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Printing Parameters and Performance 

Our previous work and our analysis of the 3D printing literature suggest that the cross-sectional 

area, A, of 3D printed cell-ECM microbeams can be controlled by varying two independent 

variables: the volumetric flow-rate, Q, at which ink is deposited into the microgel medium, and 

the translation speed, v, of the printing needle tip1,2. These three parameters generally obey a 

continuity equation that predicts the approximate cross-sectional area of printed filaments, given 

by Q = vA. To test whether this relationship holds for 3D printing cell-loaded ECM microbeams, 

we perform prints at many combinations of Q and v, with Q spanning 10 – 60 µL/hr, and v spanning 

0.1 – 0.5 mm/s. We measure the cross-sectional area of these beams with 3D confocal microscopy 

scans and image analysis. Approximating the cross-sections as circular, we measure an effective 

diameter, Dm, which correlates excellently with the predicted diameter, Dp (R2 = 0.96), following 

the relationship Dm = 0.83Dp (Supplementary Fig. 1). The imperfect agreement is within the 

variability previously observed in prints of numerous different materials1,3 which may arise from 

many different factors like non-circular cross-sections, the contractile nature of the cells, or some 

diffusion of collagen into the jammed microgel medium during polymerization. 

 

Supplementary Figure 1. We predict the feature size of a printed beam of ECM and cells based on the continuity 
equation, Q = vA, where Q is the volumetric flow rate of material deposition, v is the needle tip translation speed, and 
A is the cross-sectional area of the printed feature. Comparing the predicted diameter, Dp, to the measured average 
diameter, Dm, for each beam, we find that Dm = 0.83Dp (R2 = 0.96). 

 

 To test whether collagen gels form within the 3D printed microbeams, we perform confocal 

reflectance microscopy measurements to image the fibre networks. We observe networks that look 

qualitatively similar to those normally cast on glass slides or at the bottom of petri dishes. We 



show the differences between 3D printed and cast collagen networks below in Supplementary 

Figure 5.  Additionally, by simultaneously performing fluorescence imaging of dyed cells 

embedded in the collagen, we see that cells behave as they typically do in cast collagen networks, 

extending filapodia and interacting with the 3D printed networks (Supplementary Fig. 2). 

 

Supplementary Figure 2. After printing mixtures of collagen-1 and 3t3 fibroblasts, we see a polymerized network 
using confocal fluorescence microscopy with cells engaging the fibres, extending, and contracting. (Scale bar: 30 µm) 

 

Buckling Wavelength Measurements 

Qualitative observations of the cell-ECM microbeams reveal that beams originally printed 

straight develop undulations over a 24-hour period. To quantify the wavelength of the undulations 

and test EB beam theory, we take 3D confocal fluorescence microscopy images of the cell-ECM 

microbeams, using fluorescently labelled cells (see Methods). We employ three different methods 

of analysis to measure the wavelengths from the 3D confocal stacks: intensity autocorrelation 

analysis, 3D curve fitting of beam backbones, and direct visual inspection. We find consistent 

results with all three methods.  

To determine λ when the undulation amplitude is small, we rely on an intensity 

autocorrelation analysis that is sensitive to regular oscillations. First, each confocal stack is filtered 

to remove noise using a 3D Gaussian kernel, one pixel in width. The filtered stack is rotated in 3D 

using image moments analysis to ensure that the long axis of the beam is parallel to the closest 

Cartesian axis, which we define as z. The filtered and rotated stack is then digitally stretched or 

compressed to ensure cube-shaped voxels, creating an intensity distribution, I(x,y,z), where x and 

y correspond to the axes transverse to the beam direction. A maximum intensity projection is then 

taken along the y-axis which corresponds roughly to the direction of confocal scanning. From this 

projected image, we compute an intensity-intensity autocorrelation function using the Fourier 

correlation theorem, 1 *( , ) [ [ ( , )] [ ( , )]]C X Z F F I x z F I x z−= × , where F represents the forward 



