

Supporting Information

5-(Cyano)dibenzothiophenium Triflate: A Sulfur-Based Reagent for Electrophilic Cyanation and Cyanocyclizations

Xiangdong Li, Christopher Golz, and Manuel Alcarazo*

anie_201904557_sm_miscellaneous_information.pdf

Supporting Information

Page
2
3
3
14
31
41
45
47
48
62
64

1. General methods

All dry solvents were obtained from a solvent purification system MBSPS7 from M.Braun. All reactions were carried out under nitrogen atmosphere unless stated otherwise. ¹H and ¹³C NMR spectra were recorded at room temperature in CDCl₃, CD₃CN or DMSO-d₆ on Bruker AV 500, 400 or DPX 300 NMR spectrometer. ¹H NMR spectra was recorded with CDCl₃ (tetramethylsilane, $\delta = 0.00$ ppm), CD₃CN ($\delta = 1.94$ ppm), Methylene Chloride- d_2 or DMSO- d_6 ($\delta = 2.50$ ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.16 ppm), CD₃CN (δ = 1.32 ppm) or DMSO- d_6 (δ = 39.52 ppm) as internal reference. Mass spectra were measured on a Finnigan MAT 8200 (70 eV) (EI), a Finnigan MAT 95 (ESI), or a Bruker APEX III FT-MS (7 T magnet) mass spectrometer. IR spectra were recorded on a JASCO FT/IR-4100 spectrometer at room temperature, the stretching frequencies are reported in wavenumbers (cm⁻¹). Column chromatography was performed either on Merck 60 (40-63 µm) silica gel or Biotage One automated column chromatography system on CHROMABOND® Flash BT 15g (or 25g) SiOH 40-63 µm from Macherey-Nagel. Thin-layer chromatography (TLC) analysis was performed using POLYGRAM® SIL G/UV254 TLC plates from Macherey-Nagel and visualized by UV irradiation and/or phosphomolybdic acid staining. All commercially available compounds (Acros, ABCR, Alfa Aesar, Aldrich, Fluorochem, TCI) were used as received unless stated otherwise.

2. Synthesis of 5-(cyano)dibenzothiophenium triflate 9

Tf₂O (25 mmol, 1 equiv, 4.205 mL) was added dropwise within 5 minutes to a solution of dibenzo[*b*,*d*]thiophene 5-oxide **10**^[1] (1.0 equiv., 25 mmol, 5.007 g) in dry dichloromethane (350 mL) at -50°C under N₂. After stirring the resulting mixture for 1 hour, TMSCN (25 mmol, 1.0 equiv., 3.35 mL) was added dropwise and the mixture was further stirred at -50°C for 8 additional hours. Then, the cooling system was removed, and the formed suspension was allowed reaching room temperature. Filtration of the solvents afforded **9** as a white/beige solid, which was further washed with dichloromethane (2 x 50 mL), and finally dried under vacuum (5.39 g,15.0 mmol, 60%). ¹H NMR (300 MHz, Acetonitrile-*d*₃) δ = 8.56 (d, *J* = 8.4 Hz, 2H), 8.34 (dd, *J* = 7.8, 1.2 Hz, 2H), 8.04 (td, *J* = 7.8, 1.2 Hz, 2H), 7.89-7.83 (m, 2H). ¹³C NMR (75 MHz, Acetonitrile-*d*₃) δ 141.7, 137.2, 133.7, 130.0, 127.2, 126.4, 121.9 (q, *J* = 320.4 Hz), 103.9. IR (neat): 3097, 2192, 1578, 1484, 1448, 1423, 1278, 1250, 1221, 1174, 1161, 1152, 1024, 780, 754, 700, 648, 631, 575, 514 cm⁻¹; HRMS calculated m/z for C₁₃H₈NS⁺ [M-OTf]⁺: 210.0372, found (ESI) 210.0365.

3. Preparation of substrates

Anilines S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S27, carbazole S12, amine S13, thiols S14, S15, S16, S17, S18, silyl enol ether S20, alkene S21, pyrrole S22, indoles S25, 39, 42, 3*H*-benzo[*e*]indole 44, and arenes S26, S28 are commercially available and used as received. Silyl enol ether S19 is commercially available and was freshly distilled before use. Indoles S23,^[2] S24^[3] were prepared according to the previously reported literature procedures.

Tryptamine derivatives **S29**,^[4] **S30**,^[5] **S31**,^[6] **S32**,^[7] **S35**,^[8] **S36**,^[9] **S38**,^[5] tryptophol derivatives **S40**,^[10] **S41**,^[10] **S42**,^[11] and indole derivatives **S44**,^[12] **S48**,^[13] **S49**^[13] were prepared according to the previously reported literature procedures. Tryptophol **S39** is commercially available and used as received. Tryptamine derivatives **S33**, **S34**, **S37** and indole derivatives **S43**, **S45**, **S46**, **S47**, **S50**, **S51** were prepared according to the following procedure:

Procedure for the preparation of S34

In a sealed tube, 5-chloropentan-2-one (20 mmol, 2.0 equiv, 2.29 mL) was added dropwise to a solution of phenylhydrazine (1.0 equiv., 10 mmol, 985 μ L) in ethanol (30 mL) at room temperature. The resulting mixture was stirred at 110 °C for 10 h. After cooling to room temperature, the solvent was removed under vacuum. Then, DCM (20 mL) and NaOH aqueous (800 mg NaOH dissolved in 20 mL H₂O) was added. The resulting mixture was

stirred at 0 °C for 5 minutes. Then, ethyl chloroformiate (952 μL, 10 mmol, 1.0 equiv) was added to the mixture dropwise at 0 °C and the resulting mixture was stirred at room temperature for 5 h. The solution thus obtained was extracted with DCM, washed with brine and dried over anhydrous Na₂SO₄. Solvent evaporation from the organic phase under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 4:1) to afford **S34** (1.53 g, 62% overall yield) as a colorless dense oil. ¹H NMR (400 MHz, DMSO-*d*₆, 100 °C) δ = 10.34 (bs, 1H), 7.45 – 7.38 (m, 1H), 7.25-7.22 (m, 1H), 7.01 – 6.89 (m, 2H), 6.52 (bs, 1H), 4.02 (q, *J* = 7.2 Hz, 2H), 3.25 – 3.13 (m, 2H), 2.85 – 2.76 (m, 2H), 2.34 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆, 100 °C) δ = 155.7, 135.0, 131.5, 128.1, 119.3, 117.5, 116.7, 109.8, 107.2, 58.9, 40.9, 24.1, 14.0, 10.5. IR (neat): 3398, 3318, 2979, 2931, 1623, 1517, 1461, 1436, 1383, 1337, 1300, 1171, 1138, 1107, 1077, 1032, 1010, 955, 873, 778, 671, 584, 565, 507 cm⁻¹; HRMS calculated m/z for C₁₄H₁₉N₂O₂⁺ [M+H]⁺: 247.1441, found (ESI) 247.1444.

Procedure for the preparation of S33

To a stirred solution of **S34** (665 mg, 2.70 mmol, 1.0 equiv) in DMF (20 mL), NaH (w/w 60% in mineral oil, 119 mg, 2.97 mmol, 1.1 equiv) was added under nitrogen flow. The resulting mixture was stirred at 0 °C for 0.5 h, Then, benzyl bromide (353 µL, 2.97 mmol, 1.1 equiv) was added to the mixture dropwise. The resulting mixture was stirred at room temperature for 4 h. The reaction was quenched with water, extracted with ethyl acetate and dried over Na₂SO₄. Evaporation of the organic solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 8:1) to afford **S33** (375 mg, 41% yield) as a light yellow sticky oil. ¹H NMR (400 MHz, DMSO-*d*₆, 100 °C) δ = 7.55 – 7.50 (m, 1H), 7.31 – 7.24 (m, 3H), 7.24 – 7.18 (m, 1H), 7.06 – 6.97 (m, 4H), 6.56 (s, 1H), 5.36 (s, 2H), 4.01 (q, *J* = 7.2 Hz, 2H), 3.28 – 3.16 (m, 2H), 2.90-2.87 (m, 2H), 2.32 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆, 100

^oC) $\delta = 155.7, 138.0, 135.9, 132.9, 127.9, 127.4, 126.3, 125.6, 119.8, 118.1, 117.0, 108.7, 108.1, 58.9, 45.5, 40.9, 24.4, 14.0, 9.2. IR (neat): 3352, 2978, 2929, 1689, 1612, 1536, 1495, 1468, 1452, 1417, 1336, 1287, 1250, 1204, 1177, 1139, 1090, 1035, 980, 924, 878, 776, 737, 694, 608, 561, 520 cm⁻¹; HRMS calculated m/z for <math>C_{21}H_{25}N_2O_2^+$ [M+H]⁺: 337.1911, found (ESI) 337.1917.

Procedure for the preparation of S37

To a stirred solution of **S36**^[9] (2.22 g, 7.20 mmol, 1.0 equiv) in DMF (50 mL), NaH (w/w 60% in mineral oil, 317 mg, 7.92 mmol, 1.1 equiv)was added under nitrogen flow. The resulting mixture was stirred at 0 °C for 0.5 h. Then, benzyl bromide (856 µL, 7.20 mmol, 1.0 equiv) was added to the mixture dropwise. The resulting mixture was stirred at room temperature for 10 h. The reaction was quenched with water, extracted with ethyl acetate, dried over Na₂SO₄. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 20:1 to 10:1) to afford **S37** (1.30 g, 45% yield) as a light yellow sticky oil. ¹H NMR (400 MHz, DMSO-*d*₆, 100 °C) δ = 7.54 – 7.48 (m, 1H), 7.45 – 7.08 (m, 9H), 7.06 – 6.95 (m, 4H), 6.80 (s, 1H), 5.36 (s, 2H), 5.05 (s, 2H), 3.31 – 3.21 (m, 2H), 2.92-2.89 (m, 2H), 2.30 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆, 100 °C) δ = 155.5, 137.9, 136.9, 135.9, 132.9, 127.9, 127.6, 127.4, 127.0, 126.9, 126.3, 125.6, 119.8, 118.1, 117.0, 108.7, 108.1, 64.7, 45.5, 41.0, 24.4, 9.2. IR (neat): 3380, 2942, 1693, 1532, 1496, 1468, 1453, 1336, 1286, 1242, 1179, 1135, 1002, 737, 697, 608, 555 cm⁻¹; HRMS calculated m/z for C₂₆H₂₇N₂O₂⁺ [M+H]⁺: 399.2067, found (ESI) 399.2068.

Procedure for the preparation of S43

To a stirred solution of indole-3-acetic acid (876 mg, 5.0 mmol, 1.0 equiv) in DCM (25 mL) was added 4-dimethylaminepyridine (30.5 mg, 0.25 mmol, 0.05 equiv), dicyclohexylcarbodiimide (1.135 g, 5.5 mmol, 1.1 equiv) and 2-(trimethylsilyl)ethan-1-ol (1.43 mL, 10 mmol, 2.0 equiv), sequentially. The resulting mixture was stirred at room temperature for 28 h. Then, the reaction mixture was filtered through a pad of celite. The obtained organic phase was washed with water and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 10:1) to afford 2-(trimethylsilyl)ethyl 2-(1*H*-indol-3-yl)acetate.^[14]

To a stirred solution of 2-(trimethylsilyl)ethyl 2-(1*H*-indol-3-yl)acetate (1.19 g, 4.33 mmol, 1.0 equiv) in DMF (25 mL), NaH (w/w 60% in mineral oil, 190 mg, 4.76 mmol, 1.1 equiv) was added under nitrogen. The resulting mixture was stirred at 0 °C for 0.5 h. Then, benzyl bromide (540 μ L, 4.54 mmol, 1.05 equiv) was added to the mixture dropwise. The resulting reaction mixture was stirred at room temperature for 4 h and subsequently quenched with water and extracted with ethyl acetate. The organic phase wes dried over Na₂SO₄, the solvent evaporated under the reduced pressure and finally the residue was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 50:1) to afford **S43** (656 mg, 41% yield) as a colorless oil.

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.68 (d, *J* = 8.0 Hz, 1H), 7.36-7.27 (m, 4H), 7.26 – 7.11 (m, 5H), 5.32 (s, 2H), 4.31 – 4.19 (m, 2H), 3.80 (s, 2H), 1.06-1.02 (m, 2H), 0.06 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 172.3, 137.6, 136.7, 128.9, 128.1, 127.7, 127.2, 127.0, 122.0, 119.5, 119.3, 109.8, 107.9, 63.1, 50.1, 31.7, 17.5, -1.4. IR (neat): 2952, 1727, 1614, 1496, 1467, 1454, 1357, 1334, 1248, 1147, 1041, 1014, 963, 857, 834, 735, 695, 608, 551 cm⁻¹; HRMS calculated m/z for C₂₂H₂₈NO₂Si⁺ [M+H]⁺: 366.1884, found (ESI) 366.1878.

Procedure for the preparation of S45^{[15] [16] [17]}

To a stirred solution of formaldehyde (37 wt% in water, 1.65 mL, 22 mmol, 1.1 equiv.) in 1,4-dioxane (100 mL) water (1.54 mL) and glacial acetic acid (20 mL) were added sequentially. The resulting solution was stirred at 0 °C for 5 minutes. Then, dimethylamine (40 wt% in water, 2.73 mL, 22 mmol, 1.1 equiv.) and 2-methyl-1*H*-indole (2.624, 20 mmol, 1.0 equiv.) were added to the mixture, sequentially. The mixture was stirred at 0°C for 2 h, and for further 5 hours at room temperature. Then, the reaction was treated with NaOH aqueous (16 g NaOH dissolved in 200 mL H₂O) at 0 °C. The resulting mixture was extracted with ethyl acetate, and the organic phase was washed with brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was used directly for the next step without further purification.^[15]

Diethyl malonate (3.04 mL, 20 mmol, 1.0 equiv.) and ethyl propiolate (2.03 mL, 20 mmol, 1.0 equiv.) were added sequentially to a stirred solution of the above residue in THF (100 mL). The resulting solution was stirred at room temperature for 12 h. Then, the reaction was quenched with water, extracted with ethyl acetate and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 8:1) to afford diethyl 2-((2-methyl-1*H*-indol-3-yl)methyl)malonate.^[16]

NaH (w/w 60% in mineral oil, 120 mg, 3.0 mmol, 1.0 equiv) was added at 0 °C under nitrogen flow to a stirred solution of diethyl 2-((2-methyl-1*H*-indol-3-yl)methyl)malonate (910 mg, 3.0 mmol, 1.0 equiv) in THF (15 mL).^[17] The resulting mixture was stirred at that temperature for 0.5 h. Then, 1-bromo-3-methylbut-2-ene (347 μ L, 3.0 mmol, 1.0 equiv) was added to the mixture dropwise and the resulting solution was stirred at room temperature for 2 h. Then, it was quenched with saturated NH₄Cl (aq) and extracted with ethyl acetate. The organic phase was finally dried over anhydrous Na₂SO₄ and the solvent evaporated under reduced pressure. Compound **S45** (931 mg, 84% yield) was obtained as a light yellow sticky oil after purification by column chromatography on silica gel (eluent: hexane/ethyl acetate = 8:1 to 4:1).

