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Supplementary Note 1 

Inferring Disease-Disease Relationships from PSEVs 

Utilizing the normalized original matrix (PSEV), benchmark matrix (PSEVΔDD, ΔDG) and the 

three random PSEV matrices, we checked to see if the deleted SPOKE Disease-

RESEMBLES_DrD-Disease edges could be inferred directly from the PSEV matrices. The 

Disease-RESEMBLES_DrD-Disease edges in SPOKE were derived using MEDLINE co-

occurrences (n=1,086). This evaluation mirrors that used to test the recovered Disease-Gene 

relationships. However, in this case the Diseases elements (n=129 using Diseases that resemble at 

least one other Disease or n=137 for entire set of Diseases in SPOKE) in each Disease PSEV were 

ranked such that the one ranked 1 would denote the most similar to a given Disease. All PSEV 

matrices were evaluated using this method (Supplementary Figure 4). 

Recovering Deleted Disease Resembles Disease Relationships 

We next used PSEV to create a Disease-Disease network (DDPSEV) as we did the Disease-

Gene networks and used a similar strategy to build background networks as comparators (DDPSEVΔDD, 

ΔDG, DDRANDOM, DDSPOKE SHUFFLE, and DDSEP SHUFFLE) using the original, benchmark and three random PSEV 

matrices. These Disease-Disease networks were then evaluated by the number of edges they 

shared with the Disease-RESEMBLES_ Disease_(DrD)-network from SPOKE (DDSPOKE). The 

RESEMBLES_DrD edges in SPOKE were created using the most statistically significant 

MEDLINE term co-occurrences1 (n=1,086, p<0.005, χ2). Again, we found that DDPSEV (and even 

DDPSEVΔDD, ΔDG) was able to recover more of the deleted edges (on average 4.7x and 3.7x accordingly) 

than any of the three random networks (Supplementary Figure 4B). 

Interestingly, one of the three random networks (DDSPOKE SHUFFLE) performed significantly better 

than the other two. We hypothesize this is due to the fact that some Disease-Disease relationships 

are observable in the EHRs as co-morbidities and misdiagnoses. This information is then feed 

directly into the Disease SEPs, making Diseases that resemble other Diseases significant in the 

PSEVs. Since this relationship does not always need to traverse paths in SPOKE, it is observable 

in the DDSPOKE SHUFFLE. In contrast, in DDSEP SHUFFLE the altered mappings between the SEPs and SPOKE 

disrupt observable relationships in the EHRs, which in turn inhibits the prioritization of Disease 
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nodes. These results highlight the accuracy of the mappings between EHR concepts to nodes in 

SPOKE.  

Additionally, in order to learn how we are able to correctly identify related Diseases even 

after deleting Disease-Gene and Disease-Disease edges from SPOKE, we retraced the shortest 

paths between significant SEPs of a given Disease to its target related Disease(s). Figure 2A shows 

how Hypertension was ranked as a top Disease in the Type 2 Diabetes PSEVΔDD, ΔDG. The pressure 

from the EHRs of Type 2 Diabetes patients pushes the flow of information to the Anatomy in which 

Hypertension is localized, Symptoms presented by Hypertension, and Compounds that treat or 

palliate Hypertension. This flow of information makes Hypertension a top ranked Disease for Type 

2 Diabetes. Further, this pattern of information flow, particularly through Anatomy and Symptom 

nodes, is very conserved in the shortest paths between Disease pairs. 

 

Compound Benchmark 
 
Compound-Compound PSEV Based Network 

We created Compound benchmark PSEVs (PSEVΔCC, ΔCG) by removing the Compound-

Compound and Compound-Gene relationships in SPOKE prior to PSEV creation. We then used z-

scores to normalize the PSEVΔCC, ΔCG. 

 

Random Compound PSEVs 
The three random Compound PSEV matrices were derived in the same way as the random 

Disease PSEV matrices. First, PSEVRANDOM was created by permuting the nodes in the Compound 

PSEVs using the Fisher–Yates method. Second, PSEVSPOKE Shuffle was created by shuffling the edges 

within SPOKE, by edge type. Third, PSEVSEP Shuffle was created by shuffling the edges between SEPs 

and SPOKE, by edge type. Neither Compound-Compound or Compound-Gene edges were deleted 

prior to random PSEV calculation. All random PSEV matrices were then z-score normalized. 

