 0.04 (0.01, 0.11)
bvNMA 1b 0.05 (0.02, 0.12) 0.06 (0.01, 0.16) 0.04 (0.01, 0.09)
bvNMA 1c 0.04 (0.01, 0.08) 0.04 (0.01, 0.09) 0.03 (0.01, 0.06)
bvNMA 1d 0.05 (0.02, 0.09)
bvNMA 2a 0.06 (0.02, 0.16) 0.04 (0.01, 0.12) 0.04 (0.01, 0.11)
bvNMA 2b 0.05 (0.02, 0.12) 0.06 (0.01, 0.16) 0.04 (0.01, 0.09)
bvNMA 2c 0.04 (0.01, 0.08) 0.03 (0.01, 0.09) 0.03 (0.01, 0.06)
bvNMA 2d 0.05 (0.02, 0.09)
intercepts �0
BRMA 0.06 (-0.05, 0.16)
bvNMA 1a -0.37 (-1.59, 0.55) 0.43 (-0.41, 1.81) 1.34 (0.72, 2.04)
bvNMA 1b -0.15 (-0.88, 0.48) 0.4 (-0.31, 1.45) 1.17 (0.46, 1.78)
bvNMA 1c -0.1 (-0.94, 0.63) 0.56 (-0.2, 1.75) 1.24 (0.6, 1.84)
bvNMA 1d 0.21 (0, 0.43) 0.44 (0.03, 0.86) 0.65 (0.03, 1.28)
bvNMA 2a -0.29 (-1.36, 0.62) 0.4 (-0.42, 1.54) 1.33 (0.69, 2.04)
bvNMA 2b -0.15 (-0.89, 0.48) 0.41 (-0.3, 1.46) 1.17 (0.46, 1.79)
bvNMA 2c -0.1 (-1.01, 0.65) 0.6 (-0.2, 1.8) 1.25 (0.62, 1.84)
bvNMA 2d 0.21 (0, 0.42) 0.43 (0.02, 0.86) 0.64 (0.03, 1.27)

TABLE 11 Heterogeneity parameters and intercepts for each model under simulation scenario 2. Where only one value is given
(models BRMA, 1d and 2d), the parameters are common across the treatment contrasts.
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model AB BC AC
heterogeneity parameters for surrogate endpoint Y1
BRMA 0.92 (0.52, 1.6)
bvNMA 1a 0.23 (0.06, 0.7) 0.18 (0.03, 0.58) 0.15 (0.03, 0.47)
bvNMA 1b 0.2 (0.06, 0.48) 0.19 (0.04, 0.48) 0.13 (0.03, 0.38)
bvNMA 1c 0.14 (0.04, 0.32) 0.12 (0.03, 0.31) 0.09 (0.02, 0.25)
bvNMA 1d 0.13 (0.06, 0.25)
bvNMA 2a 0.23 (0.06, 0.68) 0.18 (0.03, 0.59) 0.15 (0.03, 0.48)
bvNMA 2b 0.19 (0.06, 0.47) 0.18 (0.04, 0.48) 0.14 (0.03, 0.38)
bvNMA 2c 0.14 (0.04, 0.33) 0.13 (0.03, 0.32) 0.1 (0.02, 0.26)
bvNMA 2d 0.13 (0.06, 0.25)
heterogeneity parameters for surrogate endpoint Y2
BRMA 1.01 (0.57, 1.75)
bvNMA 1a 0.14 (0.03, 0.44) 0.11 (0.01, 0.37) 0.22 (0.05, 0.65)
bvNMA 1b 0.14 (0.03, 0.35) 0.12 (0.02, 0.35) 0.17 (0.05, 0.4)
bvNMA 1c 0.1 (0.02, 0.24) 0.07 (0.01, 0.21) 0.11 (0.03, 0.26)
bvNMA 1d 0.11 (0.05, 0.22)
bvNMA 2a 0.15 (0.03, 0.46) 0.11 (0.01, 0.36) 0.22 (0.05, 0.66)
bvNMA 2b 0.14 (0.03, 0.35) 0.12 (0.02, 0.35) 0.17 (0.05, 0.4)
bvNMA 2c 0.1 (0.03, 0.24) 0.08 (0.01, 0.22) 0.12 (0.04, 0.28)
bvNMA 2d 0.11 (0.05, 0.21)
intercepts �0
BRMA 1.21 (0.42, 2.01)
bvNMA 1a 2.6 (1.86, 3.48) 1.09 (-0.19, 2.65) 2.88 (-0.58, 6.13)
bvNMA 1b 2.59 (1.86, 3.41) 1.04 (-0.14, 2.41) 3.03 (0.29, 5.84)
bvNMA 1c 2.66 (2.02, 3.44) 1.16 (0.1, 2.51) 3.32 (0.83, 6.01)
bvNMA 1d 2.41 (1.85, 3.02) 1.25 (0.36, 2.21) 3.66 (2.26, 5.19)
bvNMA 2a 2.59 (1.85, 3.48) 1.06 (-0.21, 2.57) 2.75 (-0.52, 6.17)
bvNMA 2b 2.59 (1.87, 3.4) 1.04 (-0.15, 2.43) 3.02 (0.32, 5.84)
bvNMA 2c 2.65 (2, 3.43) 1.15 (0.07, 2.53) 3.28 (0.75, 6.11)
bvNMA 2d 2.4 (1.84, 3.01) 1.25 (0.37, 2.22) 3.65 (2.25, 5.19)