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.84 (bs, 1H), 7.44 (d, J = 7.6, 1H), 7.19-7.16 (m, 1H), 7.07-6.98 (m, 2H), 5.27 – 5.19 (m, 1H), 4.17 – 4.00 (m, 4H), 3.40 (s, 2H), 2.59 (d, J = 6.8 Hz, 2H), 2.30 (s, 3H), 1.74 (d, J = 1.6 Hz, 3H), 1.57 (s, 3H), 1.17 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 172.0, 135.3, 135.2, 133.4, 129.6, 121.0, 119.1, 118.7, 118.7, 110.1, 106.4, 61.2, 59.1, 31.6, 27.9, 26.2, 18.3, 14.0, 12.2. IR (neat): 3350, 2979, 1750, 1713, 1493, 1462, 1444, 1366, 1323, 1297, 1248, 1211, 1175, 1117, 1096, 1071, 1053, 1026, 858, 816, 740, 665, 624, 567, 542, 517 cm⁻¹; HRMS calculated m/z for C₂₂H₃₀NO₄⁺ [M+H]⁺: 372.2169, found (ESI) 372.2164.

Procedure for the preparation of S46

Diethyl malonate (911 µL, 6.0 mmol, 1.0 equiv.) and ethyl propiolate (669 µL, 6.6 mmol, 1.1 equiv.), were added sequentially to a stirred solution of 1-(5-methoxy-2-methyl-1*H*-indol-3-yl)-*N*,*N*-dimethylmethanamine (1.44 g, 6.6 mmol, 1.1 equiv.) in THF (30 mL). The resulting solution was stirred at room temperature for 18 h. Then, the reaction was quenched with water, extracted with ethyl acetate, washed with brine, and the organic phase was dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (hexane/ethyl acetate = 4:1) to afford diethyl 2-((5-methoxy-2-methyl-1*H*-indol-3-yl)methyl)malonate.^[16]

NaH (w/w 60% in mineral oil, 198 mg, 4.94 mmol, 1.1 equiv) was added to a stirred solution of diethyl 2-((5-methoxy-2-methyl-1*H*-indol-3-yl)methyl)malonate (1.50 g, 4.49 mmol, 1.0 equiv) in THF (15 mL) at 0 °C under nitrogen. The resulting mixture was stirred at 0 °C for 0.5 h; then, allyl bromide (427 μ L, 4.94 mmol, 1.1 equiv) was added to the mixture dropwise and the resulting mixture stirred at room temperature for 3 h. Then, the reaction was quenched with water, extracted with ethyl acetate and the organic phase was dried over anhydrous

Na₂SO₄. Evaporation of the solvent under the reduced pressure let a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 5:1) to afford **S46** (1.19 g, 71% yield) as a light yellow sticky oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.77 (bs, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.72 (dd, *J* = 8.4, 2.4 Hz, 1H), 5.98-5.88 (m, 1H), 5.20 – 5.04 (m, 2H), 4.21 – 3.98 (m, 4H), 3.82 (s, 3H), 3.37 (s, 2H), 2.66 (d, *J* = 7.2 Hz, 2H), 2.30 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 171.7, 153.9, 134.3, 133.5, 130.4, 130.0, 118.7, 110.8, 110.8, 106.2, 101.5, 61.3, 59.4, 56.1, 37.9, 28.5, 14.1, 12.5. IR (neat): 3360, 2936, 1747, 1716, 1590, 1487, 1449, 1365, 1303, 1254, 1200, 1093, 1045, 1010, 967, 930, 891, 867, 843, 829, 792, 775, 745, 690, 670, 626, 583, 541 cm⁻¹; HRMS calculated m/z for C₂₁H₂₈NO₅⁺ [M+H]⁺: 374.1962, found (ESI) 374.1963.

Procedure for the preparation of S47

Diethyl malonate (1.52 mL, 10 mmol, 1.0 equiv.) and ethyl propiolate (1.114 mL, 11 mmol. 1.1 equiv.) subsequently added stirred solution of were to a N-((1H-indol-3-yl)methyl)-N-ethylethanamine (2.225 g, 11 mmol, 1.1 equiv.) in THF (30 mL). The resulting solution was stirred at room temperature for 16 h, and then the reaction was quenched with water, extracted with ethyl acetate and the organic phase dried over anhydrous Na₂SO₄. The organic solvent was evaporated under reduced pressure and the residue obtained was used directly for the next step without further purification.

NaH (w/w 60% in mineral oil, 400 mg, 10.0 mmol, 1.0 equiv) was added at 0 °C under nitrogen to a stirred solution of the above residue in THF (50 mL). The resulting mixture was stirred at 0 °C for 0.5 h and then, allyl bromide (865 μ L, 10.0 mmol, 1.0 equiv) was added to the mixture dropwise. The solution thus obtained was stirred at room temperature for 1 h and then quenched with water and extracted with ethyl acetate. The organic phase was subsequently dried over anhydrous Na₂SO₄ and the solvent evaporated under the reduced pressure. The residue obtained was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 10:1) to afford **S47** (976 mg, 30% yield) as a light yellow sticky oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 8.10 (bs, 1H), 7.58-7.55 (m, 1H), 7.32-7.29 (m, 1H), 7.17-7.13 (m, 1H), 7.10-7.06 (m, 1H), 6.98 (d, *J* = 2.8 Hz, 1H), 5.92 – 5.72 (m, 1H), 5.17 – 5.13 (m, 1H), 5.13 – 5.07 (m, 1H), 4.20 – 4.12 (m, 2H), 4.12 – 4.03 (m, 2H), 3.42 (d, *J* = 0.8 Hz, 2H), 2.68 (dt, *J* = 7.6, 1.6 Hz, 2H), 1.19 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 171.4, 135.9, 133.1, 128.3, 123.3, 122.0, 119.4, 119.1, 119.0, 111.2, 110.2, 61.4, 58.9, 37.4, 28.0, 14.1. IR (neat): 3347, 2976, 1752, 1714, 1641, 1459, 1444, 1361, 1290, 1245, 1193, 1151, 1097, 1066, 1039, 1017, 916, 860, 803, 745, 656, 614, 578, 563, 545 cm⁻¹; HRMS calculated m/z for C₁₉H₂₄NO₄⁺ [M+H]⁺: 330.1700, found (ESI) 330.1701.

Procedure for the preparation of S50

NaH (w/w 60% in mineral oil, 120 mg, 3.0 mmol, 1.0 equiv) was added at 0 °C under nitrogen to a stirred solution of diethyl 2-((2-methyl-1*H*-indol-3-yl)methyl)malonate (910 mg, 3.0 mmol, 1.0 equiv) in THF (15 mL). The resulting mixture was stirred at 0 °C for 0.5 h. and then allyl bromide (260 µL, 3.0 mmol, 1.0 equiv) was added dropwise and stirred at room temperature for two additional hours. Then, the reaction was quenched with saturated NH₄Cl solution, extracted with ethyl acetate and the organic phase was dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 10:1 to 5:1) to afford **S50** (852 mg, 83% yield) as a light yellow sticky oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.82 (bs, 1H), 7.46 (d, *J* = 7.6, 1H), 7.22-7.19 (m, 1H), 7.12 – 6.98 (m, 2H), 5.97-5.87 (m, 1H), 5.20 – 5.01 (m, 2H), 4.25 – 3.93 (m, 4H), 3.40 (s, 2H), 2.66-2.64 (m, 2H), 2.34 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 171.6, 135.3, 133.5, 133.4, 129.6, 121.1, 119.2, 118.7, 118.7, 110.1, 110.1, 106.4, 61.3, 59.4, 38.0, 28.4, 14.1, 12.5. IR (neat): 3372, 2981, 1743, 1713, 1491, 1462, 1440, 1392, 1366, 1297, 1198, 1158, 1120, 1096, 1062,

1046, 1020, 946, 862, 744, 690, 667, 611, 579, 564, 515 cm⁻¹; HRMS calculated m/z for $C_{20}H_{26}NO_4^+$ [M+H]⁺: 344.1856, found (ESI) 344.1856.

Procedure for the preparation of S51

To a stirred solution of formaldehyde (37 wt% in water, 825 μ L, 11 mmol, 1.1 equiv.) in 1,4-dioxane (50 mL) water (770 μ L) and glacial acetic acid (10 mL) were added sequentially. The resulting solution was stirred at 0 °C for 5 minutes. Then, dimethylamine (40 wt% in water, 1.365 mL, 11 mmol, 1.1 equiv.) and 2,5-dimethyl-1*H*-indole (1.452, 10 mmol, 1.0 equiv.) were added and the mixture stirred 2 h at 0°C and 10 additional hours at room temperature. Then, the reaction was treated with aqueous NaOH solution (8 g NaOH dissolved in 100 mL H₂O) at 0 °C and the resulting mixture extracted with ethyl acetate and washed with brine. The organic solvents were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The residue thus obtained was used directly for the next step without further purification.^[15]

Diethyl malonate (1.52 mL, 10 mmol, 1.0 equiv.) and ethyl propiolate (1.013 mL, 10 mmol, 1.0 equiv.), were sequentially added to a stirred solution of the above prepared residue in THF (30 mL). The resulting solution was stirred at room temperature for 12 h. Then, the reaction was quenched with water, extracted with ethyl acetate and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvents under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 8:1 to 4:1) to afford diethyl 2-((2,5-dimethyl-1*H*-indol-3-yl)methyl)malonate.^[16]

Finally, NaH (w/w 60% in mineral oil, 268 mg, 6.7 mmol, 1.0 equiv) was added at 0 °C to a stirred solution of diethyl 2-((2,5-dimethyl-1*H*-indol-3-yl)methyl)malonate (2.127 g, 6.7 mmol, 1.0 equiv) in THF (30 mL).^[17] The resulting mixture was stirred at 0 °C for 0.5 h. and then allyl bromide (580 μ L, 6.7 mmol, 1.0 equiv) was added to the mixture dropwise. The resulting mixture was stirred at room temperature for 2 h. and then the reaction was quenched

with saturated NH₄Cl (aq), extracted with ethyl acetate, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvents in vacuo afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 10:1 to 5:1) to afford **S51** (1.378 g, 58% yield) as a light yellow sticky oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.78 (bs, 1H), 7.223-7.217 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.88 (dd, *J* = 8.0, 1.6 Hz, 1H), 5.96-5.86 (m, 1H), 5.19 – 5.05 (m, 2H), 4.20 – 4.01 (m, 4H), 3.37 (s, 2H), 2.65-2.63 (m, 2H), 2.40 (s, 3H), 2.27 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 171.6, 133.6, 133.6, 129.7, 128.1, 122.5, 118.6, 118.4, 109.8, 105.7, 61.2, 59.3, 37.8, 28.4, 21.6, 14.1, 12.5. IR (neat): 3346, 2978, 1746, 1714, 1590, 1440, 1366, 1299, 1200, 1148, 1093, 1060, 1042, 1023, 928, 861, 790, 754, 694, 670, 639, 604, 558, 517 cm⁻¹; HRMS calculated m/z for C₂₁H₂₈NO₄⁺ [M+H]⁺: 358.2013, found (ESI) 358.2018.

4. Direct metal-free cyanation of nucleophiles using 9

Procedure for the preparation of 11

To a stirred solution of 4-(*tert*-butyl)aniline **S1** (31.9 µL, 0.2 mmol, 1.0 equiv) in DCM (2 mL) was added K₃PO₄ (42.5 mg, 0.2 mmol, 1.0 equiv) and **9** (107.8 mg, 0.3 mmol, 1.5 equiv) at 0 °C under nitrogen flow, sequentially. The resulting mixture was stirred at 0 °C for 2 h. Then, the reaction was quenched with water, extracted with DCM and the organic phase was dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure produced a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 20:1) to afford **11** (25.2 mg, 72% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.35 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.61 (bs, 1H), 1.29 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 146.8, 134.7, 126.7, 115.3, 111.9, 34.4, 31.5. The spectroscopic data are in agreement with those previously reported.^[18]

Procedure for the preparation of 12

To a stirred solution of [1,1'-biphenyl]-2-amine **S2** (33.8 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL), K₃PO₄ (42.5 mg, 0.2 mmol, 1.0 equiv) and **9** (107.8 mg, 0.3 mmol, 1.5 equiv) were added sequentially at -10 °C. The resulting mixture was stirred at -10 °C for 4 h. and then the reaction was quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) to afford **12** (37.7 mg, 97% yield) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.54 – 7.45 (m, 2H), 7.45 – 7.26 (m, 5H), 7.24-7.21 (m, 1H), 7.18 – 7.09 (m, 1H), 5.96 (bs, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 136.7, 134.2, 130.7, 129.6, 129.3, 129.2, 129.1, 128.5, 123.7, 115.2, 110.7. The spectroscopic data are in agreement with those previously reported.^[19]

General procedure for the preparation of 13-21

 Cs_2CO_3 (65.2 mg, 0.2 mmol, 1.0 equiv) and **9** (107.8 mg, 0.3 mmol, 1.5 equiv) were added sequentially at room temperature to a stirred solution of the desired aniline (0.2 mmol, 1.0 equiv) in DCM (2 mL). The resulting mixture was stirred at room temperature for 1.5-8 hours. Then, the reaction was quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel.

A mixture of diphenylamine **S3** (0.2 mmol, 33.8 mg), Cs_2CO_3 (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 6 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 9:1) afforded **13** in 98%

yield (38.0 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.46 – 7.36 (m, 4H), 7.33 – 7.18 (m, 6H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 139.2, 130.0, 126.4, 121.4, 112.7. The spectroscopic data are in agreement with those previously reported.^[20]

A mixture of *N*-methylaniline **S4** (0.2 mmol, 21.7 μ L), Cs₂CO₃ (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 1.5 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **14** in 90% yield (23.7 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.45 – 7.31 (m, 2H), 7.17 – 7.02 (m, 3H), 3.33 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 140.4, 129.7, 123.4, 114.9, 114.2, 36.9. The spectroscopic data are in agreement with those previously reported.^[21]

A mixture of *N*-benzylaniline **S5** (0.2 mmol, 36.7 mg), Cs₂CO₃ (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 9:1) afforded **15** in 91% yield (37.7 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.42 – 7.26 (m, 7H), 7.16 – 7.02 (m, 3H), 4.78 (s, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 139.8, 134.4, 129.7, 129.1, 128.6, 127.4, 123.8, 116.1, 114.0, 53.8. The spectroscopic data are in agreement with those previously reported.^[22]

A mixture of indoline S6 (0.2 mmol, 22.4 μ L), Cs₂CO₃ (0.02 mmol, 65.2 mg) and 9 (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 2 h. Column

chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **16** in 95% yield (27.3 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.25 – 7.13 (m, 2H), 7.04 – 6.92 (m, 2H), 4.05 (t, *J* = 8.4 Hz, 2H), 3.20 (t, *J* = 8.4Hz, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 142.3, 128.2, 127.9, 125.3, 123.3, 112.6, 110.5, 50.8, 28.6. IR (neat): 3052, 2919, 2858, 2209, 1607, 1595, 1486, 1458, 1441, 1379, 1328, 1278, 1197, 1155, 1083, 1029, 935, 866, 825, 751, 602 cm⁻¹; HRMS calculated m/z for C₉H₉N₂⁺ [M+H]⁺: 145.0760, found (ESI) 145.0766.