 

Inferring Compound-Protein binding partners using EHR embeddings. 
 Employing the original matrix (PSEV), benchmark matrix (PSEVΔCC, ΔCG) and three random 

matrices (PSEVrandom, PSEVshuffled_SPOKE, and PSEVshuffled_SEP) we tested whether the molecular targets of a 

given compound were ranked higher in that Compound’s PSEV. To test this we used the 
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Compound-BINDS_CbG-Gene edges in SPOKE which were derived from a Compound’s protein 

targets from BindingDB 2,3, DrugBank 4,5, and DrugCentral 6 (11,571 edges).   

Though this method of evaluation is very similar to the previous methods, it differed in that 

we selected a fixed number of top K ranked nodes to select from each Compound PSEV (K=150). 

The decision to choose a fixed K was based on the fact that the average number of Gene binding 

partners per Compound was much smaller than the average number of Genes that associate with 

Diseases. The value of K was calculated by finding the point at which the patient population no 

longer contributes positively to the rank of the target Gene. The simplest way to calculate patient 

contribution to the target Gene is through proportion of patients on a given Compound that have 

been diagnosed with a Disease that is related to the target Gene (Supplementary Fig 3C). This is 

computed by z-score normalizing the transition probability matrix and summing the values of 

Diseases that are related to the target Gene for a given Compound. We then plot the aggregated z-

scores against rank to find the point in which the aggregated z-scores reaches zero (K=150; 

Supplementary Fig 3C).  

Interestingly, we found that the most significant negative information flow (right end of 

the plot) was associated with the worst ranked Genes and often corresponded to contraindications. 

For example, Tolmetin, a non-steroidal anti-inflammatory drug, targets PTGS1 - a gene known to 

be related to hypertension7, 8 (Supplementary Fig 3A). However, Tolmetin is contraindicated for 

hypertension because it increases the risk of adverse cardiovascular events. As a result, within the 

population of patients that were prescribed Tolmetin, the number of patients that were also 

diagnosed with hypertension was fewer than expected. This causes negative information flow 

through PTGS1 in the Tolmetin PSEV. 

 

Next, selecting the top 150 Genes per Compound PSEV, we built Compound-Gene 

networks using the original (CGPSEV), benchmark (CGPSEVΔCC, ΔCG), and three random PSEV matrices 

(CGRANDOM, CGSPOKE SHUFFLE, and CGSEP SHUFFLE) respectively. We then compared the number of overlapping 

edges between the CGSPOKE, a Compound-Gene network created with the Compound-BINDS_CbG-

Gene edges in SPOKE, and the other CG networks. When selecting the top K Genes using only 

Genes that have at least one BINDS_DbG edge, we found that CGPSEVΔCC, ΔCG and CGPSEV shared on 

average 1.9x and 6.9x more edges than the three random networks (Supplementary Fig. 3B) and 

when selecting the top K from all Gene nodes in SPOKE, the sharing increased to 4.3x and 51.5x 



 6 

respectively (Supplementary Fig. 3B insert). These results show that adding patient information 

from the EHRs enables the discovery of Compound-Gene relationships in SPOKE. 

Finally, to unravel how Compound binding partners are highly ranked in PSEVs even after 

Compound-Gene and Compound-Compound edges are deleted, we again retraced the shortest 

paths between significant SEPs and the target Gene. Ursodeoxycholic acid is a cholesterol-

lowering medication that can also be used to dissolve gallstones and treat liver disorders and is 

known to target the protein ABCB11, a member of the superfamily of ATP-binding cassette (ABC) 

transporters9, 10, 11. Supplementary Figure 5A shows how EHRs from patients prescribed 

Ursodeoxycholic acid guide the flow of information to ABCB11. The information is driven 

towards BiologicalProcess and Pathway nodes that ABCB11 participates in and Diseases that are 

localized in Anatomies that ABCB11 is expressed or regulated in. Since Gene nodes only represent 

a small fraction of SEPs, this pattern of flow from SEP to target Gene is not very common because 

it includes a Gene node (gamma-glutamyltransferase 1, GGT) as one of the SEPs. High levels of 

GGT are often associated with liver or bile duct diseases, which explains why patients may benefit 

from this drug, as well as informs the connection to ABCB11.  More commonly, the shortest paths 

will involve information flow through Disease, Anatomy, and occasionally Gene nodes. 

