CHEMBIOCHEM

Supporting Information

A Retro-biosynthesis-Based Route to Generate Pinene-Derived Polyesters

Arne Stamm⁺,^[a, b] Antonino Biundo⁺,^[a, b] Björn Schmidt,^[a, b] Jörg Brücher,^[e] Stefan Lundmark,^[f] Peter Olsén,^[a] Linda Fogelström,^[a, d] Eva Malmström,^[a, d] Uwe T. Bornscheuer,^[g] and Per-Olof Syrén^{*[a, b, c, d]}

cbic_201900046_sm_miscellaneous_information.pdf

Table of contents

Sequences	S2
Primers for construction of the F246A variant	S3
Figure S1. SDS-PAGE analysis	S3
Figure S2. GC-spectra of the "normal lactone" 10	S4
Figure S3. ¹ H-NMR spectra from enzymatic upscaling	S4
Figure S4. ¹ H-NMR spectra	S5
Figure S5. ¹ H-NMR spectra	S5
Figure S6. High-resolution GC/MS-ToF mass spectrum	S6
Figure S7. HSQC correlation plot	S7
Figure S8. H,H-COSY	S8
Figure S9. Molecular weight distributions	S9
Figure S10. ¹ H-NMR spectra of precipitated polymers	S9
Supplementary references	S10

Sequences of CHMO_{Acineto}_QM

The gene and protein sequences of CHMO_{Acineto}_QM are given below:

5'-

atgggcagcagccatcatcatcatcatcacagcagcggcctggtgccgcgcggcagccatatggctagcatgactg gtggacagcaaatgggtcgcggatccatgtcacaaaaatggattttgatgctatcgtgattggtggtgttttggcgga ctttatgcagtcaaaaaattaagagacgagctcgaacttaaggttcaggcttttgataaagccacggatgtcgcaggta cttggtactggaaccgttacccaggtgcattgacggatacagaaacccacctctactgctattcttgggataaagaatta ctacaatcgctagaaatcaagaaaaaatatgtgcaaggccctgatgtacgcaagtatttacagcaagtggctgaaaa gcatgatttaaagaagagctatcaattcaataccgcggttcaatcggctcattacaacgaagcagatgccttgtgggaa gtcaccactgaatatggtgataagtacacggcgcgtttcctcatcactgctttaggcttattgtctgcgcctaacttgccaa acatcaaaggcattaatcagtttaaaggtgagctgcatcataccagccgctggccagatgacgtaagttttgaaggta aacqtqtcqqcqtqattqqtacqqqttccaccqqtqttcaqqttattacqqctqtqqcacctctqqctaaacacctcactq tcttccagcgttctgcacaatacagcgttccaattggcaatgatccactgtctgaagaagatgttaaaaagatcaaaga agcgtatcagctgaagaacgcaaggcagtttttgaaaaggcatggcaaacaggtggcggtttccgtttcatgtttgaaa ctttcggtgatattgccaccaatatggaagccaatatcgaagcgcaaaatttcattaagggtaaaattgctgaaatcgtc aaagatccagccattgcacagaagcttatgccacaggatttgtatgcaaaacgtccgttgtgtgacagtggttactaca acacctttaaccgtgacaatgtccgtttagaagatgtgaaagccaatccgattgttgaaattaccgaaaacggtgtgaa actcgaaaatggcgatttcgttgaattagacatgctgatactggccacaggttttgatgccgtcgatggcaactatgtgcg catggacattcaaggtaaaaacggcttggccattaaagactactggaaagaaggtccgtcgagctatatgggtgtctg cgtaaataactatccaaacatgttcatggtgcttggaccgaatggcccgtttaccaacctgccgccatcaattgaatcac aggtggaatggatcagtgataccattcaatacacggttgaaaacaatgttgaatccattgaatgcacaaaagaagcg gaagaacaatggactcaaacttgcgccaatattgcggaaatgaccttattccctaaagcgcaatcctggatttttggtgc gaatatcccgggcaagaaaaacacggtttacttctatctcggtggtttaaaagaatatcgcagtgcgctagccaactgc aaaaaccatgcctatgaaggttttgatattcaattacaacgttcagatatcaagcaacctgccaatgcctaa-3'

Translated sequence of CHMO_{Acineto}_QM:

MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGSMSQKMDFDAIVIGGGFGGL YAVKKLRDELELKVQAFDKATDVAGTWYWNRYPGALTDTETHLYCYSWDKELLQS LEIKKKYVQGPDVRKYLQQVAEKHDLKKSYQFNTAVQSAHYNEADALWEVTTEYG DKYTARFLITALGLLSAPNLPNIKGINQFKGELHHTSRWPDDVSFEGKRVGVIGTGST GVQVITAVAPLAKHLTVFQRSAQYSVPIGNDPLSEEDVKKIKDNYDKIWDGVWNSAL AFGLNESTVPAMSVSAEERKAVFEKAWQTGGGFRFMFETFGDIATNMEANIEAQNF IKGKIAEIVKDPAIAQKLMPQDLYAKRPLCDSGYYNTFNRDNVRLEDVKANPIVEITEN GVKLENGDFVELDMLILATGFDAVDGNYVRMDIQGKNGLAIKDYWKEGPSSYMGV CVNNYPNMFMVLGPNGPFTNLPPSIESQVEWISDTIQYTVENNVESIECTKEAEEQ WTQTCANIAEMTLFPKAQSWIFGANIPGKKNTVYFYLGGLKEYRSALANCKNHAYE GFDIQLQRSDIKQPANA

For reference, the original protein sequence of wild type CHMO_{Acineto} (GenBank: BAA86293.1^[1]), is given below:

MSQKMDFDAIVIGGGFGGLYAVKKLRDELELKVQAFDKATDVAGTWYWNRYPGAL TDTETHLYCYSWDKELLQSLEIKKKYVQGPDVRKYLQQVAEKHDLKKSYQFNTAVQ SAHYNEADALWEVTTEYGDKYTARFLITALGLLSAPNLPNIKGINQFKGELHHTSRW PDDVSFEGKRVGVIGTGSTGVQVITAVAPLAKHLTVFQRSAQYSVPIGNDPLSEEDV KKIKDNYDKIWDGVWNSALAFGLNESTVPAMSVSAEERKAVFEKAWQTGGGFRFM FETFGDIATNMEANIEAQNFIKGKIAEIVKDPAIAQKLMPQDLYAKRPLCDSGYYNTF NRDNVRLEDVKANPIVEITENGVKLENGDFVELDMLICATGFDAVDGNYVRMDIQGK NGLAMKDYWKEGPSSYMGVTVNNYPNMFMVLGPNGPFTNLPPSIESQVEWISDTI QYTVENNVESIEATKEAEEQWTQTCANIAEMTLFPKAQSWIFGANIPGKKNTVYFYL GGLKEYRSALANCKNHAYEGFDIQLQRSDIKQPANA

Construction of the F246A variant

Primers in the 5' to 3' direction are specified below:

F246A_f

ggtgtatggaattcagcccttgccGCGggcctgaatg

F246A_r

ggcactgtgctttcattcaggccCGCggcaagg

Figure S1. SDS-PAGE analysis (4-15%) of CHMO_{Acineto}_QM and its variants expressed in *E. coli* BL21(DE3). Samples were taken after 20 h of induction (with 0.05 mM IPTG) at 25°C. *Lane M*, pre-stained protein molecular ladder SeeBlue Plus 2. Relevant bands of CHMO_{Acineto}_QM and variants are indicated by the arrow.

Figure S2. GC-spectra of the "normal lactone" 10 chemically (*purple*) and enzymatically (*black*) produced.

Figure S3. ¹H-NMR spectra of extracted reaction mixture from enzymatic upscaling (top) compared to ¹H-NMR of compound **10** (bottom). Rectangles used to highlight the characteristic peaks of compound **10** (grey) and **9** (red).

Figure S4. ¹H-NMR spectra of (I.) a mixture containing both 8 and 9 and (II.) the chemically reduced mixture of (I.) in order to contain only 9.

Figure S5 ¹H-NMR spectra of 10.

Figure S6. High-resolution GC/MS-ToF mass spectrum of **10.** Spectra was acquired with chemical ionization and methane as a reagent gas.

Figure S7. HSQC correlation plot of 11 polymerized using MSA/benzyl alcohol for 24 h at 70 $^{\circ}$ C.

Figure S8. H,H-COSY of **11** polymerized with MSA/benzyl alcohol for 24 h at 70 °C. Rectangles indicate the coupling between the specific protons. Large black: $J-F_2$ coupling, large red: $J-F_1$ coupling, small black: F_1-F_2 coupling, small red: B_1-B_2 coupling, blue: $E-F_2$ coupling and green: C-D coupling.

Figure S9. Molecular weight distributions for the synthesized polyesters. Black: poly- ϵ DL; Red: poly(ϵ DL- ϵ VaL); Blue: poly- ϵ VaL.

Figure S10. ¹H-NMR spectra of precipitated polymers (top: poly- ϵ DL; middle: poly(ϵ DL- ϵ VaL); bottom: poly- ϵ VaL) polymerized using MSA/benzyl alcohol for 24 h at 70 °C.

Supplementary References

[1] Y. C. Chen, O. P. Peoples, C. T. Walsh, *J. Bacteriol.* **1988**, *170*, 781-789.