TABLE 12 Heterogeneity parameters and intercepts for each model under simulation scenario 3. Where only one value is given
(models BRMA, 1d and 2d), the parameters are common across the treatment contrasts.
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model AB BC AC
heterogeneity parameters for surrogate endpoint Y1
BRMA 0.88 (0.52, 1.47)
bvNMA 1a 0.11 (0.03, 0.31) 0.12 (0.04, 0.33) 0.14 (0.05, 0.39)
bvNMA 1b 0.1 (0.03, 0.25) 0.12 (0.04, 0.29) 0.13 (0.05, 0.3)
bvNMA 1c 0.08 (0.02, 0.19) 0.09 (0.03, 0.22) 0.1 (0.04, 0.23)
bvNMA 1d 0.09 (0.05, 0.16)
bvNMA 2a 0.1 (0.03, 0.3) 0.12 (0.04, 0.33) 0.15 (0.05, 0.41)
bvNMA 2b 0.1 (0.03, 0.25) 0.12 (0.04, 0.29) 0.13 (0.05, 0.3)
bvNMA 2c 0.07 (0.02, 0.18) 0.09 (0.03, 0.21) 0.11 (0.04, 0.23)
bvNMA 2d 0.09 (0.05, 0.16)
heterogeneity parameters for surrogate endpoint Y2
BRMA 0.79 (0.47, 1.31)
bvNMA 1a 0.1 (0.03, 0.29) 0.12 (0.03, 0.33) 0.09 (0.02, 0.28)
bvNMA 1b 0.09 (0.03, 0.23) 0.11 (0.04, 0.25) 0.09 (0.03, 0.22)
bvNMA 1c 0.07 (0.02, 0.16) 0.08 (0.03, 0.18) 0.07 (0.02, 0.16)
bvNMA 1d 0.07 (0.04, 0.14)
bvNMA 2a 0.1 (0.03, 0.29) 0.12 (0.03, 0.33) 0.09 (0.02, 0.26)
bvNMA 2b 0.09 (0.03, 0.23) 0.11 (0.04, 0.25) 0.09 (0.03, 0.23)
bvNMA 2c 0.07 (0.02, 0.16) 0.08 (0.03, 0.18) 0.07 (0.02, 0.16)
bvNMA 2d 0.07 (0.04, 0.13)
intercepts �0
BRMA 0.37 (-0.04, 0.79)
bvNMA 1a 1.04 (0.27, 1.84) 2.73 (1.29, 4.22) 3.69 (2, 5.48)
bvNMA 1b 1.1 (0.37, 1.85) 2.67 (1.43, 3.98) 3.8 (2.13, 5.49)
bvNMA 1c 1.12 (0.47, 1.8) 2.7 (1.58, 3.9) 3.8 (2.35, 5.28)
bvNMA 1d 1.27 (0.84, 1.69) 2.58 (1.8, 3.36) 3.85 (2.66, 5.02)
bvNMA 2a 1.04 (0.28, 1.81) 2.75 (1.34, 4.23) 3.7 (1.96, 5.48)
bvNMA 2b 1.11 (0.38, 1.87) 2.67 (1.42, 3.98) 3.79 (2.11, 5.49)
bvNMA 2c 1.12 (0.47, 1.8) 2.7 (1.58, 3.88) 3.79 (2.35, 5.26)
bvNMA 2d 1.27 (0.84, 1.69) 2.57 (1.78, 3.35) 3.84 (2.66, 5.01)