A mixture of 1,2,3,4-tetrahydroquinoline **S7** (0.2 mmol, 26.6 mg), Cs₂CO₃ (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **17** in 92% yield (29.0 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.24 – 7.13 (m, 2H), 7.09-7.05 (m, 1H), 7.01-6.93 (m, 1H), 3.81 – 3.69 (m, 2H), 2.87 – 2.71 (m, 2H), 2.10 – 1.94 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 135.6, 129.8, 127.7, 124.0, 122.9, 115.7, 113.6, 48.6, 26.3, 22.0. IR (neat): 2938, 2212, 1605, 1587, 1495, 1455, 1385, 1347, 1290, 1251, 1229, 1198, 1183, 1167, 1113, 1059, 1017, 937, 909, 876, 848, 794, 747, 713, 690, 612, 532, 504 cm⁻¹; HRMS calculated m/z for C₁₀H₁₁N₂⁺ [M+H]⁺: 159.0917, found (ESI) 159.0918.

A mixture of 9,10-dihydroacridine **S8** (0.2 mmol, 36.2 mg), Cs_2CO_3 (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 19:1) afforded **18** in 88% yield (36.4 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.41-7.37 (m, 2H), 7.32-7.26 (m, 2H), 7.24 – 7.08 (m, 4H), 4.04 (s, 2H). ¹³C NMR (75 MHz,

Chloroform-*d*) δ = 134.6, 129.0, 128.9, 125.3, 123.3, 115.8, 109.4, 30.6. IR (neat): 2920, 2218, 1721, 1653, 1604, 1581, 1489, 1455, 1426, 1344, 1316, 1298, 1255, 1196, 1168, 1150, 1097, 1045, 958, 933, 922, 857, 800, 743, 687, 667, 636 cm⁻¹; HRMS calculated m/z for C₁₄H₁₁N₂⁺ [M+H]⁺: 207.0917, found (ESI) 207.0917.

A mixture of 10*H*-phenoxazine **S9** (0.2 mmol, 36.6 mg), Cs_2CO_3 (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 6 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 19:1) afforded **19** in 71% yield (29.6 mg) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.12 – 6.94 (m, 6H), 6.91 – 6.80 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 143.5, 126.3, 124.3, 123.9, 117.0, 115.7, 107.2. IR (neat): 2227, 1594, 1488, 1321, 1293, 1273, 1204, 1152, 1137, 1095, 1039, 927, 867, 812, 746, 689, 634 cm⁻¹; HRMS calculated m/z for C₁₃H₈N₂ONa⁺ [M+Na]⁺: 231.0529, found (ESI) 231.0532.

A mixture of 10,11-dihydro-5*H*-dibenzo[*b*,*f*]azepine **S10** (0.2 mmol, 39.1 mg), Cs₂CO₃ (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 8 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 9:1) afforded **20** in 94% yield (41.2 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.56-7.53 (m, 2H), 7.30 – 7.10 (m, 6H), 3.16 (s, 4H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 139.5, 134.1, 130.7, 127.5, 127.0, 122.4, 114.2, 31.5. IR (neat): 2908, 2202, 1578, 1488, 1448, 1427, 1332, 1286, 1251, 1219, 1177, 1135, 1110, 964, 941, 872, 854, 768,751, 742, 708, 680, 640, 596, 563, 548, 515 cm⁻¹; HRMS calculated m/z for C₁₅H₁₃N₂⁺ [M+H]⁺: 221.1073, found (ESI) 221.1075.

A mixture of 5*H*-dibenzo[*b*,*f*]azepine **S11** (0.2 mmol, 38.6 mg), Cs₂CO₃ (0.02 mmol, 65.2 mg) and **9** (0.3 mmol, 107.8 mg) in DCM (2 mL) was stirred at room temperature for 6 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 9:1) afforded **21** in 99% yield (43.2 mg) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.49-7.46 (m, 2H), 7.41 – 7.32 (m, 2H), 7.28 – 7.14 (m, 4H), 6.74 (s, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 140.8, 132.4, 131.1, 130.2, 130.1, 127.6, 122.9, 114.6. IR (neat): 3022, 2219, 1600, 1576, 1489, 1456, 1435, 1288, 1248, 1199, 1161, 1137, 1115, 941, 922, 803, 784, 754, 701, 681, 635, 556, 513 cm⁻¹; HRMS calculated m/z for C₁₅H₁₁N₂⁺ [M+H]⁺: 219.0917, found (ESI) 219.0918.

Procedure for the preparation of 22

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred solution of 9*H*-carbazole **S12** (33.4 mg, 0.2 mmol, 1.0 equiv) in DCE (2 mL) at room temperature. The resulting mixture was stirred at 50 °C for 14 h. and then the reaction was quenched with brine, extracted with DCM and the organic phase was dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 20:1) to afford **22** (26.0 mg, 68% yield) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.98-7.95 (m, 2H), 7.64-7.61 (m, 2H), 7.55-7.50 (m, 2H), 7.44-7.38 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 138.1, 127.8, 124.4, 124.3, 121.0, 111.7, 107.0. IR (neat): 33061, 2236, 1904, 1603, 1490, 1476, 1444, 1341, 1304, 1260, 1217, 1152, 1110, 1023, 935, 910, 856, 798, 741, 716, 650, 611, 551, 527 cm⁻¹; HRMS calculated m/z for C₁₃H₈N₂Na⁺ [M+Na]⁺: 215.0580, found (ESI) 215.0582.

Procedure for the preparation of 23

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added at -50 °C to a stirred solution of 1-phenylpiperazine **S13** (30.6 μ L, 0.2 mmol, 1.0 equiv) in DCM (2 mL). The resulting mixture was stirred at -50 °C for 6 h. Then, the reaction was quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **23** (15.8 mg, 42% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.36 – 7.22 (m, 2H), 6.99 – 6.86 (m, 3H), 3.44 – 3.34 (m, 4H), 3.29 – 3.18 (m, 4H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 150.9, 129.5, 121.3, 117.6, 117.3, 49.2, 49.0. The spectroscopic data are in agreement with those previously reported.^[23]

Procedure for the preparation of 24

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added at -10 °C under nitrogen to a stirred solution of naphthalene-1-thiol **S14** (27.9 µL, 0.2 mmol, 1.0 equiv) in DCM (2 mL). The resulting mixture was stirred at -10 °C for 0.5 h. and then the reaction was quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 20:1) to afford **24** (25.2 mg, 68% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 8.22 (d, *J* = 8.7 Hz, 1H), 7.99 – 7.86 (m, 3H), 7.71-7.65 (m, 1H), 7.62-7.57 (m, 1H), 7.51-7.46 (m, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 134.5, 132.5, 132.3, 131.7, 129.1, 128.3, 127.3, 126.0, 124.3, 120.9, 110.8. The spectroscopic data are in agreement with those previously reported.^[24]

Procedure for the preparation of 25

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added at -10 °C to a stirred solution of 2-bromobenzenethiol **S15** (23.5 μ L, 0.2 mmol, 1.0 equiv) in DCM (2 mL). The resulting mixture was stirred at -10 °C for 2.5 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the organic solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 50:1) to afford **25** (26.1 mg, 61% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.73-7.70 (m, 1H), 7.63-7.60 (m, 1H), 7.47-7.41 (m, 1H), 7.31 – 7.21 (m, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 133.7, 130.2, 129.6, 129.2, 127.3, 121.9, 109.7. The spectroscopic data is in agreement with that previously reported.^[25]

Procedure for the preparation of 26

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added at -20 °C to a stirred solution of 2,4,6-trimethylbenzenethiol **S16** (29.7 μ L, 0.2 mmol, 1.0 equiv) in DCM (2 mL). The resulting mixture was stirred at -20 °C for 1 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 50:1) to afford **26** (29.8 mg, 84% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.00 (s, 2H), 2.55 (s, 6H), 2.29 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 142.8, 141.6, 130.2, 119.2, 111.0, 22.0, 21.2. The spectroscopic data are in agreement with those previously reported.^[26]

Procedure for the preparation of 27

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred solution of 3,4-dimethoxybenzenethiol **S17** (29.0 µL, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at -20 °C under nitrogen. The resulting mixture was stirred at -20 °C for 0.5 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **27** (23.8 mg, 61% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.15 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.05 (d, *J* = 2.1 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 151.0, 150.2, 125.4, 114.6, 114.0, 112.3, 111.6, 56.3, 56.2. The spectroscopic data are in agreement with those previously reported.^[24]

Procedure for the preparation of 28

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred suspension of (4-methoxyphenyl)methanethiol **S18** (27.5 μ L, 0.2 mmol, 1.0 equiv) and Cs₂CO₃ (65.2 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at -50 °C. The resulting mixture was stirred at -50 °C for 5 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) to afford **28** (25.3 mg, 71% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.28 (d, *J* = 8.7 Hz, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.14 (s, 2H), 3.81 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 160.1, 130.5, 126.3, 114.6, 112.3, 55.4, 38.4. The spectroscopic data are in agreement with those previously reported.^[24]

Procedure for the preparation of 29

Compound **9** (71.9 mg, 0.2 mmol, 1.0 equiv) was added to a stirred solution of trimethyl((1-phenylvinyl)oxy)silane **S19** (61.5 μ L, 0.3 mmol, 1.5 equiv) in DCM (2 mL) at room temperature. The resulting mixture was stirred at room temperature for 15 minutes. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 5:1) to afford **29** (27.4 mg, 94% yield) as a light yellow solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.98 – 7.87 (m, 2H), 7.73 – 7.60 (m, 1H), 7.59 – 7.46 (m, 2H), 4.12 (s, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 187.3, 134.8, 134.3, 129.2, 128.5, 114.0, 29.5. The spectroscopic data are in agreement with those previously reported.^[27]

Procedure for the preparation of 30

Compound **9** (71.9 mg, 0.2 mmol, 1.0 equiv) was added to a stirred solution of (cyclohex-1-en-1-yloxy)trimethylsilane **20** (58.4 μ L, 0.3 mmol, 1.5 equiv) in DCM (2 mL) at room temperature. The resulting mixture was stirred for 10 minutes. Then, the reaction was quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Because **30** is volatile on high vacuum line, the solvent was evaporated under the reduced pressure and then a ¹H NMR analysis of the obtained mixture using CH₂Br₂ as internal standard was conducted, which indicated that the desired product **30** had been obtained in 92% NMR yield.

To a stirred solution of the above recovered NMR sample in MeOH (3 mL), 4-methylbenzenesulfonohydrazide (55.9 mg, 0.3 mmol, 1.5 equiv.) was added and the

resulting solution stirred at 60 °C for 18 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane/ethyl acetate = 1:1) to afford a white solid (26.0 mg, 0.0892 mmol, 45% overall yield). ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.95 – 7.76 (m, 2H), 7.34 – 7.27 (m, 2H), 4.66 (bs, 2H), 2.58 – 2.45 (m, 2H), 2.41 (s, 3H), 2.27 – 2.12 (m, 2H), 1.70-1.65 (m, 4H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 156.4, 145.1, 144.7, 135.2, 129.9, 127.8, 99.2, 24.1, 22.8, 22.7, 21.8, 19.3. IR (neat): 3457, 3296, 2935, 2857, 1625, 1596, 1476, 1425, 1357, 1309, 1259, 1223, 1188, 1173, 1143, 1130, 1085, 1045, 956, 931, 856, 812, 730, 701, 687, 665, 614, 590, 542 cm⁻¹; HRMS calculated m/z for C₁₄H₁₈N₃O₂S⁺ [M+H]⁺: 292.1114, found (ESI) 292.1116.

Procedure for the preparation of 31

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) dissolved in CH₃CN (0.7 mL)was added to a stirred solution of ethene-1,1-diphenylethylene **S21** (36.1 mg, 0.2 mmol, 1.0 equiv) in DCE (1.4 mL) at room temperature. The resulting mixture was stirred at room temperature for 21 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 20:1) to afford **31** (30.5 mg, 74% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.48 – 7.33 (m, 8H), 7.32 – 7.26 (m, 2H), 5.73 (s, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 163.2, 139.0, 137.2, 130.5, 130.1, 129.7, 128.8, 128.6, 128.6, 118.0, 95.0. The spectroscopic data is in agreement with that previously reported.^[28]

Procedure for the preparation of 32

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred suspension of 1-phenyl-1*H*-pyrrole **S22** (28.6 mg, 0.2 mmol, 1.0 equiv) and Cs₂CO₃ (65.2 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at 0 °C. The resulting mixture was stirred at that temperature for 12 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) to afford **32** (33.5 mg, 99% yield) as a colorless liquid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.49 – 7.27 (m, 5H), 7.00 (dd, *J* = 2.8, 1.6 Hz, 1H), 6.91 (dd, *J* = 4.0, 1.6 Hz, 1H), 6.27 (dd, *J* = 4.0, 2.8 Hz, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 138.3, 129.8, 128.4, 127.1, 124.3, 122.3, 113.9, 110.7, 104.1. The spectroscopic data are in agreement with those previously reported.^[29]

Procedure for the preparation of 33

Compound **9** (143.7 mg, 0.4 mmol, 2.0 equiv) was added to a stirred suspension of 1-phenyl-1*H*-indole **S23** (38.7 mg, 0.2 mmol, 1.0 equiv) and K₃PO₄ (63.7 mg, 0.3 mmol, 1.5 equiv) in DCM (2 mL) at 15 °C under nitrogen and the resulting mixture was stirred at that temperature for 20 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) to afford **33** (30.4 mg, 70% yield) as a light yellow solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.86 – 7.80 (m, 1H), 7.78 (s, 1H), 7.62 – 7.53 (m, 2H), 7.53 – 7.42 (m, 4H), 7.37 – 7.29 (m, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 137.9, 135.7, 134.7, 130.1, 128.5, 128.0, 125.0, 124.6, 122.9, 120.1, 115.6, 111.6, 88.2. The spectroscopic data are in agreement with those previously reported.^[30]

Procedure for the preparation of 34

Compound **9** (143.7 mg, 0.4 mmol, 2.0 equiv) was added to a stirred suspension of 1-(4-methoxyphenyl)-1*H*-indole **S24** (44.7 mg, 0.2 mmol, 1.0 equiv) and K₃PO₄ (42.5 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at 10 °C under nitrogen. The resulting mixture was stirred at that temperature for 5 h. Then, the reaction was quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) to afford **34** (39.3 mg, 79% yield) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.85 – 7.76 (m, 1H), 7.72 (s, 1H), 7.47 – 7.26 (m, 5H), 7.11 – 6.99 (m, 2H), 3.89 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 159.2, 136.1, 135.1, 130.7, 127.8, 126.5, 124.5, 122.7, 120.0, 115.8, 115.2, 111.6, 87.5, 55.8. The spectroscopic data are in agreement with those previously reported.^[31]