Fourier transform, F* is its complex conjugate, and F-1 is the inverse Fourier transform. Here we 

use the Fast-Fourier-Transform (FFT) function in MATLAB. While this analysis does not require 

normalization of the correlation functions, we divide by C(0, 0) so that the function has a maximum 

value of 1 at its centre.  We directly see the effects of beam undulation in this 2D correlation 

function, which we show in Supplementary Figure 3b. To measure a wavelength, we plot C(0, Z) 

and identify the location of the first peak at finite Z, which equals the undulation wavelength, λ  

(Supplementary Fig. 3c). 

 
Supplementary Figure 3. (a) A 2D projection of a confocal fluorescence 3D stack shows the shape of a buckled 
microbeam with a small undulation amplitude. We show a digitally stretched image to accentuate the undulations 
(spline drawn manually to guide the eye). (b) To measure the buckling wavelength, λ, we compute a 2D intensity-
intensity autocorrelation function, C(X, Z). The 2D correlation function shows peaks located at Z = ±λ. (Scale bar: 
100 µm)  (c) A plot of C(0, Z) is used to measure λ, where the location of the first peak at finite Z is equal to λ.  

To measure the undulation wavelengths using a different method for comparison, we pre-

process the confocal stacks in the same way as described above, but instead of computing a 

correlation function, the backbone locations of the beam are measured in the x-y plane while 

stepping through the beam’s long axis, z. The x-y centroids at each z location are found by 

computing the 2D centre of intensity4. Prior to computing the centroids, we fill in the void-space 

between the cells by carefully dilating and eroding the images producing a closed continuous 

cross-section. This step of processing is performed by direct visual inspection for each beam to 



carefully choose appropriate thresholding, dilation, and erosion parameters for each beam. The 

resulting backbone locations are fit simultaneously to two sinusoidal functions, given by 

 1 1 1 2 2 2( ) cos(2 / ) cos(2 / )x z A z A zπ λ φ π λ φ= + + +          (1) 

and 

3 1 3 4 2 4( ) cos(2 / ) cos(2 / )y z A z A zπ λ φ π λ φ= + + + .        (2) 

We initiate the fitting procedure by visually matching the observable undulation wavelength and 

amplitude, λ1 and A1 to the backbone data; the second set of parameters, λ2 and A2 account for any 

weak bends corresponding to a λ2 much larger than the length of the beam. While this procedure 

requires a lot of manual intervention, it produces measurements of λ1 that agree with the correlation 

analysis described above as well as the undulations that can be observed by eye (Supplementary 

Fig. 4). Whether using correlation analysis or curve-fitting, all wavelengths are compared to those 

measured by direct visual inspection by identifying the locations of peaks and troughs in 

transverse-projections of the confocal fluorescence stacks; all results agree to within the spread of 

the data shown in Figure 3d in the manuscript body. 

 

Supplementary Figure 4. The backbone locations of a buckled microbeam, measured by image centroiding 
(symbols), are fit by a sinusoidal function to determine the buckling wavelength. This method complements the 
correlation function analysis described above and produces results consistent with direct visual inspection.  

 

Collagen Microbeam Elastic Moduli 

To demonstrate control over collagen gelation, we perform low-amplitude oscillatory rheology on 

collagen gels cast between roughened 25 mm plates using an Anton-Paar MCR-702 rheometer. To 

mimic the solution conditions of our printing experiments, we prepare collagen-1 solutions in cell 

growth media supplemented with HEPES buffer (25 mM), and bring the pH to 7.4. The collagen 

solution is loaded into the rheometer geometry at 20 oC, and a small enclosure with a solvent trap 



is put in place to prevent evaporation during testing. A CO2 line is inserted into the enclosure to 

maintain 5% CO2, and the temperature is raised from 20 oC to 37 oC at a rate of 1 oC/min. After 

30 minutes, we apply a 1% oscillatory strain at 1 Hz and measure the elastic response, G’. We find 

that the scaling between G’ and collagen concentration, c, is consistent with a c2.2 power-law for 

concentration between of 0.5 mg/mL and 2.5 mg/mL, which agrees with prior work done using 

similar curing protocols5. At the lowest collagen concentrations tested, this scaling relationship 

breaks down, yet we find that G’ > G’’, indicating the formation of system-spanning networks 

even at low concentrations (Fig. 3c). 