TABLE 13 Heterogeneity parameters and intercepts for each model under simulation scenario 4. Where only one value is given
(models BRMA, 1d and 2d), the parameters are common across the treatment contrasts.
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a)

b)

FIGURE 6 Predicted effect (gray) obtained from the cross validation procedure are presented along the observed effects: black
(B vs A), red (C vs B) and blue (C vs A), obtained from (a) BRMA and (b) model 1a for data simulated under scenario 1.
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9 ADDITIONAL SIMULATED SCENARIO: MIXED STRENGTH SURROGACY PATTERNS

Additional data scenario, illustrated in Figure 7, was simulated assuming a strong surrogacy relationshipwhen ignoring treatment
contrasts and a mixture of either weak or strong relationships within each treatment contrast, with the following parameters:
dAB = (1, 1), dBC = (2, 2), dAC = (3, 3); �jAB(AC,BC)i ∼ Unif (0.05, 0.15), j=1,2; �wABi = �wBCi = �wACi = 0.98; �1AB = 0.2,
�1BC = 0.25, �1AC = 0.3, �2AB = 0.3, �2BC = 0.25, �2AC = 0.2; �AB = �AC = 0.98 and �BC = 0 (strong surrogacy relationships
for treatment contrasts AB and AC but no relationship for BC).

A

B C

FIGURE 7 Scatter plots of the artificial data simulated under the additional mixed surrogacy scenario and corresponding
network diagram.

Table 14 shows the between-studies correlations for the data simulated under this scenario. The overall correlation obtained
from BRMA is high: 0.94 (95% CrI: 0.88, 0.98). Bivariate NMA with the variance-covariance matrix varying across treatment
contrasts models the data in more detail and reveals no correlation between the treatment effects on the two outcomes within
the BC treatment contrast. Table 15 lists the heterogeneity parameters. Figure 8 shows the predicted effects obtained from the
cross-validation using (a) BRMA and (b) NMA model 1a. When using the NMA model, predictions are obtained with higher
precision for contrasts AB and AC, but not BC where there was no association between the effects on the two outcomes and
which is reflected by the wide predicted intervals. The across-treatment correlations �t in the right-hand-side column of Table 14
are obtained with high uncertainty due to the small number of treatment contrasts to estimate the correlation. Table 16 shows the
statistics for the model comparison in terms of their predictive value, obtained from the cross-validation procedure. The top panel
of the table shows the statistics for all of the data. Similarly as in scenario 1, the large ratio,wpred∕wobs, comparing the width of
the predicted interval obtained from BRMA with the width of the CI of the observed treatment effect estimate is reduced when
using the NMA models. Predicted intervals obtained from NMA models are between 19.6% and 29.3% narrower compared to
those obtained from BRMA. The distance between the point estimate of the observed effect and the predicted effect is slightly
reduced when using NMA models 1a-c and 2a-c compared to BRMA. These improvements, on average, are not as strong as
in scenario 1, due to poor association for the treatment contrast BC. When investigating these statistics within the treatment
contrasts, the improvement is largest for contrast AC where the correlation was highest. The three bottom panels of Table 16
show similar statistics for model comparison but separately for each treatment contrast revealing the reduced uncertainty around
the predicted intervals up to 50% for contrast AC where the correlation was highest. In contrast, small reduction or even increase
in uncertainty of predicted effects was noted for studies in contrast BC where the correlation was weak.
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within-treatment surrogate relationship
model AB BC AC �t
BRMA 0.94 (0.88, 0.98) NA
bvNMA 1a 0.81 (0.34, 0.99) -0.19 (-0.73, 0.43) 0.87 (0.49, 0.99) NA
bvNMA 1b 0.78 (0.2, 0.99) -0.05 (-0.6, 0.53) 0.8 (0.26, 0.99) NA
bvNMA 1c 0.77 (0.22, 0.98) -0.11 (-0.62, 0.43) 0.79 (0.3, 0.99) NA
bvNMA 1d 0.39 (0, 0.69) NA
bvNMA 2a 0.81 (0.32, 0.99) -0.2 (-0.75, 0.44) 0.87 (0.47, 0.99) 0.56 (-0.25, 0.99)
bvNMA 2b 0.77 (0.19, 0.99) -0.04 (-0.59, 0.54) 0.79 (0.26, 0.99) 0.58 (-0.22, 0.99)
bvNMA 2c 0.78 (0.25, 0.99) -0.11 (-0.62, 0.42) 0.79 (0.29, 0.98) 0.59 (-0.26, 0.99)
bvNMA 2d 0.39 (0, 0.69) 0.57 (-0.27, 0.99)

