1	Supplemental material
3	Metabolomics studies to decipher stress responses in Mycobacterium smegmatis point to a
4	putative pathway of methylated amines biosynthesis
5	
6	Arshad Rizvi ^{1*} , Saleem Yousf ^{2*} , Kannan Balakrishnan ¹ , Harish Kumar Dubey ¹ , Shekhar C.
7	Mande ^{4,5} , Jeetender Chugh ^{2,3#} , Sharmistha Banerjee ^{1#}
8	
9	¹ Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad,
10	Telangana 500046, India
11	² Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune,
12	Maharashtra 411008, India
13	³ Department of Biology, Indian Institute of Science Education and Research (IISER), Pune,
14	Maharashtra 411008, India
15	⁴ National Centre for Cell Science, Pune 411007, Maharashtra, India
16	⁵ Present affiliation: Council of Scientific & Industrial Research (CSIR), Anusandhan Bhawan, 2
17	Rafi Marg, New Delhi-110001, India
18	
19	*Authors contributed equally
20	[#] To whom correspondence may be addressed
21	Sharmistha Banerjee, PhD
22	Professor
23	Room No. F-60

24 Department of Biochemistry, School of Life Sciences

- 25 University of Hyderabad, Gachibowli, Hyderabad
- 26 Telangana, India
- 27 PIN 500046
- 28 Phone (Office): +91-40-23134573
- 29 Phone (Lab): +91-40-23134673
- 30 Email ID: sbsl@uohyd.ac.in
- 31 and
- 32 JeetenderChugh, PhD
- 33 Assistant Professor
- 34 C-115, Main Building
- 35 Indian Institute of Science Education & Research,
- 36 Dr. Homi Bhabha Road, Pashan, Pune
- 37 Maharashtra, India
- 38 PIN 411008
- 39 Phone (Office): +91-20-25908121
- 40 Phone (Lab): +91-20-25908231, +91-20-25909264
- 41 Email ID: cjeet@iiserpune.ac.in
- 42
- 43 **Running title:** *Stress-induced metabolic changes in mycobacteria*
- 44
- 45
- 46
- 47
- 48

49 Differential metabolites associated with stresses

Fifty-six metabolites, including the standard DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid), 50 51 were thus identified and are marked on the ¹H NMR spectrum as shown in Fig S1a in the supplemental material. Five metabolites (GTP, CDP, tryptophan, fructose-1-6 biphosphate, 52 fumarate) were excluded from analysis as their representative peaks were not clear in all spectra. 53 54 All the fifty metabolites and their respective ¹H chemical shifts (in reference to DSS) have been listed in Table S1 in the supplemental material and were considered for further analysis. The 55 normalized concentration data matrix obtained from each of the 10 experimental replicates for 56 each experimental condition, namely acidic stress, oxidative stress, nutrient starvation and 57 untreated (control), were analyzed using MetaboAnalyst software to assess the influence of these 58 59 stresses on *M. smegmatis*. Both univariate and multivariate approaches with the required and recommended statistical analyses (1) were performed for listing the differential metabolic 60 profiles. While Table S2 in the supplemental material lists all the metabolites identified, only the 61 62 metabolites with a minimum cutoff of 1.2-fold change (FC > 1.2), with statistical significance [pvalue (p<0.05), and false discovery rate (FDR<0.05)] are considered to be differential in a stress 63 condition as compared to the control. These metabolites are indicated in boldface in Table S2. A 64 65 fold change of >1.2 (with p<0.05) was considered because immediate adaptive changes to stresses were expected to cause small differences at metabolite level rather than large 66 67 differences. Similar cutoffs have been used and reported in earlier studies (2-5). With these 68 parameters, univariate analysis showed an overall 31, 20, and 46 metabolites with differential 69 levels in acidic stress, oxidative stress, and nutrient starvation respectively as compared to the 70 control (Table S2a-c in the supplemental material). Analysis of variance (ANOVA) was used to 71 determine statistically significant differences in the means between all the four groups (Table S2d in the supplemental material). A graphical representation of individual metabolite levels indifferent stresses is represented as a heat map in Fig 1.

