Multiplicative systematic measurement heterogeneity

FIGURE 7 Predictive performance of a single-predictor binary logistic regression model. The degree of multiplicative error in the validation predictor measurement W_V varies, while the degree of random error is consistent across settings, i.e. while $\sigma_{\varepsilon(D)}^2 = \sigma_{\varepsilon(V)}^2$. The predictor measurement structure corresponds to:

A. $W_D = \theta_D X + \varepsilon_D$, where $\theta_D = 1.0$, $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_D \sim \mathcal{N}(0,0.5)$.

B. $W_V = \theta_V X + \varepsilon_V$, where $\theta_V = 0.5$, $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_V \sim \mathcal{N}(0,0.5)$. The association X-W is weaker at validation.

C. $W_V = \theta_V X + \varepsilon_V$, where $\theta_V = 1.0$, $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_V \sim \mathcal{N}(0,0.5)$. The association X-W is equal across settings.

D. $W_V = \theta_V X + \varepsilon_V$, where $\theta_V = 2.0$, $X \sim \mathcal{N}(0,0.5)$ and $\varepsilon_V \sim \mathcal{N}(0,0.5)$. The association X-W is stronger at validation.