To test whether the collagen network shear modulus, G’, is the modulus relevant to the 

types of deformations observed in the 3D printed microbeams, we employ an alternative method 

to determine the elastic modulus; we 3D print cell-free collagen beams into the microgel media 

and manually apply axial loads while observing the response with photographic or microscopic 

imaging (Fig. 3a, b). The macro-beams are deformed by pressing on one end with a micro-

indentation system (Hysitron Bio-soft). We find that the macro-beams buckle and then straighten-

out again after the load is removed. Using the image analysis methods described above, we 

measure the bucking wavelength and beam-diameter; with these measurements combined with the 

known G’ of the microgel medium, we are able to infer the beam elastic modulus, E. We extend 

this method to the micro-scale, performing a similar procedure on the microscope while using a 

printing needle to deform the microbeams (Fig. 3a, Supplementary Movie 2). Together, these tests 

on cell-free beams show that at the higher end of collagen concentrations, greater than 1.0 mg/mL, 

the elastic modulus relevant to buckling is very close to the collagen shear modulus.  By contrast, 

at collagen concentrations of 1.0 mg/mL and below, we see that the datasets diverge (Fig. 3c). 

Since we are unable to measure E at concentrations below 0.5 mg/mL using this method, any 

experiments using collagen below this concentration are excluded from analysis if knowledge of 

E is required. 

To investigate the differences between G’ and E at low collagen concentrations, we image 

collagen networks at various concentrations, both cast on glass slides without surrounding 

microgel media and printed into the microgel medium. From laser-scanning confocal reflectance 

microscopy images, we find that collagen networks embedded in microgel medium look 

qualitatively similar to those cast as free liquid drops but have a visibly larger mesh-size at the 



lower concentrations of 0.25 mg/mL and 0.5 mg/mL. Since free collagen molecules can diffuse 

into the surrounding microgel medium during polymerization, it is possible that the competing 

rates of polymerization and diffusion favour diffusion at very low collagen concentrations, 

resulting in a sparser network than expected. While detailed investigations are needed to determine 

the underlying mechanism responsible for the differences between G’ and E, our mechanical 

measurements and reflectance images produce consistent results. Moreover, all the analyses 

throughout this manuscript employ the measurements of E, avoiding the need for a theoretical 

model or detailed understanding of the polymerization process. The consistency in rheology and 

apparent network structure also indicates that the potential roles of viscoelasticity and network 

complexity may contribute comparably to both sets of measurements. We would expect viscous 

stresses to dominate at high shear rates; given that cell-driven beam buckling is a very slow 

process, we believe viscous stresses are likely small compared to elastic stresses or shear-rate 

independent yielding of microgels. Over long time scales the non-elastic contributions would 

likely arise from network remodeling and reorganization, which we have explored in multiple 

different control experiments described throughout the manuscript.   