TABLE 14 Between-studies correlations for each model under the additional mixed surrogacy simulation scenario. Where only
one value is given (models BRMA, 1d and 2d), the parameters are common across the treatment contrasts. �t is the correlation
corresponding to the across-treatment surrogate relationship.

model AB BC AC
surrogate endpoint Y1
BRMA 0.85 (0.50, 1.42)
bvNMA 1a 0.04 (0.01, 0.11) 0.12 (0.04, 0.34) 0.11 (0.04, 0.26)
bvNMA 1b 0.05 (0.01, 0.14) 0.08 (0.03, 0.17) 0.14 (0.05, 0.28)
bvNMA 1c 0.03 (0.01, 0.09) 0.06 (0.03, 0.12) 0.1 (0.05, 0.20)
bvNMA 1d 0.08 (0.04, 0.14)
bvNMA 2a 0.04 (0.01, 0.11) 0.12 (0.04, 0.34) 0.11 (0.04, 0.28)
bvNMA 2b 0.05 (0.01, 0.13) 0.08 (0.03, 0.18) 0.14 (0.05, 0.28)
bvNMA 2c 0.03 (0.01, 0.08) 0.06 (0.03, 0.12) 0.10 (0.05, 0.20)
bvNMA 2d 0.08 (0.04, 0.14)
final outcome Y2
BRMA 0.81 (0.48, 1.36)
bvNMA 1a 0.08 (0.02, 0.21) 0.12 (0.04, 0.33) 0.04 (0.01, 0.12)
bvNMA 1b 0.12 (0.04, 0.27) 0.07 (0.03, 0.16) 0.05 (0.02, 0.12)
bvNMA 1c 0.09 (0.03, 0.19) 0.05 (0.02, 0.11) 0.04 (0.01, 0.08)
bvNMA 1d 0.07 (0.03, 0.12)
bvNMA 2a 0.08 (0.02, 0.21) 0.12 (0.04, 0.35) 0.05 (0.01, 0.12)
bvNMA 2b 0.12 (0.04, 0.26) 0.07 (0.03, 0.16) 0.05 (0.02, 0.12)
bvNMA 2c 0.09 (0.03, 0.18) 0.05 (0.02, 0.11) 0.04 (0.01, 0.09)
bvNMA 2d 0.07 (0.03, 0.12)

TABLE 15 Heterogeneity parameters for each model under the additional mixed surrogacy simulation scenario. Where only
one value is given (models BRMA, 1d and 2d), the parameters are common across the treatment contrasts.
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a)

b)

FIGURE 8 Predicted effect (gray) obtained from the cross validation procedure are presented along the observed effects: black
(B vs A), red (C vs B) and blue (C vs A), obtained from (a) BRMA and (b) model 1a for data simulated under scenario 2.
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poverlap |mobs − mpred| wpred∕wobs � %red.

All
BRMA 0.9 0.2 3.55 0.27
bvNMA 1a 0.97 0.16 2.84 0.41 20.2
bvNMA 1b 0.95 0.17 2.76 0.38 21.86
bvNMA 1c 0.93 0.17 2.5 0.41 29.16
bvNMA 1d 0.9 0.2 2.87 0.33 19.5
bvNMA 2a 0.98 0.16 2.83 0.41 20.32
bvNMA 2b 0.95 0.17 2.77 0.38 21.86
bvNMA 2c 0.93 0.17 2.49 0.41 29.34
bvNMA 2d 0.9 0.2 2.87 0.33 19.61
AB
BRMA 1 0.13 3.35 0.31
bvNMA 1a 0.99 0.13 2.37 0.43 28.61
bvNMA 1b 1 0.11 2.81 0.37 15.44
bvNMA 1c 1 0.12 2.59 0.4 21.99
bvNMA 1d 0.98 0.19 2.63 0.39 21.53
bvNMA 2a 0.99 0.13 2.35 0.43 29.02
bvNMA 2b 1 0.11 2.82 0.37 15.23
bvNMA 2c 1 0.12 2.59 0.4 21.97
bvNMA 2d 0.98 0.19 2.63 0.39 21.63
BC
BRMA 0.69 0.37 3.53 0.21
bvNMA 1a 0.95 0.29 4.23 0.24 -17.64
bvNMA 1b 0.86 0.3 3.31 0.28 7.33
bvNMA 1c 0.83 0.3 2.94 0.3 17.79
bvNMA 1d 0.71 0.31 2.93 0.26 17.28
bvNMA 2a 0.95 0.29 4.22 0.24 -17.53
bvNMA 2b 0.86 0.3 3.31 0.28 7.46
bvNMA 2c 0.83 0.3 2.93 0.3 17.98
bvNMA 2d 0.71 0.31 2.92 0.26 17.47
AC
BRMA 1 0.09 3.77 0.28
bvNMA 1a 0.99 0.08 1.91 0.55 49.62
bvNMA 1b 1 0.09 2.17 0.49 42.81
bvNMA 1c 0.98 0.09 1.97 0.52 47.71
bvNMA 1d 1 0.11 3.05 0.35 19.67
bvNMA 2a 0.99 0.08 1.92 0.55 49.47
bvNMA 2b 1 0.09 2.17 0.49 42.88
bvNMA 2c 0.97 0.09 1.96 0.53 48.07
bvNMA 2d 1 0.1 3.04 0.35 19.74