 

Compound fingerprint similarity in EHR embeddings. 
Analogous to generating the Disease-Disease networks, we created Compound-Compound 

networks using the top K ranked Compound nodes in the original (CCPSEV), benchmark (CCPSEVΔCC,ΔCG), 

or random PSEV (CCRANDOM, CCSPOKE SHUFFLED, and CCSEP SHUFFLED) matrices, where K equals the number of 

similar Compounds to a selected Compound. Then we created a fingerprint-based Compound-

Compound network (CCSPOKE) using the Compound-RESEMBLES_CrC-Compound edges 

(n=7,703) in SPOKE.  The Compound-RESEMBLES_CrC-Compound edges in SPOKE were 

derived using the similarity between two Compounds extended connectivity fingerprints12, 13 and 

filtered based on their Dice coefficient14, 1. Next, we computed the number of edges that were shared 

between CCSPOKE and the other Compound-Compound networks. We found that the observed number 

of shared edges in CCPSEVΔCC, ΔCG and CCPSEV were on average significantly higher than random (4.4x and 

15.2x) when selecting from the set of Compounds that resembles at least one other Compound and 

even higher (4.9x and 17.6x) when selecting from the entire set of nodes in SPOKE 

(Supplementary Figure 6B). Again the p-values in the figure were calculated using Fisher’s 
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method to combine the p-values for selecting the top K Compounds from each Compound PSEVΔCC, 

ΔCG. 

Just as when we inferred Disease-Disease relationships, we noticed that CCSPOKE SHUFFLED 

performed better than the other two random networks. Again, this is likely because we attempted 

to predict relationships that can sometimes be observed without traversing SPOKE because they 

are observable in the EHRs. Therefore, shuffling the edges within SPOKE won’t greatly impact 

this prediction. Furthermore, these results also demonstrate that we are correctly mapping 

medication orders in the EHRs to Compound nodes in SPOKE.  

To elucidate how the benchmark PSEVs could infer whether two compounds were similar, 

we again found the shortest paths between the important SEPs and target (Compound) node. We 

found that in order to connect Compounds, the random walker usually followed one of two path 

patterns. In one pattern, the information from the patient population on a given Compound is 

“pushed” through shared SideEffects and PharmacologicalClasses. For example, Tioconazole 

resembles Sertaconazole (similarity=0.80) and in order to connect the two Compounds pressure 

from patients on Tioconazole must move information flow through the SideEffects Pruritus, 

Erythema, Dry skin, and Application site reaction and the PharmacologicalClass Azoles 

(Supplementary Fig. 4A left). The other shortest path pattern for recovering similar Compounds is 

observed when two Compounds treat the same Disease. An example of this is seen when 

connecting Trihexyphenidyl to Procyclidine (similarity=0.98; Supplementary Fig. 4A right) which 

both are used to treat Parkinson’s disease (PD). Here, most of the weight from the EHRs of patients 

on Trihexyphenidyl is coming from PD and nodes related to PD:  Trihexyphenidyl (Compound 

treats PD), Dyskinesias (Symptom presented by PD), and Tremor (Symptom presented by PD). 

This results in significant information flow to the Procyclidine node. These results prove the 

PSEVs ability to identify Compounds with similar structures as well as illustrate what components 

of the EHRs and relationships of SPOKE are most critical to inform that decision. 

 

SideEffect to Anatomy Benchmark 
MEDLINE Co-occurrence Gold Standard 

 MEDLINE yearly publishes the co-occurrences of MeSH terms found on Pubmed 

publications. After converting Anatomy and SideEffect identifiers to MeSH IDs we created a 

counts matrix for co-occurring Anatomy and SideEffect terms. Out of the 699,745 possible pairs, 
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222,224 had at least one co-occurrence). Then we preformed χ2 to determine the significance of 

the Anatomy-SideEffect MEDLINE relationships. Since 51% of relationships had a p-value less 

than or equal to 0.05, we decided to strengthen the filter to the top 5% of p-values (p=7.4E-75, χ2) 

leaving 11,112 Anatomy-SideEffect pairs. 