 
Supplementary Figure 5. Confocal reflectance microscopy is used to qualitatively compare the network structures 
exhibited by cast and 3D printed collagen networks. At high concentrations, the two types of sample appear to have 
similar structures, while they deviate visibly at low concentrations. These observations are consistent with the 
deviations seen in rheological measurements (Fig. 3c). (* denotes that this sample is displayed at 1/3 the magnification 
of all other samples in the figure due to the very sparse fibre density). (Scale bar: 25 µm) 

We use only measured quantities to test the applicability of EB theory to cell-driven 

buckling; λ is predicted using measurements of E from cell-free collagen beams, combined with 



measurements of G’, and R. Finding excellent agreement, we extend this approach to cell-ECM 

microbeams, using EB theory to determine E from measurements of λ. Using 57 measurements of 

λ from cell-ECM microbeams containing 3t3, GL261, and Panc02 cells, we compute the beam 

elastic modulus containing cells, E +, given by 
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and plot the results versus the cooresponding beam elastic modulus without cells, E -, measured as 

described above (Supplementary Fig. 6). The 4th power dependence of E on λ will lead to large 

variations in E + and E- arising from small variations in λ, as observed in this plot. However, these 

datapoints span several decades in both directions, revealing a linear relationship given by E + = 

1.13 E -. We use this relationship to determine E + in calculations of σcell where no λ is measured 

(break-up threshold and axial contraction datapoints), converting from E- to E+. In experiments 

where beams buckle and λ is measured, we directly solve for E+ without using E- when calculating 

cell generated stress, σcell (see manuscript body describing models involving σcell). 

 
Supplementary Figure 6. We 3D print microbeams having different collagen concentrations and measure their elastic 
moduli with and without embedded cells (E+ and E-). In both cases, the buckling wavelength, λ, is used to determine 
the beam elastic modulus at a given collagen concentration. While the 4th power dependence of E on λ generates large 
variations in E from small variations in λ, the large range of moduli measured shows a linear scaling, given by E + = 
1.13 E -. 



Recent investigations of collagen gel elasticity have shown these networks having strong 

non-linear responses to compression and stretch6,7. For example, the shear modulus increases 

strongly in stretched networks and decreases weakly in compressed networks. Correspondingly, 

the modulus of uniaxial strain increases strongly with stretch along the same axis and decreases 

weakly with compression. One major outcome of these observations is the discovery of a highly 

asymmetric Poisson’s ratio about the unstrained state. While these strong nonlinearities have major 

implications in the mechanical performance of collagen networks in vitro and in vivo, it is unclear 

how they may contribute to the mechanics of the cell-ECM microbeams investigated here. For 

example, when cells within the microbeams contract they probably initially tense the collagen 

networks, suggesting that stiffening may occur. However, in all cases in which microbeams buckle, 

fail, or contract, the net effect is to contract the network; the pliable microgel environment allows 

the entire collagen network to compress, suggesting a weak strain softening could be occurring. 

We hope that our results inspire new investigations of collagen elasticity in contexts where the 

network boundary conditions evolve in time. We believe that using jammed microgels as encasing 

environments for biopolymer networks represents a path forward for such studies with tuneable 

boundary conditions. 

 

Wavelength measurements broken down by cell type and test type 

We compare various measurements of λ to predictions from EB theory, using the classic 

result, λ = 2π (EI/G’)1/4. Here we determine E, I, and G’, from experimental measurements 

described above and in the manuscript body. For the three cell types investigated here, and for 

cell-free beams under manual loading, we find that EB theory predicts our data with no fitting 

parameters (R2 = 0.93, Supplementary Fig. 7). Control experiments without cells exhibit no 

spontaneous buckling, indicating that undulations emerging in cell-ECM microbeams are a form 

of buckling driven by the contractile stresses generated by the cells within. 



 
Supplementary Figure 7. Euler-Bernoulli (EB) beam theory predicts the relationship between wavelength, λ, and 
beam properties E, I, and G’, for multiple cell types, cell-free beams, and multiple wavelength measurement methods. 
Errorbars represent standard deviations about mean values from repeated measurements. Wavelengths measured by 
visual inspection for manually bucked beams (n = 11 acellular macrobeams, n = 3 acellular microbeams, n = cellular 
microbeams). For cell-driven buckling, multiple types of wavelength measurements were performed (n = 8 Panc02 
cells analysed by curve-fit, n = 20 3t3 cells analysed by curve-fit, n = 6 GL261 cells analysed by curve-fit, n = 4 
GL261 cells analysed by correlation analysis, and n = 4 GL261 cells analysed by visual inspection).  