Procedure for the preparation of 35

Compound **9** (71.9 mg, 0.2 mmol, 1.0 equiv) was added to a stirred solution of 1-methyl-2-phenyl-1*H*-indole **S25** (62.2 mg, 0.3 mmol, 1.5 equiv) in DCM (2 mL) at room temperature and the resulting mixture was stirred at that temperature for 5 minutes. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) to afford **35** (24.6 mg, 53% yield) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.82 – 7.73 (m, 1H), 7.62 – 7.47 (m, 5H), 7.45 – 7.27 (m, 3H), 3.74 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 148.2, 137.0, 130.0, 129.9, 129.1, 128.8, 127.7, 124.0,

122.5, 119.6, 116.7, 110.6, 85.6, 31.8. The spectroscopic data are in agreement with those previously reported.^[23]

Procedure for the preparation of 36

Compound **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred suspension of 1,3,5-trimethoxybenzene **S26** (33.6 mg, 0.2 mmol, 1.0 equiv) and Cs₂CO₃ (65.2 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at room temperature. The resulting mixture was stirred at room temperature for 4 h and then, quenched with brine, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **36** (30.8 mg, 80% yield) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 6.04 (s, 2H), 3.85 (s, 6H), 3.84 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 165.4, 163.8, 114.7, 90.4, 84.0, 56.2, 55.8. The spectroscopic data is in agreement with that previously reported.^[32]

Procedure for the preparation of 37

Salt 9 (143.7 mg, 0.4 mmol, 2.0 equiv) was added to a stirred solution of triphenylamine S27 (49.1 mg, 0.2 mmol, 1.0 equiv) in DCE (2 mL) at room temperature under nitrogen and the resulting mixture stirred at 50 °C for 14 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue obtained purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 20:1) to afford 37 (17.8 mg, 33% yield) as a light yellow solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.45 – 7.38 (m, 2H), 7.37 – 7.28 (m, 4H), 7.21 – 7.08 (m, 6H), 7.00 – 6.90 (m, 2H). ¹³C NMR (75 MHz,

Chloroform-*d*) δ = 151.7, 146.1, 133.3, 129.9, 126.3, 125.3, 119.8, 102.6. The spectroscopic data are in agreement with those previously reported.^[33]

Procedure for the preparation of 38

Salt **9** (71.9 mg, 0.2 mmol, 1.0 equiv) was added to a stirred solution of tetracene **S28** (45.7 mg, 0.2 mmol, 1.0 equiv) in DCE (2 mL) at room temperature. The resulting mixture was stirred at 50 °C for 7 h. After this another portion of **9** (71.9 mg, 0.2 mmol, 1.0 equiv) was added and the stirring continued for additional 11 h at the same temperature. Subsequently, the reaction was quenched with water, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 40:1) to afford **38** (13.8 mg, 27% yield) as a red solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 8.95 (s, 1H), 8.83 (s, 1H), 8.66 (s, 1H), 8.35 (d, *J* = 8.8 Hz, 1H), 8.08 – 7.96 (m, 3H), 7.67 – 7.59 (m, 1H), 7.53 – 7.45 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 134.5, 133.5, 133.4, 132.0, 130.3, 130.3, 129.3, 128.9, 128.5, 128.3, 128.0, 127.2, 126.4, 126.0, 125.4, 123.9, 117.9, 104.9. IR (neat): 2918, 2849, 2220, 1674, 1483, 1457, 1259, 1098, 1019, 890, 801, 747, 697, 644, 626, 609, 577, 532 cm⁻¹; HRMS calculated m/z for C₁₉H₁₁N⁺ [M]⁺: 253.0886, found (ESI) 253.0885.

Procedure for the preparation of 40 and 41

Salt **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred suspension of 3-methyl-1*H*-indole **39** (26.2 mg, 0.2 mmol, 1.0 equiv) and Cs_2CO_3 (65.2 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at 0 °C under nitrogen. The resulting mixture was stirred at that temperature for 2 h. Then, the reaction was quenched with brine, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 3:1) to afford **40** (14.4 mg, 50% yield) and **41** (9.3

mg, 30% yield), both as a white solids.

¹H NMR (300 MHz, Dichoromethane- d_2) $\delta = 8.69$ (bs, 1H), 7.63-7.60 (m, 1H), 7.40 – 7.32 (m, 1H), 7.32 – 7.09 (m, 4H), 7.00 – 6.91 (m, 1H), 6.89 – 6.79 (m, 1H), 5.06 – 4.92 (m, 1H), 4.31 (bs, 1H), 2.40 (s, 3H), 1.84 (s, 3H). ¹³C NMR (75 MHz, Dichloromethane- d_2) $\delta = 150.0$, 135.9, 130.6, 129.7, 129.4, 128.6, 124.1, 123.1, 121.5, 121.2, 119.8, 119.2, 111.5, 111.4, 111.0, 67.3, 47.5, 22.8, 9.3. IR (neat): 3441, 3334, 2922, 2226, 1607, 1479, 1463, 1385, 1336, 1314, 1304, 1252, 1214, 1154, 1131, 1036, 1012, 945, 876, 854, 819, 782, 758, 707, 694, 635, 607, 578, 566, 555, 528 cm⁻¹; HRMS calculated m/z for C₁₉H₁₈N₃⁺ [M+H]⁺: 288.1495, found (ESI) 288.1496.

¹H NMR (400 MHz, Chloroform-*d*) $\delta = 8.33$ (bs, 1H), 7.65 – 7.58 (m, 1H), 7.50-7.46 (m, 1H), 7.43 – 7.33 (m, 2H), 7.31 – 7.22 (m, 2H), 7.21 – 7.12 (m, 2H), 5.35 (s, 1H), 2.43 (s, 3H), 1.88 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 141.3$, 136.7, 131.4, 128.3, 127.3, 125.5, 124.3, 124.2, 122.7, 120.1, 119.5, 119.4, 115.4, 112.0, 111.8, 110.2, 69.6, 46.0, 23.4, 9.1. IR (neat): 3304, 2919, 2222, 1597, 1481, 1464, 1336, 1316, 1241, 1172, 1099, 987, 934, 795, 745, 651, 597, 566 cm⁻¹; HRMS calculated m/z for C₂₀H₁₇N₄⁺ [M+H]⁺: 313.1448, found (ESI) 313.1447.

Procedure for the preparation of 43

Salt **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred solution of 2,3,4,9-tetrahydro-1*H*-carbazole **42** (34.2 mg, 0.2 mmol, 1.0 equiv) in CH₃CN (2 mL) at room temperature and the resulting mixture stirred for 10 minutes. Then, the reaction was quenched with water, extracted with DCM, and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **43** (30.0 mg, 76% yield) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.65-7.63 (m, 1H), 7.57-7.54 (m, 1H), 7.47-7.43 (m, 1H), 7.33-7.29 (m, 1H), 3.08 – 2.96 (m, 1H), 2.93 – 2.75 (m, 2H), 2.36 – 2.23 (m, 1H), 2.12 – 1.97 (m, 1H), 1.98 – 1.86 (m, 1H), 1.60 – 1.43 (m, 1H), 1.32 – 1.17 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 178.6, 155.1, 137.2, 130.0, 126.6, 122.7, 121.3, 117.6, 51.9, 39.2, 30.2, 28.4, 22.4. IR (neat): 2941, 2854, 2236, 1731, 1618, 1592, 1440, 1347, 1273, 1231, 1187, 1139, 1093, 1043, 1012, 956, 934, 906, 867, 854, 772, 757, 689, 672, 635, 608, 563, 525 cm⁻¹; HRMS calculated m/z for C₁₃H₁₃N₂⁺ [M+H]⁺: 197.1073, found (ESI) 197.1074.

Procedure for the preparation of 45

Salt **9** (107.8 mg, 0.3 mmol, 1.5 equiv) was added to a stirred solution of 1,2-dimethyl-3*H*-benzo[*e*]indole **44** (39.1 mg, 0.2 mmol, 1.0 equiv) in CH₃CN (2 mL) at room temperature and the resulting mixture stirred for 10 minutes. Then, the reaction was quenched with water, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under the reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **45** (38.1 mg, 86% yield) as a light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 8.06-8.04 (m, 1H), 7.99 – 7.90 (m, 2H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.66-7.62 (m, 1H), 7.54-7.50 (m, 1H), 2.60 (s, 3H), 1.85 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 178.3, 152.1, 132.7, 131.3, 131.3, 129.7, 128.0, 127.9, 125.8, 122.3, 119.9, 117.9, 50.2, 22.5, 16.1. IR (neat): 3054, 2236, 1626, 1602, 1574, 1520, 1443, 1380, 1261, 1228, 1215, 1201, 1103, 1078, 1022, 968,

908, 866, 771, 755, 691, 662, 598, 589, 569, 553, 525 cm⁻¹; HRMS calculated m/z for $C_{15}H_{13}N_2^+$ [M+H]⁺: 221.1073, found (ESI) 221.1072.

5. Metal-free cyano-cyclization of indole derivatives

General procedure of the cyano-cyclisation of indole derivatives: preparation of 46-62.

Compound 9 was added to a stirred solution of indole derivatives S29-S45 (0.2 mmol, 1.0 equiv) in the appropriate solvent (2 mL) at room temperature under nitrogen flow and the resulting mixture was stirred at room temperature for the specified time (vide infra). Then, the reaction was quenched with water, extracted with DCM and the organic phase dried over anhydrous Na_2SO_4 . Evaporation of the solvent under reduced pressure afforded a residue, which was was purified by column chromatography on silica gel to afford the desired products.

A mixture of **S29** (0.2 mmol, 62.9 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **46** in 69% yield (46.5 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.83 – 7.70 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.20-7.16 (m, 2H), 6.83 (t, *J* = 7.6 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 5.73 (s, 1H), 5.02 (bs, 1H), 3.58 – 3.44 (m, 1H), 3.30 – 3.13 (m, 1H), 2.54 – 2.24 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 148.5, 144.6, 135.1, 130.9, 130.3, 127.3, 123.79, 123.5, 120.4, 119.5, 110.5, 82.6, 49.7, 46.8, 37.4, 21.7. IR (neat): 3370, 2917, 2238, 1608, 1486, 1337, 1311, 1266, 1201, 1164, 1091, 1060, 1009, 931, 895, 848, 820, 707, 661, 592, 570, 543 cm⁻¹; HRMS calculated m/z for C₁₈H₁₈N₃O₂S⁺ [M+H]⁺: 340.1114, found (ESI) 340.1117.

A mixture of **S30** (0.2 mmol, 65.7 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 15 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **47** in 85% yield (59.9 mg) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.63 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.20 – 7.08 (m, 2H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 5.36 (bs, 1H), 3.55 – 3.41 (m, 1H), 3.14 – 2.98 (m, 1H), 2.59 – 2.49 (m, 2H), 2.38 (s, 3H), 2.04 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 148.1, 143.8, 136.5, 130.7, 129.8, 127.2, 123.7, 123.7, 120.3, 118.6, 110.3, 90.6, 55.2, 47.0, 34.0, 25.1, 21.6. IR (neat): 3361, 2889, 2236, 1610, 1485, 1470, 1403, 1378, 1328, 1311, 1247, 1210, 1165, 1023, 1011, 959, 893, 816, 764, 706, 695, 617, 518 cm⁻¹; HRMS calculated m/z for C₁₉H₂₀N₃O₂S⁺ [M+H]⁺: 354.1271, found (ESI) 354.1274.

A mixture of **S31** (0.2 mmol, 65.7 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 15 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **48** in 61% yield (42.9 mg) as a white solid. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.87 – 7.74 (m, 2H), 7.44 – 7.35 (m, 2H), 7.23-7.18 (m, 1H), 7.16 – 7.06 (m, 1H), 6.75-6.69 (m, 1H), 6.45 (d, *J* = 7.8 Hz, 1H), 5.85 (s, 1H), 3.72-3.64 (m, 1H), 3.16-3.06 (m, 1H), 3.01 (s, 3H), 2.47 (s, 3H), 2.22-2.15 (m, 1H), 1.90-1.79 (m, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 149.9, 144.8, 135.50, 131.0, 130.5, 127.4, 123.7, 123.5, 119.8, 118.7, 106.9, 88.7, 48.7, 47.4, 39.1, 31.1, 21.7. IR (neat): 2890, 2233, 1603, 1497, 1445, 1430, 1349, 1318, 1306, 1254, 1211, 1159, 1105, 1089, 1021, 969, 919, 876, 841, 815, 802, 751, 724, 660, 603, 574, 532 cm⁻¹; HRMS calculated m/z for C₁₉H₂₀N₃O₂S⁺ [M+H]⁺: 354.1271, found (ESI) 354.1278.

A mixture of **S32** (0.2 mmol, 46.5 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 2 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **49** in 68% yield (35.0 mg) as a colorless oil. ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ = 7.34-7.31 (m, 1H), 7.17-7.13 (m, 1H), 6.78-6.74 (m, 1H), 6.70-6.68 (m, 1H), 6.54 (bs, 1H), 5.764-5.758 (m, 1H), 4.17-4.10 (m, 2H), 3.78-3.73 (m, 1H), 3.06-3.30 (m, 1H), 2.94 (s, 2H), 2.70-2.62 (m, 1H), 2.56 – 2.51 (m, 1H), 1.26 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6 , 100 °C) δ = 153.1, 149.1, 129.6, 123.7, 123.1, 119.8, 118.3, 109.3, 79.5, 60.4, 48.3, 44.1, 35.4, 13.8. IR (neat): 3276, 2981, 2240, 1692, 1607, 1471, 1416, 1380, 1346, 1319, 1258, 1237, 1201, 1172, 1111, 1026, 1008, 894, 820, 747, 609, 527 cm⁻¹; HRMS calculated m/z for C₁₄H₁₆N₃O₂⁺ [M+H]⁺: 258.1237, found (ESI) 258.1237.

A mixture of **S33** (0.2 mmol, 67.3 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **50** in 89% yield (64.5 mg) as a white solid. ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ = 7.38-7.36 (m, 1H), 7.34 – 7.25 (m, 2H), 7.27 – 7.17 (m, 3H), 7.11-7.06 (m, 1H), 6.77-6.73 (m, 1H), 6.26 (d, *J* = 8.0 Hz, 1H), 4.97 – 4.61 (m, 2H), 4.08-3.96 (m, 2H), 3.79-3.74 (m, 1H), 3.27 – 3.09 (m, 1H), 2.69 – 2.58 (m, 2H), 2.00 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6 , 100 °C) δ = 153.1, 147.8, 138.5, 129.7, 127.8, 126.0, 125.6, 123.4, 122.8, 118.6, 117.8, 107.2, 89.7, 60.2, 54.8, 46.5, 45.8, 32.2, 19.3, 13.7. IR (neat): 3417, 2982, 2241, 1702, 1681, 1605, 1488, 1465, 1449, 1401, 1376, 1347, 1313, 1232, 1212, 1186, 1157, 1118, 1103, 1073, 1055, 1027, 1007, 919, 880, 838, 771, 751, 739, 726, 694, 653, 637, 608, 555, 545, 530 cm⁻¹; HRMS calculated m/z for C₂₂H₂₄N₃O₂⁺ [M+H]⁺: 362.1863, found (ESI) 362.1867.