 

PSEV Benchmark Anatomy-SideEffect Network 
 First, we used z-score to normalize the PSEV matrix. Then we transposed the PSEV matrix 

(PSEVT) to obtain a vector (n=3,233) for every node in SPOKE. This vector describes the 

importance of a given SPOKE node for each SPOKE Entry Point (SEPs). Next, vectors from 

PSEVT were then used to calculate the cosine similarity between Anatomy and SideEffect nodes. 

Finally, the similarities were ranked (1 to 699,745), such that a rank of 1 signified the most similar 

Anatomy-SideEffect pair in the matrix. 

 

Random Anatomy-SideEffect Networks 
 To create a random PSEVT matrix, the normalized benchmark PSEVT was shuffled using 

the Fisher–Yates method to randomly permute the rows of the matrix. The random PSEV matrix 

was then used to calculate the cosine similarity between the Anatomy-SideEffect pairs and ranked 

from 1 to 699,745 in the same way as the benchmark matrix.  

 

Overlapping Anatomy-SideEffect Links 
 Benchmark and random Anatomy-SideEffect networks were created using the top k (k=1 

to 699,745, increasing in intervals of 5%) nodes in PSEV and PSEVRANDOM accordingly. 

Supplementary Figure 7 shows the overlapping counts and fraction between the RP networks and 

the 11,112 Anatomy-SideEffect pairs from MEDLINE. Inserts in Supplementary Figures 7A-C 

focus on k<= 11,112, corresponding the number of Anatomy-SideEffect pairs from MEDLINE. 

The highest fold changes 18.1 over random occurred in the top k=1,000 respectively 

(Supplementary Figure 7C insert). 

 

Recovering the major shortest paths between SideEffect and Anatomy nodes 
 First, we needed to find the nodes that contributed most weight to the similarity of the 

SideEffect- Anatomy pair. Since we used cosine similarity, which is equivalent to the dot product 

of two unit vectors, we simply multiplied the SideEffect and Anatomy transposed PSEVs and 
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selected the highest 0.1% of nodes. Those nodes are labeled as top contributors in Supplementary 

Figures 7D-F. We then found the shortest paths between each top contributor node and the target 

SideEffect and Anatomy nodes. 

 

SideEffect-Anatomy relationships in embedded EHR concepts match MEDLINE co-occurrences. 
Although it is natural to draw a connection between drug side effects and the anatomies 

they affect (e.g. a headache must somehow relate to the brain), SideEffect and Anatomy nodes are 

not directly connected in SPOKE. In fact, in order to get from a SideEffect to an Anatomy node 

one must traverse a minimum of three edges. As a result, correctly inferring the relationships 

between Anatomy and SideEffect nodes would show that appropriate weights are assigned to 

distant nodes in the network. To test this, we created a gold standard SideEffect-Anatomy network 

using only highly significant relationships from MEDLINE co-occurrences (SeAMEDLINE) (p=7.4e-75, 

χ2; n=11,112; avg 6.4 Anatomy per SideEffect). Next, we computed a SideEffect-Anatomy cosine 

similarity matrix using the transposed PSEV matrix (See methods). We then selected the most 

similar SideEffect-Anatomy pairs to create a PSEV-based SideEffect-Anatomy network (SeAPSEV). 

These relationships were also tested against a random network (SeARANDOM) that was generated by 

permuting each PSEV, as in the DDRANDOM networks (Supplementary Figure 7). 

In the first interval (k=1000), we observed 18.1 times more overlapping edges than 

expected by chance (Supplementary Figure 7C insert; binomial p value = 9.7E-251). By accurately 

ranking the relationships between SideEffect and Anatomy nodes, we further demonstrate that 

PSEVs are a valid strategy to infer missing links in SPOKE. This result is even more consequential 

given that SideEffect and Anatomy nodes are far away in SPOKE.  