  

Elastic Shear Modulus and Yield Stress of Microgel Medium 

To characterize the material properties and yielding behaviour of the mircrogel media used here, 

we perform both oscillatory and unidirectional shear rheology on samples prepared at several 

microgel concentrations (2.2% to 10%) using a Malvern Kinexus rheometer equipped with a 

roughened cone on plate geometry. Within the oscillatory frequency range of 10-3 – 102 Hz, we 

find that G’ is greater than G’’ for all polymer concentrations, indicating that the samples are 

dominantly solid-like (Supplementary Fig. 8a, b). Choosing 1 Hz as a representative frequency, 

we plot G’ versus microgel concentration, c, finding a scaling relationship consistent with G’ ~ 

c9/4, as previously reported for the same microgels prepared in water8. To measure the yield stress 

of these microgel samples, we perform unidirectional shear tests described previously1,2,8,9. We 

find the experimental relationship between stress and shear-rate is well described by the Hershel-

Bulkley model, given by p
y c(1 ( / ) )σ σ γ γ= +    , where σ is applied stress, σy is yield stress, γ  is 

shear rate, cγ is the crossover shear-rate between solid-like and fluid-like behaviours, and p is a 

dimensionless number of order 0.5 (Supplementary Fig. 8c)10. We determine σy for each sample 

by fitting the Hershel-Bulkley model to the data, finding the scaling relationship between σy and 



c consistent with σy ~ c9/4, just as found with the G’ data (Supplementary Fig. 8d). Plotting σy 

versus G’ reveals an excellent correlation between the two variables, in very good agreement with 

our previous findings that σy = 0.13 G’, which we found to arise from the elastic deformation 

energy required to drive single-particle rearrangements during shearing (Supplementary Fig. 8e).  

 
Supplementary Figure 8. (a) The storage shear modulus, G’, of microgel media rises with microgel concentration 
and exhibits a weak frequency dependence. (b) The increase in G’ with microgel concentration is accompanied by an 
increase in the loss modulus, G”; the loss modulus remains below the storage modulus for all concentrations indicating 
solid-like behaviour. (c) Unidirectional shear rheology indicates the transition from solid-like behaviour to fluid-like 
behaviour with increasing shear rate; the measured shear stress approaches a plateau as the shear rate decreases, which 
corresponds to the yield stress, σy. (d) Examining the relationship between concentration and yield stress, we see that 
σy ~ c9/4. (e) The relationship between G’ from (b) and the yield stress from (d) is well described by σy = 0.13G’.  

 

Microscopy at the microgel-collagen interface 

To examine the interface between collagen microbeams and the surrounding microgel medium, 

we print 1.9 mg/mL collagen-1 solutions into 0.15% (w/w) microgel medium. To image the 

microgel medium, we disperse 4 µm diameter fluorospheres which act as fiducial markers. 

Imaging with laser scanning confocal fluorescence microscopy, we examine y-z cross-sections by 

integrating the intensity from a 3D stack along the beam’s long axis (the x-axis). From these y-z 

projections, we see a circular void that shows where the microgels have been displaced by the 

deposited collagen. To quantify the sharpness of the interface between collagen and microgels, we 

examine the x-y slice through the beam’s mid-plane. By integrating the intensity of this x-y slice 

along the x-axis, we see how particle density rises from within the interface and plateaus in the 

bulk, far from the beam. This intensity profile rises from 0 to its plateau value over a distance of 

about 25 µm. Since these microgels are approximately 4-5 µm in diameter, we expect intermixing 

between collagen and several layers of microgels to occur within this zone.   