A mixture of **S34** (0.2 mmol, 49.3 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **51** in 71% yield (38.5 mg) as a colorless oil. ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ = 7.36-7.33 (m, 1H), 7.17-7.12 (m, 1H), 6.79-6.75 (m, 1H), 6.73-6.71 (m, 1H), 6.50 (bs, 1H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.64-.3.59 (m, 1H), 3.08-3.01 (m, 1H), 2.70 – 2.55 (m, 2H), 1.86 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6 , 100 °C) δ = 152.6, 148.5, 129.6, 123.8, 123.2, 118.6, 118.4, 109.5, 86.5, 60.1, 53.7, 45.0, 31.7, 21.7, 13.8. IR (neat): 3369, 2981, 2239, 1687, 1609, 1485, 1470, 1407, 1377, 1333, 1233, 1205, 1160, 1103, 1075, 1055, 1028, 956, 881, 838, 820, 773, 750, 662, 608, 541 cm⁻¹; HRMS calculated m/z for C₁₅H₁₈N₃O₂⁺ [M+H]⁺: 272.1394, found (ESI) 272.1394.

A mixture of **S35** (0.2 mmol, 58.9 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 2 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **52** in 56% yield (35.9 mg) as a colorless oil. ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ = 7.50 – 7.26 (m, 6H), 7.17-7.13 (m, 1H), 6.79-6.75 (m, 1H), 6.71-6.68 (m, 1H), 6.58 (bs, 1H), 5.823-5.817 (m, 1H), 5.26 – 5.09 (m, 2H), 3.86 – 3.73 (m, 1H), 3.11-3.04 (m, 1H), 2.72-2.64 (m, 1H), 2.58 – 2.51 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6 , 100 °C) δ = 152.9, 149.0, 136.2, 129.7, 127.8, 127.2, 127.0, 123.7, 123.1, 119.8, 118.4, 109.4, 79.6, 66.0, 48.4, 44.3, 35.4. IR (neat): 3254, 2953, 2240, 1698, 1606, 1485, 1471, 1411, 1353, 1318, 1258, 1236, 1200, 1108, 1027, 1008, 943, 888, 820, 747, 697, 585, 522 cm⁻¹; HRMS calculated m/z for C₁₉H₁₈N₃O₂⁺ [M+H]⁺: 320.1394, found (ESI) 320.1396.

A mixture of **S36** (0.2 mmol, 61.7 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **53** in 81% yield (53.9 mg) as a colorless oil. ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ = 7.44 – 7.26 (m, 6H), 7.17-7.13 (m, 1H), 6.80-6.76 (m, 1H), 6.73-6.71 (m, 1H), 6.54 (bs, 1H), 5.14 (s, 2H), 3.70-3.64 (m, 1H), 3.19 – 3.03 (m, 1H), 2.74 – 2.55 (m, 2H), 1.88 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6 , 100 °C) δ = 152.5, 148.4, 136.2, 129.7, 127.8, 127.20 126.9, 123.8, 123.2, 118.6, 118.5, 109.5, 86.7, 65.6, 53.7, 45.1, 31.7, 21.6. IR (neat): 3371, 2982, 2239, 1692, 1609, 1486, 1470, 1401, 1350, 1267, 1233, 1204, 1161, 1103, 1072, 1053, 1027, 955, 894, 820, 749, 697, 661, 608, 587, 542, 523 cm⁻¹; HRMS calculated m/z for C₂₀H₂₀N₃O₂⁺ [M+H]⁺: 334.1550, found (ESI) 334.1552.

A mixture of **S37** (0.2 mmol, 79.7 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **54** in 93% yield (78.8 mg) as a white solid. ¹H NMR (400 MHz, DMSO- d_6 , 100 °C) δ = 7.46 – 7.25 (m, 8H), 7.24 – 7.16 (m, 3H), 7.11-7.07 (m, 1H), 6.83 – 6.69 (m, 1H), 6.26 (d, *J* = 7.6 Hz, 1H), 5.07 (s, 2H), 4.87 (d, *J* = 17.2 Hz, 1H), 4.63 (d, *J* = 17.2 Hz, 1H), 3.85-3.80 (m, 1H), 3.36 – 3.14 (m, 1H), 2.73 – 2.58 (m, 2H), 2.02 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6 , 100 °C) δ = 153.0, 147. 8, 138.4, 135.9, 129.7, 127.8, 127.3, 127.1, 126.0, 125.6, 123.4, 122.8, 118.5, 117.8, 107.2, 89.9, 65.9, 54.8, 46.5, 45.9, 32.1, 19.2. IR (neat): 3031, 2239, 1699, 1606, 1488, 1452, 1397, 1349, 1266, 1211, 1185, 1148, 1101, 1071, 1053, 1026, 917, 887, 858, 819, 787, 769, 696, 636, 590, 554, 523 cm⁻¹; HRMS calculated m/z for C₂₇H₂₆N₃O₂⁺ [M+H]⁺: 424.2020, found (ESI) 424.2019.

A mixture of **S38** (0.2 mmol, 50.5 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 30 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 2:1) afforded **55** in 68% yield (37.8 mg) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.30 – 7.25 (m, 1H), 7.25-7.20 (m, 1H), 6.92-6.88 (m, 1H), 6.71-6.69 (m, 1H), 5.17 (bs, 1H), 3.66-3.61 (m, 1H), 3.17-3.11 (m, 1H), 2.80 (s, 3H), 2.70 – 2.55 (m, 2H), 2.02 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 148.0, 131.2, 124.2, 124.1, 121.0, 118.5, 110.6, 90.0, 55.5, 47.2, 38.9, 33.8, 25.6. IR (neat): 3366, 2876, 2234, 1609, 1484, 1472, 1400, 1386, 1346, 1329, 1244, 1205, 1165, 1110, 1035, 889, 863, 813, 732, 693, 652, 608, 555, 529 cm⁻¹; HRMS calculated m/z for C₁₃H₁₆N₃O₂S⁺ [M+H]⁺: 278.0958, found (ESI) 278.0956.

A mixture of **S39** (0.2 mmol, 32.2 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 15 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 5:1) afforded **56** in 55% yield (20.4 mg) as a colorless oil. ¹H NMR (300 MHz, Chloroform-*d*) δ = 7.28 (d, *J* = 7.5 Hz, 1H), 7.17 (t, *J* = 7.5 Hz, 1H), 6.84 (t, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 7.8 Hz, 1H), 6.01 (d, *J* = 2.4 Hz, 1H), 4.75 (bs, 1H), 4.14-4.08 (m, 1H), 3.67-3.59 (m, 1H), 2.99 – 2.60 (m, 1H), 2.48-2.41 (m, 1H). ¹³C NMR (75 MHz, Chloroform-*d*) δ = 149.0, 130.5, 124.7, 124.5, 120.8, 120.2, 109.4, 97.6, 66.5, 49.8, 40.9. IR (neat): 3383, 2952, 2870, 2244, 1420, 1356, 1333, 1316, 1258, 1229, 1208, 1170, 1118, 1053, 945, 849, 778, 611, 585, 561, 544 cm⁻¹; HRMS calculated m/z for C₁₁H₁₁N₂O⁺ [M+H]⁺: 187.0866, found (ESI) 187.0868.

A mixture of **S40** (0.2 mmol, 35.0 mg, 1.0 equiv) and **9** (0.24 mmol, 86.2 mg, 1.2 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **57** in 66% yield (26.3 mg) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.28-7.25 (m, 1H), 7.17-7.13 (m, 1H), 6.84-6.80 (m, 1H), 6.58 (d, *J* = 8.0 Hz, 1H), 4.44 (bs, 1H), 4.07-4.02 (m, 1H), 3.65-3.59 (m, 1H), 2.78 – 2.54 (m, 1H), 2.46-2.42 (m, 1H), 1.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 148.5, 130.5, 125.2, 124.7, 120.2, 120.0, 109.1, 103.7, 65.9, 53.5, 41.7, 24.8. IR (neat): 3348, 2991, 2874, 2243, 1609, 1487, 1471, 1416, 1383, 1343, 1318, 1282, 1198, 1181, 1133, 1110, 1092, 991, 943, 911, 896, 861, 678, 608, 567, 542 cm⁻¹; HRMS calculated m/z for C₁₂H₁₃N₂O⁺ [M+H]⁺: 201.1022, found (ESI) 201.1022.

A mixture of **S41** (0.2 mmol, 47.5 mg, 1.0 equiv) and **9** (0.24 mmol, 86.2 mg, 1.2 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **58** in 89% yield (46.5 mg) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.67 – 7.55 (m, 2H), 7.47 – 7.34 (m, 3H), 7.29 – 7.15 (m, 2H), 6.87-6.83 (m, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 4.79 (bs, 1H), 4.42 – 4.20 (m, 1H), 3.83-3.76 (m, 1H), 2.89 – 2.66 (m, 1H), 2.53-2.49 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 149.2, 139.2, 130.6, 129.5, 128.6, 126.6, 124.8, 124.2, 120.1, 119.6, 108.7, 106.4, 67.0, 56.8, 41.1. IR (neat): 3390, 2895, 2232, 1610, 1486, 1470, 1445, 1392, 1354, 1324, 1281, 1232, 1133, 1094, 1070, 1035, 1022, 958, 942, 916, 889, 852, 762, 699, 662, 583, 536 cm⁻¹; HRMS calculated m/z for C₁₇H₁₅N₂O⁺ [M+H]⁺: 263.1179, found (ESI) 263.1183.

A mixture of **S42** (0.2 mmol, 35.0 mg, 1.0 equiv) and **9** (0.24 mmol, 86.2 mg, 1.2 equiv) in CH₃CN (2 mL) was stirred at room temperature for 10 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **59** in 64% yield (25.8 mg)

as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.25 (d, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 5.35 (s, 1H), 4.45 (bs, 1H), 3.91 – 3.79 (m, 1H), 3.69 – 3.52 (m, 1H), 2.34-2.31 (m, 2H), 1.79 – 1.64 (m, 1H), 1.61 – 1.46 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 148.1, 130.1, 125.7, 123.4, 121.2, 120.5, 110.9, 91.3, 61.7, 42.0, 29.1, 19.9. IR (neat): 3300, 2975, 2936, 2873, 2231, 1607, 1486, 1470, 1420, 1362, 1348, 1323, 1271, 1238, 1211, 1159, 1090, 1066, 1051, 1004, 970, 943, 909, 891, 868, 762, 747, 706, 665, 596, 558, 529, 506 cm⁻¹; HRMS calculated m/z for C₁₂H₁₃N₂O⁺ [M+H]⁺: 201.1022, found (ESI) 201.1022.

A mixture of **S43** (0.2 mmol, 73.1 mg, 1.0 equiv) and **9** (0.24 mmol, 86.2 mg, 1.2 equiv) in DCM (2 mL) was stirred at room temperature for 12 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **60** in 19% yield (11.0 mg) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.44 – 7.22 (m, 7H), 6.99 – 6.89 (m, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 5.97 (s, 1H), 4.73 – 4.35 (m, 2H), 3.48 – 3.17 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 170.7, 147.9, 135.3, 131.8, 129.2, 128.3, 128.1, 124.6, 124.4, 121.3, 117.6, 109.3, 98.8, 49.2, 44.1, 40.1. IR (neat): 2918, 2849, 2248, 1783, 1706, 1600, 1485, 1454, 1417, 1384, 1338, 1303, 1284, 1249, 1205, 1188, 1144, 1100, 1066, 1043, 1026, 1006, 973, 920, 905, 852, 825, 805, 740, 696, 655, 599, 561, 547 cm⁻¹; HRMS calculated m/z for C₁₈H₁₅N₂O₂⁺ [M+H]⁺: 291.1128, found (ESI) 291.1128.

A mixture of **S44** (0.2 mmol, 63.5 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in CH₃CN (2 mL) was stirred at room temperature for 5 minutes. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) afforded **61** in 86% yield (59.1 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.29 (d, *J* = 7.6 Hz, 1H), 7.13-7.09 (m,

1H), 6.83-6.79 (m, 1H), 6.57 (d, J = 8.0 Hz, 1H), 4.39 – 4.20 (m, 4H), 4.07 (bs, 1H), 3.01-2.93 (m, 1H), 2.45-2.36 (m, 1H), 2.33 – 2.24 (m, 1H), 2.22 – 2.07 (m, 1H), 1.79 (s, 3H), 1.41 – 1.22 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 170.2$, 169.4, 147.6, 129.74, 128.7, 124.3, 121.1, 120.0, 110.0, 79.4, 69.1, 62.1, 61.5, 55.4, 39.8, 32.8, 21.7, 14.1, 14.0. IR (neat): 3350, 2980, 2239, 1721, 1605, 1487, 1469, 1445, 1366, 1316, 1262, 1223, 1174, 1147, 1107, 1061, 1037, 1016, 941, 912, 858, 745, 649, 569, 532 cm⁻¹; HRMS calculated m/z for C₁₉H₂₃N₂O₄⁺ [M+H]⁺: 343.1652, found (ESI) 343.1656.

A mixture of **S45** (0.2 mmol, 74.3 mg, 1.0 equiv) and **9** (0.24 mmol, 86.2 mg, 1.2 equiv) in DCM (2 mL) was stirred at room temperature for 11 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 10:1) afforded **62-minor** in 17% yield (13.4 mg) and **62-major** in 79% yield (62.6 mg) both as a colorless oils.

¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.33 - 7.26$ (m, 1H), 7.16-7.12 (m, 1H), 6.85-6.81 (m, 1H), 6.69 (d, J = 8.0 Hz, 1H), 5.14 – 4.94 (m, 2H), 4.48 – 4.35 (m, 1H), 4.33 – 4.19 (m, 1H), 4.23 – 4.03 (m, 2H), 3.59 (bs, 1H), 2.87-2.83 (m, 1H), 2.71-2.67 (m, 1H), 2.34 – 2.23 (m, 1H), 2.10 – 1.95 (m, 2H), 1.96 – 1.87 (m, 3H), 1.35 (t, J = 7.2 Hz, 3H), 1.31 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 170.8$, 169.7, 146.9, 145.9, 130.3, 129.5, 123.3, 120.0, 119.6, 114.4, 111.5, 67.8, 62.0, 62.0, 52.7, 47.7, 44.4, 38.4, 32.4, 25.1, 24.5, 14.1, 14.0. IR (neat): 3357, 2977, 2240, 1641, 1608, 1482, 1466, 1444, 1376, 1318, 1239, 1218, 1175, 1147, 1127, 1077, 1056, 1020, 907, 859, 807, 749, 732, 635, 601, 561, 516 cm⁻¹; HRMS calculated m/z for C₂₃H₂₉N₂O₄⁺ [M+H]⁺: 397.2122, found (ESI) 397.2127.

