
Additive systematic measurement heterogeneity

FIGURE 6 Predictive performance of a single-predictor binary logistic regression model. The degree of additive error in the validation predictor measurement W_V varies, while the degree of random error is consistent across settings, i.e. while $\sigma^2_{\varepsilon(D)} = \sigma^2_{\varepsilon(V)}$. The predictor measurement structure corresponds to:

A. $W_D = X + \varepsilon_D$, where $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_D \sim \mathcal{N}(0,0.5)$.

B. $W_V = \psi_V + X + \varepsilon_V$, where $\psi_V = 0$, $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_V \sim \mathcal{N}(0,0.5)$. Measurements are equal across settings.

C. $W_V = \psi_V + X + \varepsilon_V$, where $\psi_V = 0.25$, $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_V \sim \mathcal{N}(0,0.5)$. Measurements are shifted from X by a constant.