 
Supplementary Figure 9. (a) End-on slices through confocal microscopy stacks of printed collagen beams within the 
microgel medium(green tracer particles) reveal a strikingly circular cross-section and no mixing between the microgel 
phase and the collagen network outside of a surface-zone. (Scale bar: 100 µm) (b) Top-view slices through the mid-
plane of these beams shows the same exclusion of the microgel phase from the printed collagen zone (dashed line). 
(Scale bar: 200 µm) (c) The integrated intensity profile of the image in (b), measured from the central axis of the 
beam, shows a sharp rise from 0 to a plateau in the microgel bulk. The width of the intermixing zone between collagen 
and microgels is found to be approximately 25 µm.   

 

Length-dependence of microbeam contraction 

To test whether friction may dominate beam contraction in a long-beam limit, we print cell-ECM 

beams of different lengths (1.0 mg/mL collagen) into microgel media with a yield stress of 1.9 Pa. 

This combination of parameters lays in the contraction regime displayed in Figure 4b. Like the 10 

mm long beams described in the manuscript body, we find that short beams, 1 mm in length, also 

contract. By contrast, much longer beams, 30 mm in length, do not contract at all. We find that the 

beam appears to compact radially and becomes smoother at its surface over a 24 hour delay 

between measurements, yet identifiable features do not appear to move at all along the axial 

direction. Thus, a friction-dominated limit appears to emerge with increasing beam length, which 

we hope to explore further in future work (Supplementary Fig. 10). 

 



 
Supplementary Figure 10. Sections of a 30 mm long beam are shown just after printing (t = 0 h) and one day after 
printing (t = 24 h). Images were collected with confocal fluorescence microscopy; the cells in the microbeam are dyed 
green. While the beam appears to compact radially and attain a smoother surface with time, features do not appear to 
move at all along the axial direction. Irregularities in beam shape and individual cells can be identified at the same 
locations along the beam at the two different time points (vertical dashed lines provided to link chosen features to axis 
labels). To show that this stability is persistent along the beam length, we show two sections separated by 
approximately 15 mm. 

 

Cell Volume Fraction Measurements 

We approximate the cell volume fraction, φ, within each microbeam as 3
nn/V Rφ ≈ , where V is the 

average cell volume and Rnn is the nearest-neighbour center-to-center cell spacing. This estimate 

ignores geometrical factors associated with the details of cell distribution. We measure the average 

cell volume from thresholded confocal fluorescence stacks measured at high magnification with a 

60X oil immersion objective, finding V ≈ 2073 ± 603 µm3 (mean ± standard deviation, N = 19 

cells) for 3t3 cells and V ≈ 3325 ± 1000 µm3 (N = 20 cells) for GL261 cells. To measure Rnn, we 

employ an autocorrelation method similar to that described above for measuring the undulation 

wavelength. Instead of analysing ( , )C X Z from a projection of data-stacks into 2D, we compute a 

3D spatial correlation function, ( , , )C X Y Z , from the processed 3D stacks, I(x, y, z). We then 

compute an orientational average of ( , , )C X Y Z over the 4π steradian solid angle in polar 

coordinates, producing a correlation function, C(R), that varies with 2 2 2R X Y Z= + + . Over 

short distances, this correlation function is sensitive to the intensity variations associated single 

cell shapes, decaying approximately like R-1.95 following a plateau approximately one cell diameter 

in width (Supplementary Fig. 9a). Oscillations in C(R) are seen about the decaying power-law; 



plots of C(R) × R1.95 exhibit oscillations at longer length-scales that arise from cell-cell spatial 

correlations (Supplementary Fig. 9b). By measuring the location of the first peak in these plots, 

we determine the average nearest-neighbour distance, Rnn, between cells in the microbeams. For 

the lower volume fraction beams, with φ  < 5%, we can validate this procedure by visually counting 

the number of cells and measuring the dimensions of beams with ImageJ, finding agreement in 

volume fraction to within a factor of two. Additionally, Rnn measurements were checked visually 

using ImageJ by identifying nearest neighbours and measuring their centre-to-centre distances by 

eye, finding agreement to within 31%. These errors in measurements of linear dimension and 

volume fraction are consistent with one another; an error of nearly 30% in a linear dimension will 

lead to roughly a factor of two error in volume approximations. While a higher degree of certainty 

is desirable, since the data span multiple decades in parameter space, factors of two in either 

direction do not change the principle conclusions. 