 Similar to before when we found the shortest paths between SEPs and the target node to 

understand how deleted edges where recovered, we wanted to find the paths that enabled us to 

learn relationships between SideEffect and Anatomy nodes. To achieve this, we found the nodes 

in the transposed PSEVs that contributed the most to the SideEffect and Anatomy similarity. We 

then looked at the shortest paths between those nodes and the target SideEffect and Anatomy 

nodes. Supplementary Figures 5D-F show examples of these paths. The first example shows how 

Aggression connects to locus coeruleus (LC), a part of the brain that is involved in emotions, 

arousal, attention, and stress response 15. The nodes that contribute the most to the similarity are 

Compounds and all have the SideEffect Aggression. Additionally, those Compounds bind or 
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regulate Genes expressed or regulated in the LC as well as treat or palliate Diseases localized in 

the LC (Supplementary Fig 5D). Similarly, Supplementary Figure 7E shows the connection 

between Anxiety (SideEffect) and the LC (Anatomy). Interestingly, the shortest paths between 

Anxiety or Aggression to the LC only share three nodes: alcohol dependence, epilepsy 

syndrome, and hypertension. The final example shows the connections between fetal heart rate 

(SideEffect) and the umbilical artery (Anatomy) (Supplementary Fig. 5F). This connection is 

centered on a set of genes that are associated or regulated by Diseases localized in umbilical 

artery. Those same Genes are also targets of or regulated by Compounds that impact fetal heart 

rate. These examples further show that PSEVs can be used to find related biomedical entities and 

further our understanding of how and why they are connected. 
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SUPPLEMENTARY FIGURES 
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Supplementary Figure 1. Calculating non-uniform probability of random jump. 
 
In the original PageRank paper, vector E that allows the random surfer (walker) to avoid sinks 

(such as cycles with no outgoing edges) by giving the walker the ability to jump randomly to any 

node in the network. Usually E is uniform (β /N where β = the probability of random jump (restart 

parameter or 1-damping factor) and N = number of nodes in the network). (a) Calculation of Vector 

E. Here the walker is only allowed to restart at the SEPs and the probability of starting at a given 

SEP is dependent on the patient cohort with that SEP. (b) Example of the walker on mock SPOKE. 

The walker is currently on the “eating behavior” node in SPOKE. Black edges connect to neighbor 

nodes (Gene A, Gene B, and Gene C) that are not SEPs. The colorful gradient edges connect the 

“eating behavior” node to the SEPs. (c) Calculation of final transition vector from the “eating 

behavior” node.  
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Supplementary Figure 2. BMI PSEVs created using continuous BMI contain phenotypic and 
genotypic information. 
 
PSEVs were created for cohorts of patients with BMI 15-50 (intervals of 1 BMI). (a) Continuous 

BMI vs Disease Rank. The top 4 ranked Diseases (obesity, hypertension, type 2 diabetes mellitus, 

and metabolic syndrome X) in Figure 2 still show a strong positive relationship with BMI when 

treating BMI as a continuous variable. The opposite trend also holds for celiac disease, Crohn’s 

disease, and attention deficit disorder. (b) FTO gene was positively correlated with BMI.  
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Supplementary Figure 3. PSEVs embed first neighbors in SPOKE and learn new relationships.  
 
(A) Distribution of ranks in PSEV vectors for first neighbors (blue) and non-first neighbors (red). 

(B) Multiple sclerosis first neighbors that overlap with top PSEV rank (blue edges) or not in top 

PSEV rank (red). (C) The top 10 ranked nodes in the PSEV for each node types that don't directly 

connect to Multiple sclerosis Disease node in SPOKE (dashed edges) 
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Supplementary Figure 4. Recovering deleted Disease-Disease edges.  
 
(A) shows how the deleted Disease-Disease edge between Type 2 Diabetes and Hypertension was 

recovered using the pressure generated from the Type 2 Diabetes patients. (B) The gold standard 

Disease-Disease network was made from the deleted edges in SPOKE. Plots show the number of 

Disease-Disease relationships using each of the PSEV matrices that overlap with the gold standard 

network. The pink distributions show the results from the permuted PSEV matrices (PSEVRandom; 

1000 iterations) while the arrows show the results from the original PSEV (blue), PSEVΔDD, ΔDG 

(green), PSEVSPOKE SHUFFLED (red), and PSEVSEP SHUFFLED (orange). (B) The top K Diseases where selected from 

the set of Diseases in the gold standard network or (B insert) the entire set of Disease in SPOKE. 