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.21 (d, *J* = 7.6 Hz, 1H), 7.14-7.10 (m, 1H), 6.79-6.75 (m, 1H), 6.63 (d, *J* = 7.6 Hz, 1H), 5.03 (t, *J* = 1.6 Hz, 1H), 4.80 – 4.62 (m, 1H), 4.42 (bs, 1H), 4.34 – 4.15 (m, 2H), 4.16 – 4.03 (m, 1H), 4.02 – 3.87 (m, 1H), 3.11-3.07 (m, 1H), 2.76 (d, *J* = 15.2 Hz, 1H), 2.72-2.68 (m, 1H), 2.30-2.25 (m, 1H), 1.85 (t, *J* = 13.6 Hz, 1H), 1.80 (s, 3H), 1.47 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 170.8, 170.0, 148.6, 143.9, 130.3, 125.5, 124.7, 120.6, 119.4, 116.0, 110.9, 68.0, 62.3, 61.9, 52.6, 50.0, 44.3, 32.1, 30.6, 21.8, 18.5, 14.1, 13.8. IR (neat): 3362, 2980, 2231, 1727, 1607, 1482, 1467, 1385, 1368, 1328, 1299, 1248, 1197, 1156, 1093, 1050, 1020, 964, 908, 858, 797, 730, 647, 621, 591, 551 cm⁻¹; HRMS calculated m/z for C₂₃H₂₉N₂O₄⁺ [M+H]⁺: 397.2122, found (ESI) 397.2126.

6. Metal-free cyanation/Povarov cycloaddition of indole derivatives

General procedure of the cyanation/Povarov cycloaddition of indole derivatives: preparation of 63-68.

Compound **9** was added to a stirred solution of indole derivatives **S46-S51** (0.2 mmol, 1.0 equiv) in DCM (2 mL) at room temperature and the resulting mixture was stirred for the specified time (vide infra). Then, the reaction was quenched with water, extracted with DCM, and the organic phase dried over anhydrous Na_2SO_4 . Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel to afford the desired products.

A mixture of **S46** (0.2 mmol, 74.7 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in DCM (2 mL) was stirred at room temperature for 4 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 2:1) afforded **63** in 80% yield (63.9 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 6.63 – 6.40 (m, 2H), 5.36 (s, 1H), 4.42 – 4.11 (m, 4H), 3.72 (s, 3H), 3.03 (d, *J* = 16.4 Hz, 1H), 2.81-2.76 (m, 1H), 2.63-2.58 (m, 1H), 2.42 (d, *J* = 16.4 Hz, 1H), 1.72 (s, 3H), 1.70 – 1.60 (m, 1H), 1.37 – 1.21 (m, 7H), 1.08-1.03 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 175.2, 172.3, 172.1, 156.0, 135.5, 122.9, 120.2, 94.6, 78.5, 67.1, 62.7, 62.6, 59.5, 55.0, 50.2, 35.0, 31.7, 30.5, 29.8, 16.8, 14.0, 14.0. IR (neat): 2963, 2254, 1724, 1642, 1568, 1463, 1414, 1386, 1367, 1239, 1212, 1189, 1141, 1086, 1029, 977, 913, 886, 860, 813, 784, 731, 649, 612, 541, 510 cm⁻¹; HRMS calculated m/z for C₂₂H₂₇N₂O₅⁺ [M+H]⁺: 399.1914, found (ESI) 399.1918.

A mixture of **S47** (0.2 mmol, 65.9 mg, 1.0 equiv) and **9** (0.2 mmol, 71.9 mg, 1.0 equiv) in DCM (2 mL) was stirred at room temperature for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 1:1) followed by preparative HPLC afforded **64** in 67% yield (47.6 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 6.79 – 6.67 (m, 1H), 6.65 – 6.46 (m, 3H), 4.60 (d, *J* = 3.6 Hz, 1H), 4.37 – 4.15 (m, 4H), 2.99 (d, *J* = 16.4 Hz, 1H), 2.83-2.79 (m, 1H), 2.61 – 2.46 (m, 2H), 1.75 – 1.65 (m, 1H), 1.65 – 1.55 (m, 1H), 1.36 – 1.21 (m, 6H), 0.97-0.92 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 176.9, 172.4, 171.6, 134.6, 130.1, 128.7, 122.3, 120.4, 72.8, 64.5, 62.7, 62.7, 59.4, 50.2, 32.9, 30.9, 25.9, 14.1. IR (neat): 2981, 2237, 1633, 1560, 1444, 1367, 1253, 1190, 1145, 1092, 1051, 1019, 934, 909, 858, 809, 746, 696, 648, 627, 589, 565 cm⁻¹; HRMS calculated m/z for C₂₀H₂₃N₂O₄⁺ [M+H]⁺: 355.1652, found (ESI) 355.1654.

A mixture of **S48** (0.2 mmol, 81.1 mg, 1.0 equiv) and **9** (0.3 mmol, 107.8 mg, 1.5 equiv) in DCM (2 mL) was stirred at room temperature for 36 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 2:1) afforded **65** in 78% yield (66.8 mg) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.65 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.41 – 7.32 (m, 1H), 6.81-6.77 (m, 1H), 6.72 – 6.53 (m, 3H), 4.42 – 4.09 (m, 4H), 3.05 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.86 (d, *J* = 17.2 Hz, 1H), 2.67 (d, *J* = 17.2 Hz, 1H), 2.44 – 2.27 (m, 2H), 1.90-1.87 (m, 1H), 1.39 – 1.15 (m, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 176.0, 172.6, 172.1, 136.2, 134.9, 130.8, 128.4, 128.4, 128.2, 128.0, 122.1, 119.7, 83.1, 69.6, 62.8, 62.7, 61.3, 49.3, 34.9, 31.4, 29.5, 28.9, 14.0. IR (neat): 2977, 2235, 1748, 1720, 1634, 1566, 1499, 1445, 1365, 1316, 1298, 1252, 1234, 1193, 1147, 1093, 1073, 1031, 1007, 902, 864, 813, 763, 747, 720, 695, 645, 632, 607, 584, 552 cm⁻¹; HRMS calculated m/z for C₂₆H₂₇N₂O₄⁺ [M+H]⁺: 431.1965, found (ESI) 431.1966.

A mixture of **S49** (0.2 mmol, 63.1 mg, 1.0 equiv) and **9** (0.2 mmol, 71.9 mg, 1.0 equiv) in DCM (2 mL) was stirred at room temperature for 4 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 1:1) afforded **66** in 76% yield (51.4 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 6.77 – 6.69 (m, 1H), 6.64 – 6.55 (m, 2H), 6.52-6.49 (m, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.03 (d, *J* = 16.4 Hz, 1H), 2.85-2.80 (m, 1H), 2.58-2.54 (m, 1H), 2.49 (d, *J* = 16.4 Hz, 1H), 1.81 – 1.74 (m, 1H), 1.73 (s, 3H), 1.32-1.28 (m, 1H), 1.05-0.99 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 175.5, 172.7, 172.2, 134.7, 130.4, 128.5, 122.0, 119.9, 78.2, 67.5, 60.1, 53.8, 53.7, 50.3, 34.8, 31.3, 30.7, 29.8, 16.7. IR (neat): 2956, 2239, 1719, 1635, 1560, 1457, 1431, 1383, 1340, 1269, 1234, 1201, 1179, 1148, 1106, 1086, 1004, 969, 911, 872, 861, 838, 797, 749, 731, 649, 632, 611, 572 cm⁻¹; HRMS calculated m/z for C₁₉H₂₁N₂O₄⁺ [M+H]⁺: 341.1496, found (ESI) 341.1500.

A mixture of **S50** (0.2 mmol, 68.7 mg, 1.0 equiv) and **9** (0.2 mmol, 71.9 mg, 1.0 equiv) in DCM (2 mL) was stirred at room temperature for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 1:1) afforded **67** in 85% yield (62.7 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 6.75 – 6.71 (m, 1H), 6.62-6.56 (m, 2H), 6.50 (d, *J* = 9.6 Hz, 1H), 4.40 – 4.16 (m, 4H), 3.02 (d, *J* = 16.4 Hz, 1H), 2.83-2.78 (m, 1H), 2.60 – 2.51 (m, 1H), 2.51 – 2.40 (m, 1H), 1.74 (m, 4H), 1.30 (m, 7H), 1.04-0.99 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 175.5, 172.3, 171.7, 134.6, 130.6, 128.4, 121.9, 120.0, 78.2, 67.4, 62.7, 62.7, 60.2, 50.3, 34.9, 31.2, 30.6, 29.7, 16.7, 14.1, 14.0. IR (neat): 2976, 2235, 1721, 1632, 1561, 1467, 1444, 1380, 1366, 1298, 1245, 1190, 1147, 1079, 1040, 1016, 909, 861, 819, 782, 749, 629, 608, 572, 511 cm⁻¹; HRMS calculated m/z for C₂₁H₂₅N₂O₄⁺ [M+H]⁺: 369.1809, found (ESI) 369.1812.

A mixture of **S51** (0.2 mmol, 71.5 mg, 1.0 equiv) and **9** (0.2 mmol, 71.9 mg, 1.0 equiv) in DCM (2 mL) was stirred at room temperature for 3 h. Column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 1:1) afforded **68** in 81% yield (61.6 mg) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ = 6.59-6.56 (m, 1H), 6.47-6.45 (m, 1H), 6.26-6.24 (m, 1H), 4.43 – 3.99 (m, 4H), 3.01 (d, *J* = 16.4 Hz, 1H), 2.80-2.75 (m, 1H), 2.58-2.54 (m, 1H), 2.44 (d, *J* = 16.4 Hz, 1H), 2.05 (d, *J* = 1.6 Hz, 3H), 1.73-1.69 (m, 4H), 1.34-1.26 (m, 7H), 1.04-0.98 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 175.5, 172.3, 171.7, 139.1, 136.5, 124.5, 121.5, 120.2, 78.3, 67.3, 62.7, 62.6, 60.0, 50.3, 34.7, 31.5, 30.4, 29.7, 22.4, 16.7, 14.0, 14.0. IR (neat): 2980, 1727, 1563, 1441, 1383, 1234, 1196, 1176, 1142, 1083, 1065,

1022, 905, 857, 799, 723, 644, 607, 549, 512 cm⁻¹; HRMS calculated m/z for $C_{22}H_{27}N_2O_4^+$ [M+H]⁺: 383.1965, found (ESI) 383.1968.

7. Intermolecular cyanation-[4+2] cycloaddition

Procedure for the preparation of 69

Salt 9 (86.2 mg, 0.24 mmol, 1.2 equiv) was added to a stirred solution of 1,2-dimethyl-3*H*-benzo[*e*]indole 44 (39.1 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at room temperature and the resulting mixture was stirred for 10 minutes. Then, styrene (34.5 µL, 0.3 mmol, 1.5 equiv) was added and the resulting mixture stirred at room temperature for additional 11 h. Subsequently, the reaction was quenched with water, extracted with DCM and the organic phase dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **69** (57.7 mg, 89% yield) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.99 (d, *J* = 7.6 Hz, 1H), 7.49 – 7.40 (m, 1H), 7.34 -7.24 (m, 1H), 7.11 - 7.00 (m, 2H), 6.95 (t, J = 7.6 Hz, 2H), 6.72 - 6.61 (m, 2H), 6.55 (d, J =9.6 Hz, 1H), 6.22 (d, J = 9.6 Hz, 1H), 4.08-4.04 (m, 1H), 2.75-2.69 (m, 1H), 1.85 - 1.73 (m, 4H), 0.97 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 173.0, 139.1, 137.1, 135.3, 133.5, 129.4, 137.1, 135.3, 133.5, 129.4, 137.1, 135.3, 133.5, 129.4, 137.1, 135.3, 137.1, 135.3, 138.5, 129.4, 137.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1, 137.1, 135.3, 138.5, 139.1,$ 129.1, 128.2, 128.0, 127.5, 127.1, 125.8, 122.3, 121.8, 77.9, 67.5, 63.1, 51.0, 34.8, 16.8, 13.6. IR (neat): 2976, 2225, 1614, 1571, 1498, 1451, 1373, 1294, 1173, 1160, 1093, 1035, 909, 870, 847, 805, 754, 729, 706, 601, 581, 555, 535, 510 cm⁻¹; HRMS calculated m/z for $C_{23}H_{21}N_2^+$ [M+H]⁺: 325.1699, found (ESI) 325.1703.

Procedure for the preparation of 70

Salt **9** (86.2 mg, 0.24 mmol, 1.2 equiv) and allylbenzene (39.8 μ L, 0.3 mmol, 1.5 equiv) were successively added to a stirred solution of 1,2-dimethyl-3*H*-benzo[*e*]indole **44** (39.1 mg, 0.2 mmol, 1.0 equiv) in DCM (2 mL) at room temperature, and the resulting mixture was

stirred at room temperature for 37 h. Then, the reaction was quenched with water, extracted with DCM and the organic phase dried over anhydrous Na_2SO_4 . Evaporation of the solvents under reduced pressure afforded a residue, which was purified by column chromatography on silica gel (eluent: hexane to hexane/ethyl acetate = 4:1) to afford **70** (58.7 mg, 87% yield, d.r.= 8:1 based on ¹H NMR analysis). Separation of the isomers was only possible by preparative HPLC.

¹H NMR (400 MHz, Chloroform-*d*) δ = 7.89 (d, *J* = 7.6 Hz, 1H), 7.49 – 7.33 (m, 3H), 7.23 – 7.06 (m, 4H), 6.98 – 6.83 (m, 2H), 6.65 – 6.48 (m, 1H), 3.21 – 3.02 (m, 1H), 2.42-2.38 (m, 1H), 2.34 – 2.22 (m, 1H), 2.01 – 1.89 (m, 1H), 1.63 (s, 3H), 1.07-1.02 (m, 1H), 0.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 173.4, 140.1, 139.5, 135.8, 133.7, 129.8, 129.5, 128.6, 128.4, 128.4, 126.3, 125.7, 122.2, 121.9, 65.5, 63.0, 48.2, 36.3, 34.0, 16.9, 13.5. IR (neat): 2974, 2933, 2227, 1612, 1571, 1497, 1450, 1388, 1376, 1296, 1212, 1166, 1119, 982, 943, 906, 867, 808, 753, 735, 705, 660, 623, 585, 544, 509 cm⁻¹; HRMS calculated m/z for C₂₄H₂₃N₂⁺ [M+H]⁺: 339.1856, found (ESI) 339.1857.