 
Supplementary Figure 11. (a) The nearest neighbour distance between cell pairs, Rnn, is measured by computing the 
intensity-intensity autocorrelation function, C(R), of confocal stack intensity distributions. We find that C(R) 
resembles a modified Lorentzian distribution decaying to a power of 1.95. (b) Multiplying C(R) by R1.95 removes the 
decay and accentuates long-wavelength oscillations that arise from cell-cell spatial correlations. We use the location 
of the first peak in this plot to determine Rnn.  
 

Literature data points 

The datapoints shown in Figure 5b labelled “2D literature” were taken from published manuscripts 

describing traction force microscopy measurements of cells on soft, flat, 2D substrates11-13. In 

reference 11, bovine aortic endothelial cells were used on polyacrylamide substrates with Young’s 

moduli of 1, 2.5, 5 and 10 kPa; mean traction stresses of 200, 250, 300 and 375 Pa were reported, 

respectively. In reference 12, NIH 3t3 fibroblasts were used on polyacrylamide substrates with 

shear moduli of 3, 6, 8, 16 and 30 kPa; mean traction stresses of 250, 300, 320 and 550 and 525 



Pa were reported, respectively. In reference 13, NIH 3t3 fibroblasts were used on polyacrylamide 

substrates with Young’s moduli of 14 and 30 kPa; mean traction stresses of 620 and 1090 Pa were 

reported, respectively. We treat these measurements as the 2D equivalent of the cell generated 

stress estimated from our data and plot them without modification onto our graph of cell-generated 

stress in 3D (Fig. 6b). We find that a scaling law fit to our data in 3D extrapolates through this 2D 

traction stress data to within a factor of approximately 2. Additionally, recent investigations of 

cell-generated traction forces in 3D matrices agree very well with our measurements, laying close 

to the extrapolated fit to our data-points 14-16. From the traction forces distributions and strain 

energies measured using 3D TFM methods in the literature, we estimate the cell-generated stress 

(Supplementary Fig. 12). For example, reference 14 reports a strain energy of 1 pJ in a 2.4mg/mL 

collagen-1 network of modulus 118 Pa. From this strain energy we predict an average traction 

stress of 210 Pa. Ref 15 reports 0.1 µN traction forces in a Matrigel network with a modulus of 90 

Pa. In this case we estimate an average traction stress of 162 Pa. Similarly, ref. 16 reports a strain 

energy of 0.1 pJ in a 1.2mg/mL collagen-1 network of modulus 1645 Pa. We estimate an average 

traction stress of 250 Pa. Cell volumes are made using to the data reported in the manuscripts and 

are found to be between 1000 – 5000 µm3, within the range of the 2000 - 3000 µm3 we measure 

in our experiments.  

 
Supplementary Figure 12. We surveyed the literature for measurements of traction-stresses exerted by cells on 2D 
elastic substrates. A scaling law fit to our 3D data extrapolates to the 2D data when rescaled by a factor of 2.25. Three-
dimensional traction force microscopy literature were also surveyed. Shown in open symbols, we establish that these 
data also fall on our prediction of cell generated stress relative to microenvironmental modulus. 
 