(F) The top K Diseases where selected from the set of Diseases in the gold standard network or 

(F insert) the entire set of Disease in SPOKE. PD (Parkinson’s disease). 

 

  



kidney
tunica intima

endothelium

nervous system 

arteriole

middle cerebral 
artery

tunica media
cardiovascular

system

brachial artery

umbilical artery
RamiprilIrbesartan

Valsartan

Angina
Pectoris

Losartan

hypertension

common carotid 
artery plus 
branchesautonomic

nervous system 
central retinal 

vein
nephron
tubule

artery

Proteinuria

Microvascular
Angina

Intermittent
Claudication

Birth Weight

Body Weight

Fetal Distress

Polyuria

Obesity,
AbdominalOverweight

Albuminuria

Hypotension,
Orthostatic

cortex of kidney

forelimb
zeugopod

femoral artery

central retinal 
artery

type 1 
diabetes 

hindlimb

muscle tissue

Compound 

A

B

Anatomy 

Target
Disease

SPOKE entry points

Symptom 

100 200 300 400 500 600 700
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

ba
bi

lit
y 

D
en

si
ty

 (x
10

-2
)

Number of Recovered 
Disease-Disease Relationships

100 200 300 400 500 600 700
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
ro

ba
bi

lit
y 

D
en

si
ty

 (x
10

-2
)

Number of Recovered Disease-Disease Relationships

5.41E-178

1.35E-172

PSEV
PSEVΔDD, ΔDG

PSEVRandom

PSEVSPOKE Shuffled

PSEVSEP Shuffled

sympathetic

Supplementary Figure 4

type 2 
diabetes 



 20 

Supplementary Figure 5. Recovering deleted Compound-Gene edges.  
 
Prior to PSEVΔCC, ΔCG calculation all of the Compound -Gene and Compound - Compound edges were 

deleted from SPOKE. It is possible to retrace how PSEV can recover deleted edges (outlined in 

Figure 4C). (A) Shortest paths between the top SEPs of Tolmetin, a non-steroidal anti-

inflammatory drug, to its target PTGS1. (B) The gold standard Compound-Gene network was made 

from the deleted edges in SPOKE (Compound-BINDS_CbG-Gene). Plots show the number of 

Compound-Gene relationships using each of the PSEV that overlap with the gold standard 

networks. The pink distributions show the results from the permuted PSEV matrices (PSEVRandom; 

1000 iterations) while the arrows show the results from the original PSEV (blue), PSEVΔCC, ΔCG 

(green), PSEVSPOKE SHUFFLED (red), and PSEVSEP SHUFFLED (orange). (B) The top K Genes where selected from 

the set of Genes in the gold standard network or (B insert) the entire set of Gene nodes in SPOKE. 

(C-E) Determining K threshold for recovering Compound-Gene edges. (C) The top factor in 

determining missing Compound-Gene edges was whether patients that were on a given compound 

were also diagnosed with a Disease that was a associated with the target gene. (D) Shows the mean 

number of recovered Compound-Gene relationships at each rank (where 1=top ranked and 1451 

was the worst ranked Gene; CI=95%). (E) Shows how much the patients that were prescribed a 

given Compound were contributing to the rank of the binding partner (missing Compound-Gene 

relationship) of that Compound using the flow of information through Diseases as in A (CI=95%). 

Genes ranked greater than ~150 were no longer receiving positive patient contribution. ADHD 

(Attention deficit hyperactivity disorder); AD (Alzheimer’s disease), HT (hypertension), ES 

(epilepsy syndrome), SCZ (schizophrenia), D-TMP (Dexmethylphenidate),  
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Supplementary Figure 6. Recovering deleted Compound-Compound edges.  
 