¹H NMR (400 MHz, Chloroform-*d*) $\delta = 7.87 - 7.78$ (m, 1H), 7.47 - 7.35 (m, 3H), 7.24 - 7.17 (m, 2H), 7.18 - 7.11 (m, 2H), 7.11 - 7.03 (m, 2H), 6.43 (d, *J* = 9.6 Hz, 1H), 3.36 (t, *J* = 13.2 Hz, 1H), 2.62-2.57 (m, 1H), 2.11-2.06 (m, 1H), 2.01 - 1.87 (m, 1H), 1.68 (s, 3H), 1.39-1.33 (m, 1H), 1.00 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 176.0$, 140.0, 139.9, 134.8, 133.0, 130.0, 128.8, 128.7, 128.6, 128.4, 128.3, 126.3, 123.5, 119.4, 65.1, 58.0, 43.0, 37.0, 36.9, 16.6, 14.9. IR (neat): 3026, 2968, 2934, 2226, 1614, 1573, 1496, 1450, 1404, 1384, 1293, 1210, 1163, 1119, 1030, 988, 951, 909, 864, 813, 757, 730, 700, 660, 642, 611, 584, 548, 531, 515 cm⁻¹; HRMS calculated m/z for C₂₄H₂₃N₂⁺ [M+H]⁺: 339.1856, found (ESI) 339.1859.

8. Control experiments

Compound $7^{[25]}$ (81.9 mg, 0.3 mmol, 1.5 equiv) was added at room temperature under nitrogen flow to a stirred solution of **S29** (62.9 mg, 0.2 mmol, 1.0 equiv) in CH₃CN (2 mL). The resulting mixture was stirred at room temperature for 13 h. No trace of desired product **46** was observed. Then, the reaction was stirred at 70 °C for additional 28 h. without observing any change.

To a stirred solution of **S29** (62.9 mg, 0.2 mmol, 1.0 equiv) in CH₃CN (2 mL) $8^{[23]}$ (142.2 mg, 0.3 mmol, 1.5 equiv) was added at room temperature under nitrogen flow. The resulting mixture was stirred at room temperature for 5 h. No desired product **46** was observed. Stirring the reaction at 70 °C for additional 12 h. did not change the result.

Empirical formula	$C_{14}H_8F_3NO_3S_2$
Formula weight	359.33
Temperature/K	101.44
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	6.7928(3)
b/Å	14.0411(6)
c/Å	15.2306(7)
α/°	90
β/°	90.599(2)
γ/°	90
Volume/Å ³	1452.59(11)
Z	4
$\rho_{calc}g/cm^3$	1.643
μ/mm^{-1}	0.413
F(000)	728.0
Crystal size/mm ³	$0.416 \times 0.27 \times 0.263$
Radiation	MoKa ($\lambda = 0.71073$)
2@ range for data collection/°	5.35 to 63.02
Index ranges	$\textbf{-9} \leq h \leq \textbf{9}, \textbf{-20} \leq k \leq \textbf{20}, \textbf{-22} \leq l \leq \textbf{22}$
Reflections collected	66179
Independent reflections	4789 [$R_{int} = 0.0186$, $R_{sigma} = 0.0104$]
Data/restraints/parameters	4789/0/208
Goodness-of-fit on F ²	1.079
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0251, wR_2 = 0.0680$
Final R indexes [all data]	$R_1 = 0.0252, wR_2 = 0.0682$
Largest diff. peak/hole / e Å ⁻³	0.50/-0.34

Empirical formula	$C_{13}H_8N_2$
Formula weight	192.21
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	8.0477(7)
b/Å	8.1521(7)
c/Å	14.5994(14)
α/°	94.263(3)
β/°	93.278(3)
γ/°	93.638(3)
Volume/Å ³	951.38(15)
Z	4
$\rho_{calc}g/cm^3$	1.342
μ/mm^{-1}	0.081
F(000)	400.0
Crystal size/mm ³	$0.421 \times 0.22 \times 0.219$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.082 to 63.192
Index ranges	$-11 \le h \le 11, -11 \le k \le 12, -21 \le l \le 21$
Reflections collected	34993
Independent reflections	6331 [$R_{int} = 0.0279, R_{sigma} = 0.0205$]
Data/restraints/parameters	6331/0/271
Goodness-of-fit on F ²	1.153
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0476, wR_2 = 0.1259$
Final R indexes [all data]	$R_1 = 0.0503, wR_2 = 0.1277$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.21

Empirical formula	$C_{14}H_{17}N_3O_2S$
Formula weight	291.36
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.7293(12)
b/Å	8.4475(6)
c/Å	12.0428(9)
α/°	90
β/°	100.898(4)
γ/°	90
Volume/Å ³	1371.51(19)
Z	4
$\rho_{calc}g/cm^3$	1.411
μ/mm^{-1}	0.241
F(000)	616.0
Crystal size/mm ³	$0.45\times0.316\times0.214$
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	5.692 to 63.138
Index ranges	$-16 \le h \le 20, -12 \le k \le 12, -17 \le l \le 17$
Reflections collected	18342
Independent reflections	4579 [$R_{int} = 0.0280, R_{sigma} = 0.0257$]
Data/restraints/parameters	4579/0/209
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0363, wR_2 = 0.1021$
Final R indexes [all data]	$R_1 = 0.0398, wR_2 = 0.1052$
Largest diff. peak/hole / e $Å^{-3}$	0.83/-0.62

Empirical formula	C ₁₉ H ₁₇ N ₃
Formula weight	287.35
Temperature/K	298
Crystal system	monoclinic
Space group	Cc
a/Å	10.0946(8)
b/Å	15.6754(11)
c/Å	10.9099(11)
α/°	90
β/°	113.486(3)
γ/°	90
Volume/Å ³	1583.3(2)
Z	4
$\rho_{calc}g/cm^3$	1.205
µ/mm ⁻¹	0.073
F(000)	608.0
Crystal size/mm ³	$0.363 \times 0.286 \times 0.166$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.33 to 58.25
Index ranges	$-13 \le h \le 13, -21 \le k \le 21, -14 \le l \le 14$
Reflections collected	19130
Independent reflections	4229 [$R_{int} = 0.0210, R_{sigma} = 0.0216$]
Data/restraints/parameters	4229/2/207
Goodness-of-fit on F ²	1.071
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0386, wR_2 = 0.1132$
Final R indexes [all data]	$R_1 = 0.0398, wR_2 = 0.1147$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.15
Flack parameter	-0.1(4)

Empirical formula	$C_{20}H_{16}N_4$
Formula weight	312.37
Temperature/K	298
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	6.7642(4)
b/Å	25.5858(14)
c/Å	9.4556(5)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1636.46(16)
Z	4
$\rho_{calc}g/cm^3$	1.268
μ/mm^{-1}	0.078
F(000)	656.0
Crystal size/mm ³	$0.363 \times 0.354 \times 0.136$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.592 to 57.446
Index ranges	$-9 \le h \le 9, -34 \le k \le 34, -12 \le l \le 12$
Reflections collected	44432
Independent reflections	4209 [$R_{int} = 0.0252$, $R_{sigma} = 0.0174$]
Data/restraints/parameters	4209/38/222
Goodness-of-fit on F ²	1.062
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0377, wR_2 = 0.1114$
Final R indexes [all data]	$R_1 = 0.0389, wR_2 = 0.1127$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.20
Flack parameter	0.0(3)

Empirical formula	$C_{13}H_{12}N_2$
Formula weight	196.25
Temperature/K	100.01
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	6.7185(13)
b/Å	6.7629(15)
c/Å	23.087(4)
α/°	90
β/°	90.519(7)
γ/°	90
Volume/Å ³	1048.9(4)
Z	4
$\rho_{calc}g/cm^3$	1.243
μ/mm^{-1}	0.075
F(000)	416.0
Crystal size/mm ³	$0.5\times0.406\times0.088$
Radiation	MoK α ($\lambda = 0.71073$)
2⊖ range for data collection/°	6.064 to 54.348
Index ranges	$-8 \le h \le 8, -8 \le k \le 8, -28 \le l \le 29$
Reflections collected	24225
Independent reflections	2344 [$R_{int} = 0.0331$, $R_{sigma} = 0.0174$]
Data/restraints/parameters	2344/0/136
Goodness-of-fit on F ²	1.093
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0439, wR_2 = 0.1107$
Final R indexes [all data]	$R_1 = 0.0471, wR_2 = 0.1126$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.19

Empirical formula	$C_{19}H_{19}N_3O_2S$
Formula weight	353.43
Temperature/K	199.98
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.1603(18)
b/Å	10.1311(13)
c/Å	15.642(3)
α/°	90
β/°	96.422(8)
γ/°	90
Volume/Å ³	1757.5(5)
Z	4
$\rho_{calc}g/cm^3$	1.336
μ/mm^{-1}	0.202
F(000)	744.0
Crystal size/mm ³	$0.601 \times 0.144 \times 0.096$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.446 to 57.424
Index ranges	$-15 \le h \le 15, -13 \le k \le 13, -21 \le l \le 21$
Reflections collected	40943
Independent reflections	4531 [$R_{int} = 0.0201$, $R_{sigma} = 0.0126$]
Data/restraints/parameters	4531/0/232
Goodness-of-fit on F ²	1.041
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0377, wR_2 = 0.1064$
Final R indexes [all data]	$R_1 = 0.0404, wR_2 = 0.1091$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.42

Empirical formula	$C_{27}H_{25}N_3O_2$
Formula weight	423.50
Temperature/K	99.96
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	18.5268(18)
b/Å	7.8990(7)
c/Å	15.0062(15)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2196.1(4)
Z	4
$\rho_{calc}g/cm^3$	1.281
μ/mm^{-1}	0.082
F(000)	896.0
Crystal size/mm ³	$0.67 \times 0.634 \times 0.586$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.158 to 59.232
Index ranges	$-25 \le h \le 25, -10 \le k \le 10, -20 \le l \le 18$
Reflections collected	33215
Independent reflections	6071 [$R_{int} = 0.0301$, $R_{sigma} = 0.0244$]
Data/restraints/parameters	6071/0/291
Goodness-of-fit on F ²	1.035
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0399, wR_2 = 0.1039$
Final R indexes [all data]	$R_1 = 0.0417, wR_2 = 0.1065$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.22

Me Ms

•N Н 55

Empirical formula	$C_{13}H_{15}N_3O_2S$
Formula weight	277.34
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.2046(16)
b/Å	9.1200(10)
c/Å	11.4034(15)
α/°	90
β/°	110.802(4)
$\gamma^{\prime \circ}$	90
Volume/Å ³	1283.7(3)
Z	4
$\rho_{\rm calc}g/{\rm cm}^3$	1.435
μ/mm^{-1}	0.254
F(000)	584.0
Crystal size/mm ³	$0.936 \times 0.364 \times 0.08$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.554 to 57.434
Index ranges	$-17 \le h \le 17, -11 \le k \le 12, -15 \le l \le 15$
Reflections collected	13200
Independent reflections	3291 [$R_{int} = 0.0244, R_{sigma} = 0.0217$]
Data/restraints/parameters	3291/0/177
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0301, wR_2 = 0.0765$
Final R indexes [all data]	$R_1 = 0.0323, wR_2 = 0.0785$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.44

Empirical formula	$C_{12}H_{12}N_2O$
Formula weight	200.24
Temperature/K	99.98
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	9.9515(8)
b/Å	7.1269(6)
c/Å	14.6312(11)
α/°	90
β/°	97.573(3)
γ/°	90
Volume/Å ³	1028.64(14)
Z	4
$\rho_{calc}g/cm^3$	1.293
μ/mm^{-1}	0.084
F(000)	424.0
Crystal size/mm ³	$0.596 \times 0.575 \times 0.55$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.128 to 61.154
Index ranges	$-14 \le h \le 14, -10 \le k \le 10, -20 \le l \le 20$
Reflections collected	31056
Independent reflections	3122 [$R_{int} = 0.0254, R_{sigma} = 0.0119$]
Data/restraints/parameters	3122/0/140
Goodness-of-fit on F ²	1.087
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0362, wR_2 = 0.1008$
Final R indexes [all data]	$R_1 = 0.0375, wR_2 = 0.1032$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.24

Empirical formula	$C_{18}H_{14}N_2O_2$
Formula weight	290.31
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	8.3733(5)
b/Å	8.8124(6)
c/Å	9.8006(7)
α/°	92.376(3)
β/°	94.925(2)
γ/°	91.733(2)
Volume/Å ³	719.47(8)
Z	2
$\rho_{calc}g/cm^3$	1.340
μ/mm^{-1}	0.089
F(000)	304.0
Crystal size/mm ³	$0.308 \times 0.225 \times 0.22$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.096 to 59.182
Index ranges	$-11 \le h \le 11, -12 \le k \le 12, -13 \le l \le 13$
Reflections collected	18340
Independent reflections	4034 [$R_{int} = 0.0232$, $R_{sigma} = 0.0213$]
Data/restraints/parameters	4034/403/374
Goodness-of-fit on F ²	1.191
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0555, wR_2 = 0.1200$
Final R indexes [all data]	$R_1 = 0.0572, wR_2 = 0.1207$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.26

Empirical formula	$C_{26}H_{26}N_2O_4$
Formula weight	430.49
Temperature/K	100.01
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.4697(7)
b/Å	20.5978(15)
c/Å	11.0885(7)
α/°	90
β/°	116.053(2)
γ/°	90
Volume/Å ³	2148.3(3)
Z	4
$\rho_{calc}g/cm^3$	1.331
μ/mm^{-1}	0.090
F(000)	912.0
Crystal size/mm ³	$0.496 \times 0.446 \times 0.198$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.76 to 59.232
Index ranges	$-14 \le h \le 14, -28 \le k \le 28, -15 \le l \le 15$
Reflections collected	41436
Independent reflections	5990 [$R_{int} = 0.0270, R_{sigma} = 0.0174$]
Data/restraints/parameters	5990/0/291
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0360, wR_2 = 0.0933$
Final R indexes [all data]	$R_1 = 0.0400, wR_2 = 0.0978$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.23

Empirical formula	$C_{23}H_{20}N_2$
Formula weight	324.41
Temperature/K	175
Crystal system	triclinic
Space group	P-1
a/Å	6.9386(7)
b/Å	10.8785(10)
c/Å	12.1498(10)
α/°	92.955(3)
β/°	99.134(3)
γ/°	107.607(3)
Volume/Å ³	858.20(14)
Z	2
$\rho_{calc}g/cm^3$	1.255
μ/mm^{-1}	0.074
F(000)	344.0
Crystal size/mm ³	$0.517\times0.459\times0.152$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	6.266 to 57.404
Index ranges	$-9 \le h \le 9, -14 \le k \le 14, -16 \le l \le 16$
Reflections collected	21504
Independent reflections	4423 [$R_{int} = 0.0220, R_{sigma} = 0.0206$]
Data/restraints/parameters	4423/0/229
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0393, wR_2 = 0.1033$
Final R indexes [all data]	$R_1 = 0.0415, wR_2 = 0.1054$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.19