 
  



3D Printed Neural Crest Model 

To test our 3D bioprinting method’s ability to generate a model developing tissue made from 

multiple cell types or materials, we designed a 3D analogue of textbook-level illustrations of the 

developing neural crest. Fetal neural development is typically depicted as a series of snapshots 

showing the formation of the neural tube through the buckling of the neural plate and the 

translocation of the neural plate border and epidermis. In such a time-series, the epidermal sheet 

converges to cover the neural tube. To demonstrate our method’s capabilities we 3D print 

structures made from fluorospheres (Fig. 7). The same structure can be printed from living cells, 

though we recognize that mimicking morphogenesis in vitro using such structures is beyond our 

current capabilities. To fabricate the 3D models, we fill three separate wells with solutions of 

fluorospheres of different colours. We program our printing stage to visit each separate well and 

draw an arbitrary volume of fluorosphere solution into a syringe. The different fluorosphere 

solutions are printed one at a time; when changing from one colour to the next, the syringe is 

programmed to empty into a waste well and wash itself with clean water and then clean microgels. 

This method allows the printing of one seamless structure out of three different materials with a 

single set of printing commands. The green beads represent the epidermis, the blue beads represent 

the neural plate border, and the red beads represent the neural plate. We envision that the ability 

to fabricate these structures from living cells will one day enable testing a watchmaker’s approach 

to tissue engineering, in which structures at each stage of development are created and allowed to 

further mature, with the goal of discovering how to set in motion later stages of development from 

conditions mimicking earlier stages. 

 
 



Works cited 

1 Bhattacharjee, T. et al. Writing in the granular gel medium. Science advances 1, e1500655 
(2015). 

2 Bhattacharjee, T. et al. Liquid-like solids support cells in 3D. ACS Biomaterials Science & 
Engineering 2, 1787-1795 (2016). 

3 O’Bryan, C. S. et al. Three-dimensional printing with sacrificial materials for soft matter 
manufacturing. MRS Bull. 42, 571–577 (2017). 

4 Burger, W. & Burge, M. J. Principles of Digital Image Processing, Springer-Verlag 
London Limited (2009). 

5 Yang, Y. L. & Kaufman, L. J. Rheology and confocal reflectance microscopy as probes of 
mechanical properties and structure during collagen and collagen/hyaluronan self-
assembly. Biophys. J. 96, 1566–1585 (2009). 

6 Van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible 
biopolymer networks: compression-softening and stretch-stiffening. Scientific reports 6, 
19270 (2016). 

7 Steinwachs, J. et al. Three-dimensional force microscopy of cells in biopolymer networks. 
Nature methods 13, 171 (2015). 

  
8 Bhattacharjee, T. et al. Polyelectrolyte scaling laws for microgel yielding near jamming. 

Soft Matter 14, 1559–1570 (2018).  

9 O’Bryan, C. S. et al. Self-assembled micro-organogels for 3D printing silicone structures. 
Sci. Adv. 3, e1602800 (2017). 

10 Herschel, W. H. & Bulkley, R. Konsistenzmessungen von Gummi-
Benzollösungen. Kolloid Z. 39, 291–300 (1926). 

11 Califano, J. P. & Reinhart-King, C. A. Substrate stiffness and cell area predict cellular 
traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3, 68–75 (2010). 

12 Oakes, P. W., Banerjee, S., Marchetti, M. C. & Gardel, M. L. Geometry regulates traction 
stresses in adherent cells. Biophysical journal 107, 825-833 (2014). 

13 Lo, C.-M., Wang, H.-B., Dembo, M. & Wang, Y.-l. Cell movement is guided by the rigidity 
of the substrate. Biophysical journal 79, 144-152 (2000). 

14 Koch, T. M., Münster, S., Bonakdar, N., Butler, J. P. & Fabry, B. 3D traction forces in 
cancer cell invasion. PloS ONE 7, e33476 (2012). 

15 Mulligan, J. A., Feng, X. & Adie, S. G. Quantitative reconstruction of time-varying 3D cell 
forces with traction force optical coherence microscopy. Scientific reports 9, 4086 (2019). 

16 Cóndor, M. et al. Breast cancer cells adapt contractile forces to overcome steric hindrance. 
Biophysical journal 116, 1305-1312 (2019). 