(A) Retracing shortest between similar Compounds. The paths between Tioconazole to 

Sertaconazole and Trihexyphenidyl to Procyclidine show two different routes in finding similar 

compounds. (B) The gold standard Compound- Compound network was made from the deleted 

edges in SPOKE (Compound-RESEMBLES_CrC-Compound). (B) The top K Compound where 

selected from the set of Compound in the gold standard network or (B insert) the entire set of 

Compound in SPOKE. 
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Supplementary Figure 7 MEDLINE Anatomy-SideEffect Relationships are Top Ranked Nodes in 
PSEV.  
 
Fraction (A), count (B), and fold change (C) of overlapping edges MEDLINE Anatomy-SideEffect 

network and PSEV Anatomy-SideEffect network (blue) or random PSEV Anatomy-SideEffect 

network (red) for different thresholds of PSEV disease similarity. A-C Are shown in 5% similarity 

intervals of ranked nodes starting with the most similar 5% left and all nodes (100%) right. The 

inserts in A-C focus on the top 0.14-1.6% of ranked nodes. Ribbon in (C) shows range of fold 

change for different values of β (plots A-B use optimized β=0.1).  D-F Examples shortest paths 

connecting the nodes that contribute the most to the SideEffect-Anatomy similarity to the target 

SideEffect and Anatomy nodes. 
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Supplementary Tables 
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Supplementary Table 1. SPOKE nodes. Source(s) and counts of each node type in SPOKE. 
 
 
 

 

 

  

Node Name Source Count 
Gene Entrez Gene 20945 
BiologicalProcess Gene Ontology 11381 
SideEffect UMLS via SIDER 4.1 5734 
MolecularFunction Gene Ontology 2884 
Compound DrugBank 1552 
CellularComponent Gene Ontology 1391 
Pathway Reactome via Pathway Commons 1308 
Symptom MeSH 438 
Anatomy Uberon 402 
PharmacologicClass FDA via DrugCentral 345 
Pathway WikiPathways 294 
Pathway PID via Pathway Commons 220 
Disease Disease Ontology 137 
Total  47031 
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Supplementary Table 2. SPOKE edges. Source(s) and counts of each edge label in SPOKE.  
 

  

Edge Name Source Count 
DOWNREGULATES_AdG Bgee 102240 
UPREGULATES_AuG Bgee 97848 
RESEMBLES_CrC Dice similarity of ECFPs 6486 
INCLUDES_PCiC DrugCentral 1029 
COVARIES_GcG ERC 61690 
DOWNREGULATES_CdG LINCS L1000 21102 
REGULATES_GrG LINCS L1000 265672 
UPREGULATES_CuG LINCS L1000 18756 
LOCALIZES_DlA MEDLINE cooccurrence 3602 
PRESENTS_DpS MEDLINE cooccurrence 3357 
RESEMBLES_DrD MEDLINE cooccurrence 543 
PARTICIPATES_GpBP NCBI gene2go 559504 
PARTICIPATES_GpCC NCBI gene2go 73566 
PARTICIPATES_GpMF NCBI gene2go 97222 
PALLIATES_CpD PharmacotherapyDB 390 
TREATS_CtD PharmacotherapyDB 755 
PARTICIPATES_GpPW PID via Pathway Commons 8154 
PARTICIPATES_GpPW WikiPathways 12587 
PARTICIPATES_GpPW Reactome via Pathway Commons 63631 
CAUSES_CcSE SIDER 4.1 138944 
DOWNREGULATES_DdG STARGEO 7623 
UPREGULATES_DuG STARGEO 7731 
ASSOCIATES_DaG DOAF, GWAS Catalog, DisGeNET, DISEASES 12623 
BINDS_CbG DrugBank (target), PDSP Ki, PubChem, DrugCentral 

(IUPHAR), ChEMBL, DrugCentral (label), BindingDB, 
DrugCentral (ChEMBL), DrugCentral (KEGG DRUG), 
DrugBank (enzyme), DrugCentral (literature), 
DrugCentral (ChEMBL, DrugBank (carrier), 
DrugBank (transporter), US Patent 

11571 

EXPRESSES_AeG Bgee, TISSUES 526407 
INTERACTS_GiG Lit-BM-13, hetio-da, Venkatesan-09, Yu-11, hetio-

dag, HI-II-14, HI-I-05, II_binary, II_literature 
147164 

Total  2250197 
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