TABLE 16 Comparison of models based on the additional mixed surrogacy simulation scenario overall and by treatment
contrast.
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10 ADDITIONAL COMMENTS ON SIMULATION STUDY

In the simulation study presented in Section 6 of the main manuscript, the data were simulated from model 1a for simplicity, to
allow for generating very clear and simple scenarios. Although by simulating from model 1a we do not explicitly assume second
order consistency, this does not mean that the assumption is not satisfied for the simulated data and in fact the parameters we
choose are such that the second order consistency is satisfied.
Scenario 1 used the following parameters: dAB = (1, 2), dBC = (2, 1), dAC = (3, 3); �jAB(AC,BC)i ∼ Unif (0.15, 0.25), j=1,2;

�wABi = �wBCi = �wACi = 0.6; �1AB = 0.3, �1BC = �1AC = 0.6, �2BC = 0.3, �2AB = �2AC = 0.6; �AB = �AC = �BC = 0.9.
If we denote the indexes b, k, l, for treatments as in models 1a and 1b, as b = A, k = B and l = C , then the first order

consistency (4)says
(

d1BC
d2BC

)

=
(

d1AC − d1AB
d2AC − d2AB

)

(17)

The parameters used give: d1AC − d1AB = 3 − 1 = 2 = d1BC and d2AC − d2AB = 3 − 2 = 1 = d2BC .
For the second order consistency (8) we have:

|�jAC − �jAB| ≤ �jBC ≤ �jAC + �jAB . (18)

For the first outcome we have:

|0.6 − 0.3| ≤ 0.6 ≤ 0.6 + 0.3
0.3 ≤ 0.6 ≤ 0.9

and for the second outcome we have:

|0.6 − 0.6| ≤ 0.3 ≤ 0.6 + 0.6
0.0 ≤ 0.6 ≤ 1.2

In addition, the condition (9) applies to the covariances:

�1BC�2BC�1BC,2BC = �1AC�2AC�1AC,2AC + �1AB�2AB�1AB,2AB − �1AC�2AB�1AC,2AB − �1AB�2AC�1AB,2AC , (19)

We start from the right hand side and re-arrange terms using transitivity equation (3) (dropping study index i):

RHS = cov(�1AC , �2AC ) + cov(�1AB , �2AB) − cov(�1AC , �2AB) − cov(�1AB , �2AC ) =
= cov(�1AC , �2AC ) + cov(�1AB , �2AB) − cov(�1AC , �2AB) − cov(�1AB , (�2AB + �2BC )) =
= cov(�1AC , �2AC ) + cov(�1AB , �2AB) − cov(�1AC , �2AB) − cov(�1AB , �2AB) − cov(�1AB , �2BC ) =

= cov(�1AC , �2AC ) − cov(�1AC , �2AB) − cov((�1AC − �1BC ), �2BC ) (20)
= cov(�1AC , �2AC ) − cov(�1AC , �2AB) − cov(�1AC , �2BC ) + cov(�1BC , �2BC ) (21)
= cov(�1BC , �2BC ) + cov(�1AC , �2AC ) − cov(�1AC , �2AB) − cov(�1AC , (�2AC − �2AB)
= cov(�1BC , �2BC ) + cov(�1AC , �2AC ) − cov(�1AC , �2AB) − cov(�1AC , �2AC ) + cov(�1AC , �2AB)

= cov(�1BC , �2BC )
= LHS

Therefore, although we do not make any assumptions about the second-order consistency when simulating data, this condition
is satisfied provided that the transitivity assumption is valid.
In a similar way, the consistency assumptions can be checked for other simulated scenarios.
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