Differential measurement heterogeneity at derivation

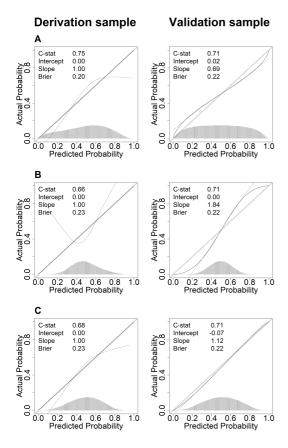


FIGURE 9 Predictive performance of a single-predictor binary logistic regression model. In all three scenarios, $\psi_{D\{0,1\}}$ and $\psi_{V\{0,1\}}$ equal 0, the default value for $\theta_{D\{0,1\}}$ and $\theta_{V\{0,1\}}$ is 1.0, and the default value for $\sigma^2_{\varepsilon(D\{0,1\})}$ and $\sigma^2_{\varepsilon(V\{0,1\})}$ is 0.5. Otherwise, the predictor measurement structure for the cases at derivation (specified by θ_{D1} and $\sigma^2_{\varepsilon(D1)}$) corresponds to:

A. $W_D = \theta_D X + \epsilon_D$, where $X \sim \mathcal{N}(0, 0.5)$ and $\epsilon_{D1} \sim \mathcal{N}(0, 0)$. Measurements of cases are more precise at derivation. B. $W_D = \theta_D X + \epsilon_D$, where $X \sim \mathcal{N}(0, 0.5)$ and $\epsilon_{D1} \sim \mathcal{N}(0, 2.0)$. Measurements of cases are less precise at derivation. C. $W_D = \theta_D X + \epsilon_D$, where $\theta_{D1} = 0.5$, $X \sim \mathcal{N}(0, 0.5)$ and $\epsilon_D \sim \mathcal{N}(0, 0.5)$. Associations between X and W in cases are weaker at derivation.