HIV-1 tropism prediction by the XGboost and HMM methods

Xiang Chen¹, Zhi-Xin Wang¹, Xian-Ming Pan^{*}

¹Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China.

*Correspondence to Xian-Ming Pan, Key Laboratory of Bioinformatics, Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China. Tel: +86-10-62792827; Fax: +86-10-62792827

E-mail: pan-xm@mail.tsinghua.edu.cn

Figure S1. Two sample logos for R5 and X4-using tropic sequences.

Figure S2. Distribution of V3 loop sequence scores calculated from the XGBpred and HMMpred methods on the G2p_str, Hivcopred and CM datasets. The score distribution of the R5 tropic sequences is shown in blue, that of X4 is carmine and that of dual is yellow.

Table S1. Construction of the HMMpred method. Performances of the HMMpred method based on different HMM models on the Newdb dataset in a same 10-fold cross validation test (threshold = 1.0). Notes: ^aThe full HMM model: transition allowed from D_j to I_j or from I_j to D_{j+1} . ^bThe MSA generated by EMBOSS was manually adjusted to 35 match states. ^cNo emission allowed in insertion states. ^dThe HMMER model: no transition allowed from D_j to I_j or from I_j to D_{j+1} . ^eRegardless of background frequencies. ^{*}The final HMM model used in this study.

Model	Sensitivity	Specificity	Accuracy	MCC	AUC
Full ^a	92.76%	67.57%	87.19%	0.6194	0.8659
Full_MSA ^{ab}	92.42%	67.87%	86.99%	0.6153	0.8669
I_emission ^{abc}	92.21%	66.21%	86.46%	0.5983	0.8628
HMMER ^{bd}	91.18%	69.38%	86.36%	0.6046	0.8686
No_back1 ^{abe}	92.89%	69.08%	87.63%	0.6335	0.8764
No_back2 ^{bde*}	92.03%	70.29%	87.22%	0.6270	0.8774

Table S2. Construction of the XGBpred method. Performances of the XGBpred method based on different and combination of feature sets on the Newdb dataset in a same 10-fold cross validation test at the sensitivity of 91.78%. Notes: ^a20-dimensional amino acid composition feature set. ^bSplit amino acid composition feature sets: ^{b1}40-d split amino acid composition; and ^{b2}combining with 1-d full net charge; and ^{b3}combing with 6-d full and split net charges and hydropath; ^{b4}60-d split amino acid composition. ^{c3}5-d alignment score feature sets: using blocks substitution matrix ^{c1}BLOSUM62, ^{c2}BLOSUM90 or ^{c3}BLOSUM100, respectively. ^{bc}Combinational feature sets of 40-d

split amino acid composition and 35-d alignment score features. ^{ac}Combinational feature sets of 20-d amino acid composition and 35-d alignment score features. ^d400-d dipeptide composition feature set. ^{dc}Combinational feature sets of 400-d dipeptide composition and 35-d alignment score features. ^{*}The final feature set used in the XGBpred method.

Features	Specificity	Accuracy	MCC	AUC
20d ^a	76.02%	88.29%	0.6664	0.9151
40d ^{b1}	80.84%	89.36%	0.7029	0.9256
40d1d ^{b1}	82.50%	89.69%	0.7146	0.9267
$40d2d^{b2}$	82.35%	89.69%	0.7142	0.9250
40d6d ^{b3}	79.79%	89.13%	0.6950	0.9180
60d ^{b4}	82.20%	89.66%	0.7131	0.9324
35d (B62) ^{c1}	83.56%	89.96%	0.7232	0.9324
35d (B90) ^{c2}	82.35%	89.69%	0.7142	0.9339
35d (B100) ^{c3}	84.01%	90.06%	0.7266	0.9386
40d35d (B100) ^{bc}	84.62%	90.19%	0.7310	0.9413
40d35d (B90) ^{bc}	83.56%	89.96%	0.7232	0.9371
20d35d (B100) ^{ac}	83.86%	90.03%	0.7254	0.9370
400d ^d	82.96%	89.83%	0.7187	0.9432
400d35d (B100) ^{dc*}	84.62%	90.19%	0.7310	0.9465

Dataset	Rule	Sensitivity	Specificity	Accuracy	MCC
Nowdh	11/25	94.90%	50.53%	85.09%	0.5260
Newab	11/25/5	93.79%	57.92%	85.86%	0.5630
C2m str	11/25	94.86%	54.42%	87.54%	0.5459
G2p_str	11/25/5	93.83%	59.53%	87.63%	0.5630
Uliveenned	11/25	95.26%	47.80%	83.81%	0.5166
Hivcopred	11/25/5	94.40%	54.14%	84.63%	0.5492
cm	11/25	95.03%	61.23%	90.93%	0.5695
	11/25/5	93.84%	72.00%	91.19%	0.6168

Table S3. Performance of the 11/25 and 11/25/5 rules on different datasets.

Table S4. Performance of stacking based meta methods. Performance of stacking based XGBpred methods in a same 10-fold cross validation test at the sensitivity of 91.78%, 93.73%, 88.97% and 95.54% on the Newdb, G2p_str, Hivcopred and CM datasets, respectively. Notes: ^a3-d XGBpred, Hivcopred and HMMpred score feature set. ^bCombinational feature sets of 400-d dipeptide composition, 35-d alignment score features, and 2-d Hivcopred and HMMpred score features. ^cCombinational feature sets of 400-d dipeptide composition, 35-d alignment score features (considering the poor performance of HMMpred).

Dataset	Method	Specificity	Accuracy	MCC	AUC
Newdb	3d ^a	84.62%	90.19%	0.7310	0.9453
Newdb	435d2d ^b	84.31%	90.13%	0.7288	0.9362
	435d1d ^c	83.56%	89.96%	0.7232	0.9326
G2p_str	3d	73.49%	90.07%	0.6674	0.8978
	435d2d	73.02%	89.98%	0.6640	0.8993
	435d1d	72.09%	89.81%	0.6570	0.9040
	3d	89.07%	88.99%	0.7303	0.9467
Hivcopred	435d2d	85.54%	88.14%	0.7032	0.9409
	435d1d	86.60%	88.39%	0.7114	0.9392
СМ	3d	95.08%	95.48%	0.8185	0.9778
	435d2d	94.77%	95.45%	0.8165	0.9782
	435d1d	94.15%	95.37%	0.8126	0.9797

Table S5. Dependence of results generated by XGBpred, Hivcopred andHMMpred. Pearson correlation analysis and statistical hypothesis test (two-tailed t-test by SPSS) for samples predicted wrongly by the XGBpred method.

Datasat		XGBpred		
Dataset	Methous	XGBpred Pearson correlation 0.578 0.506 0.506 0.657 0.741 0.578 0.488 0.642 0.516	P value	
Novdb	Hivcopred	0.578	<0.01	
INEWUD	HMMpred	0.578 0.506 0.657 0.741	<0.01	
G2p_str	Hivcopred	0.657	<0.01	
	HMMpred	0.741	<0.01	
Hivcopred	Hivcopred	0.578	<0.01	
	HMMpred	0.488	< 0.01	
СМ	Hivcopred	0.642	< 0.01	
	HMMpred	0.516	< 0.01	