X-ray crystal structure of 70-major

Empirical formula	$C_{24}H_{22}N_2$
Formula weight	338.43
Temperature/K	99.97
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	15.504(2)
b/Å	16.8542(18)
c/Å	7.0717(9)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1847.9(4)
Z	4
$\rho_{calc}g/cm^3$	1.217
μ/mm^{-1}	0.071
F(000)	720.0
Crystal size/mm ³	$0.27 \times 0.236 \times 0.182$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.254 to 57.502
Index ranges	-20 \leq h \leq 20, -22 \leq k \leq 22, -9 \leq l \leq 9
Reflections collected	41884
Independent reflections	4791 [$R_{int} = 0.0313$, $R_{sigma} = 0.0184$]
Data/restraints/parameters	4791/1/237
Goodness-of-fit on F ²	1.065
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0343, wR_2 = 0.0922$
Final R indexes [all data]	$R_1 = 0.0352, wR_2 = 0.0932$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.20
Flack parameter	-0.2(5)

10. References

- [1] B. Waldecker, F. Kraft, C. Golz, M. Alcarazo, Angew. Chem. Int. Ed. 2018, 57, 12538-12542.
- [2] R. R. Singh, R.-S. Liu, Chem. Commun. 2017, 53, 4593-4596.
- [3] X.-H. Xu, G.-K. Liu, A. Azuma, E. Tokunaga, N. Shibata, Org. Lett. 2011, 13, 4854-4857.
- [4] D. L. Priebbenow, L. C. Henderson, F. M. Pfeffer, S. G. Stewart, J. Org. Chem. 2010, 75, 1787-1790.
- [5] T. D. Montgomery, A. E. Nibbs, Y. Zhu, V. H. Rawal, Org. Lett. 2014, 16, 3480-3483.
- [6] N. Zheng, Y.-Y. Chang, L.-J. Zhang, J.-X. Gong, Z. Yang, *Chem. Asian J.* **2016**, *11*, 371-375.
- [7] Y. Peng, L. Luo, C.-S. Yan, J.-J. Zhang, Y.-W. Wang, J. Org. Chem. 2013, 78, 10960-10967.
- [8] E. C. Gentry, L. J. Rono, M. E. Hale, R. Matsuura, R. R. Knowles, J. Am. Chem. Soc.2018, 140, 3394-3402.
- [9] X.-W. Liang, C. Liu, W. Zhang, S.-L. You, Chem. Commun. 2017, 53, 5531-5534.
- [10] C. Liu, W. Zhang, L.-X. Dai, S.-L. You, Org. Lett. 2012, 14, 4525-4527.
- [11] K. R. Campos, J. C. S. Woo, S. Lee, R. D. Tillyer, Org. Lett. 2004, 6, 79-82.
- [12] R.-D. Gao, C. Liu, L.-X. Dai, W. Zhang, S.-L. You, Org. Lett. 2014, 16, 3919-3921.
- [13] M. Zhu, K. Zhou, X. Zhang, S.-L. You, Org. Lett. 2018, 20, 4379-4383.
- [14] G. E. Rudebusch, L. N. Zakharov, S.-Y. Liu, Angew. Chem. Int. Ed. 2013, 52, 9316 –
 9319.
- [15] S.-G. Li, S. Z. Zard, Org. Lett. 2013, 15, 5898-5901.
- [16] D. T. Jones, G. D. Artman, R. M. Williams, Tetrahedron Lett. 2007, 48, 1291-1294.
- [17] G. Cera, P. Crispino, M. Monari, M. Bandini, Chem. Commun. 2011, 47, 7803-7805.
- [18] Z. Pan, S. Wang, J. T. Brethorst, C. J. Douglas, J. Am. Chem. Soc. 2018, 140, 3331–3338.
- [19] K. Skoch, I. Cisarova, and P. Stepnicka, Chem. Eur. J. 2018, 24, 13788 13791.
- [20] J. Li, X. Zheng, W. Li, W. Zhou, W. Zhu, Y. Zhang, New J. Chem. 2016, 40, 77-80.
- [21] Y.-Q. Wu, D. C. Limburg, D. E. Wilkinson, G. S. Hamilton, Org. Lett. 2000, 2, 795-797.
- [22] J. N. Ayres, M. W. Ashford, Y. Stöckl, V. Prudhomme, K. B. Ling, J. A. Platts, L. C.

Morrill, Org. Lett. 2017, 19, 3835-3838.

[23] G. Talavera, J. Pena, and M. Alcarazo, J. Am. Chem. Soc. 2015, 137, 8704-8707.

[24] W. Guo, W. Tan, M. Zhao, L. Zheng, K. Tao, D. Chen, X. Fan, J. Org. Chem. 2018, 83, 6580–6588.

- [25] R. Frei, T. Courant, M. D. Wodrich, J. Waser, Chem. Eur. J. 2015, 21, 2662 2668.
- [26] A. Khazaei, A. Alizadeh, R. G. Vaghei, *Molecules*, 2001, 6, 253-257.
- [27] T. Nagata, H. Matsubara, K. Kiyokawa, S. Minakata, Org. Lett. 2017, 19, 4672-4675.
- [28] X. Wang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 11792 –11796.
- [29] S. Xu, X. Huang, X. Hong, B. Xu, Org. Lett. 2012, 14, 4614–4617.
- [30] Q. Wu, Y. Luo, A. Lei, J. You, J. Am. Chem. Soc. 2016, 138, 2885-2888.

[31] L. Zhang, P. Lu, Y. Wang, Org. Biomol. Chem. 2015, 13, 8322–8329.

- [32] J. T. Reeves, C. A. Malapit, F. G. Buono, K. P. Sidhu, M. A. Marsini, C. A. Sader, K. R.
- Fandrick, C. A. Busacca, C. H. Senanayake, J. Am. Chem. Soc. 2015, 137, 9481-9488.

[33] S. B. Mane, C.-F. Cheng, A. A. Sutanto, A. Datta, A.Dutta, C.-H. Hung, *Tetrahedron* **2015**, *71*, 7977-7984.

11. NMR spectra

¹H NMR (300 MHz, CD₃CN)

¹³C NMR (75 MHz, CD₃CN)

¹H NMR (400 MHz, DMSO-*d*₆, 100 °C)

4,004 4,008 3,391 3,321 3,319863,31986 3,31986 3,31986 3,31986 3,31986 3,31986 3,3196

¹³C NMR (101 MHz, DMSO-*d*₆, 100 °C)

¹H NMR (400 MHz, DMSO-*d*₆, 100 °C)

---5.362

¹³C NMR (101 MHz, DMSO-*d*₆, 100 °C)

¹H NMR (400 MHz, DMSO-*d*₆, 100 °C)

$\sum_{i=1}^{7} \sum_{i=1}^{7} \sum_{7$

¹³C NMR (101 MHz, DMSO-*d*₆, 100 °C)

¹³C NMR (101 MHz, Chloroform-d)

___171.978

¹³C NMR (101 MHz, Chloroform-d)

Reference of the second sec

¹³C NMR (101 MHz, Chloroform-d)

$\begin{array}{c} 7.2 \\ 7.2 \\ 7.4 \\$

¹³C NMR (101 MHz, Chloroform-d)

___171.618

f1 (ppm)

----0.000

___1.649

ò

7.0 11.0 10.5 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 f1 (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 10.0

¹H NMR (300 MHz, Chloroform-*d*) 8,8,241 8,8,218 8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 8,8,200 7,7,956 7,7,956 7,7,956 7,7,706 8,8,200 7,7,956 7,7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 7,706 8,8,200 8,8,200 7,706 8,8,200 7,706 8,8,200 8,8,200 ___1.573 0.084 s≁^{CN} 24 1.00 £ 3.06 ↓ 1.05 ↓ 1.09 ↓ 5.5 5.0 f1 (ppm) 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 6.5 6.0

133.692 130.198 129.557 129.188 127.272 121.897	109.721	.77.585 .77.161 .76.737
VVVV		

38.301	29.777 28.441 27.062 24.257 22.340	13.942 10.745	04.119	7.584 7.161 6.736
~		~ ~	<u></u>	
	51772			

$^{1}\text{H NMR (300 MHz, Chloroform-d)} \\ \overset{(300 MHz, Chloroform-d)}{\overset{(302 MHz, Chloroform-d)}{\overset{(302$

___1.621

200 190

110 100 f1 (ppm) ò

151.723	146.088	133.304 129.911 126.295 1125.269 112.269	102.619	77.584 77.161 76.737
1		11125		52

¹H NMR (300 MHz, Methylene Chloride-*d*₂)

¹³C NMR (75 MHz, Methylene Chloride-*d*₂)

$\begin{array}{c} -150.038\\ -135.958\\ -135.958\\ -135.9645\\ -122.9645\\ -122.9645\\ -122.1515\\ -122.1515\\ -122.1816\\ -122.1816\\ -111.518\\ -111.406\\ -111.406\\ -111.9949\end{array}$	67.332 64.721 54.361 54.361 53.640 53.640 53.640 47.519		9.301
---	--	--	-------

03446836783444444	8 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	88868947876858685868	382488888644888886448
000000000000000444	444000000000000000000000000000000000000	,	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0
~~~~	~~~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****















148.525 144.560	135.063 135.063 130.255 127.301 127.301 123.786 123.786 123.786 123.385 119.519	110.490	82.579 77.478 77.161 76.843	49.701 46.817		21.683
--------------------	------------------------------------------------------------------------------------------------------------	---------	--------------------------------------	------------------	--	--------












7,7,384 7,7,326 7,7,326 7,7,327 7,7,327 7,7,327 7,7,228 7,7,228 7,7,228 7,7,228 7,7,228 7,7,228 7,7,228 7,7,228 7,7,228 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,728 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208 7,208



7,7355 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 7,7357 1,7356 6,771 6,677 1,1256 6,771 6,677 1,1256 6,771 6,677 1,1256 6,773 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,5667 2,











7, 7, 4,28 7, 7, 7, 7, 7, 2,28 7, 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 7, 30 8, 30 7, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8, 30 8,



	126.967 123.689 1123.080 1119.789 118.352 109.379	79.579	65.997	_48.373 _44.249 _39.520 _35.423
--	------------------------------------------------------------------	--------	--------	------------------------------------------



7,7,365 7,7,365 7,7,355 7,7,355 7,7,355 7,7,355 7,7,355 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,7,357 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,335 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,355 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555 7,555



152.457 148.398 148.398 148.398 136.180	129.661 127.762 127.704 127.204 123.748 123.748 123.213 118.567 118.567 118.567			53.694 45.093 45.093 39.939 39.731 39.731 39.311 39.102 38.311 31.664	21.631
-----------------------------------------------------	------------------------------------------------------------------------------------------------------------	--	--	--------------------------------------------------------------------------------------------------	--------





	89.879		54.772	46.459 45.848	39.521	32.124	19.180
--	--------	--	--------	------------------	--------	--------	--------







# ¹³C NMR (75 MHz, Chloroform-d)

148.956	130.539 124.672 124.501 120.793 120.215	109.378	97.558	77.584 77.161 76.736	66.543		40.848
---------	-----------------------------------------------------	---------	--------	----------------------------	--------	--	--------





ò f1 (ppm) 









149.193 139.209	$\int_{120.055}^{130.555} 129.510$ $\int_{128.594}^{128.594} 128.623$ $\int_{124.169}^{124.169} 124.169$ $\int_{119.573}^{119.573}$	108.716 106.389	77.478 777.161 76.843	67.027	56.770	41.076
--------------------	-------------------------------------------------------------------------------------------------------------------------------------	--------------------	-----------------------------	--------	--------	--------











	7.399 7.397 7.352 7.351 7.351 7.323 7.323 7.323 7.323 7.323 7.323 7.323	7.298 7.282 7.282 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.256 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.266 7.267 7.266 7.266 7.267 7.266 7.267 7.266 7.267 7.266 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267 7.267	5.621 5.601 5.971 5.969	5.293	4.675 4.637 4.480 4.444	3.440 3.396 3.396 3.394 3.287 3.284 3.284 3.243			0.000
			22 20	$\leq_5^5$	2 4 4 4 4 4 4 4				ļ
	L N H								
	Bn <b>60</b>								
		ſ							
			c		r r	( T			
			J		75	ر بر			
								nda	h
		37 H	94 <del>.</del> T		ΥT 8 8	2 2 , , , , ,			
11.0 10.5	10.0 9.5 9.0 85		o 5 6.0	5.5 50	, , , , , , , , , , , , , , , , , , ,	4.0 3.5 3.0	2.5 20	1.5 1.0 0.5	0.0
10.0	0.0		f1 (	ppm)		5.5 5.6		0.0	

663	882	271 826 159 159 099 606 606 606 608 273 273 273	296	73	77 43	63 85
70.	47.	35. 31. 31. 22. 28. 28. 29. 37.	09.	8.7	7.1	0,7 0,7 0,7
5	5	1111111111111	5	ရ		444
		1 7 7 <i>F F F F</i>			$\sim$	





#### 



7,7,305 7,7,205 7,7,205 7,7,205 7,7,105 7,7,105 7,7,105 7,7,105 8,805 7,105 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,805 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,505 8,



77.258
77.217
77.217
77.217
77.217
77.217
77.217
77.217
77.1056
77.1056
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016
77.1016



#### 6,555,6 6,555,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,553,6 6,552,6 6,552,6 6,552,6 7,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,64,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,6 4,423,64,423,6 4,423,64,423,6 4,423,64,423,6 4,423,64,423,6 4,423,64,423,6 4,423,64,423,6 4,423,64,423,6 4,423,64,423,64,423,64,423,6 4,423,64,423,64,423,





#### 7,7284 (6,7284) (6,7284) (6,7284) (6,7284) (6,5728) (6,5728) (6,5728) (6,5528) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (6,55928) (7,1211) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1,1711) (1



125

# $\begin{array}{c} 7.563\\ 7.7653\\ 7.75554\\ 7.75554\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.75555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\ 7.7555\\$



# 







<ul> <li>√17.5.51</li> <li>√17.25.51</li> <li>√17.174</li> <li>√130.551</li> <li>√130.553</li> <li>√130.365</li> <li>√130.365</li> <li>√130.365</li> <li>√130.975</li> </ul>	78.205 77.1479 67.543 67.543 67.543 67.543 67.543 67.543 67.543 67.633 67.633 76.1683 731.224 2055 731.224 733.957 733.224 733.957 733.2367
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------





0 222222 +++++ 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7	0.0
--------------------------------------------------	-----



-173.022 1137.022 1137.142 1137.142 1137.955 1127.959 1127.959 1127.059 1127.059 1127.059 1127.059 1127.059	77.904 77.478 76.842 67.457 67.457	50.973		16.815 13.579
----------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------	--------	--	------------------







-173.396 (140.069 (135.7950 (135.7950 (123.3665 (123.36957 (123.36957 (123.36957 (123.36957 (122.3617 (122.3741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (122.741) (12	-65.501		36.256 33.949	16.914 13.448
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------	--	------------------	------------------