74 Further, multivariate analysis such as principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) was performed to examine the intrinsic variation in 75 groups. The total variance explained by five components PCA analyses were 94.1% for acidic 76 77 stress, 80.1% for oxidative stress, and 94.4% for nutrient starvation stress. The scores plot of the first two principal components PC1 and PC2 (Fig S2 in the supplemental material) showed 78 visually distinct metabolite profiles of each stress as compared to the control. Percentage 79 variance explained by PC1 and PC2 for the different stress conditions has been mentioned in 80 their respective plots (Fig S2a-c in the supplemental material). When all the stresses were 81 compared together with the control in a 3D-PCA plot (Fig S2d in the supplemental material), 82 clear segregations were observed amongst stresses pointing to the distinctness in the metabolite 83 profiles of different stresses as compared to the control. The 2D-PCA scores plot for a pairwise 84 85 comparison of the three stress conditions versus control revealed that the maximum discriminatory features are in control versus nutrient starvation (Fig S2c in the supplemental 86 material) followed by control versus acidic stress (Fig S2a in the supplemental material) and 87 88 control versus oxidative stress (Fig S2b in the supplemental material). In the PLS-DA model, which has a higher discriminatory potential that is ideal for the classification of groups, showed 89 90 further segregation between the groups over PCA analysis (Fig S3 in the supplemental 91 material). To validate the PLS-DA model and avoid overfitting, 5-fold cross-validated scores from the model were used to calculate cross-validation parameter Q^2 , which indicates the 92 goodness of predictability and R² that indicates goodness of fit of the model. A value of Q² closer 93 to 1 indicates a high prediction accuracy of the model. The values of R2 and Q^2 in Table S3 in 94

95 the supplemental material indicated that models generated from our data had high predictive
96 accuracy and this model is representative of true differences in metabolic profiles of respective
97 stress conditions compared to control.

100 Supplemental text References

101	1.	Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS.2012. MetaboAnalyst 2.0a
102	compi	rehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127-33.
103	2.	Feng Q, Liu Z, Zhong S, Li R, Xia H, Jie Z, Wen B, Chen X, Yan W, Fan Y, Guo Z,
104		Meng N, Chen J, Yu X, Zhang Z, Kristiansen K, Wang J, Xu X, He K, Li G.2016.
105		Integrated metabolomics and metagenomics analysis of plasma and urine identified
106		microbial metabolites associated with coronary heart disease. Sci Rep 6:22525.
107	3.	Hou W, Meng X, Zhao A, Zhao W, Pan J, Tang J, Huang Y, Li H, Jia W, Liu F.2018.
108		Development of Multimarker Diagnostic Models from Metabolomics Analysis for
109		Gestational Diabetes Mellitus (GDM). Mol Cell Proteomics 17:431-441.
110	4.	Abdelrahman M, Sawada Y, Nakabayashi R, Sato S, Hirakawa H, El-Sayed M, Hirai
111		MY, Saito K, Yamauchi N, Shigyo M.2015. Integrating transcriptome and target
112		metabolome variability in doubled haploids of Allium cepa for abiotic stress protection.
113		Molecular Breeding 35.
114	5.	Wu H, Chen Y, Li ZG, Liu XH.2018. Untargeted metabolomics profiles delineate
115		metabolic alterations in mouse plasma during lung carcinoma development using UPLC-
116		QTOF/MS in MSE mode. Royal Society Open Science 5.
117		

119 Supplemental material figures and tables

123 Fig S1 a) Representative ¹H NMR and two-dimensional (2D) spectrum of *M. smegmatis*. 124 The ¹H NMR spectrum was obtained for each sample as described. Key: 1, Valine; 2, Alanine; 125 3,ATP; 4, Acetate; 5, Glutamate; 6, Glutamine; 7, Citrulline; 8, Succinate; 9, Citrate; 10, 126 Aspartate; 11, Asparagine; 12, Homoserine; 13, Tyrosine; 14, beta-alanine; 15, Phenylalanine; 127 16, Dimethylamine; 17, Maltose; 18, Trehalose; 19, Glycerol; 20, UDP-glucose; 21, UDP-128 galactose; 22, DSS (standard); 23, AMP; 24, ADP; 25, IMP; 26, Glucose-1-phosphate; 27, 129 fumarate ; 28, Formate; 29, CDP; 30, Leucine; 31, Lysine; 32, Fructose 1-6, bisphosphate; 33, dTTP; 34, NAD+; 35, N-acetyl glucosamine; 36, UMP; 37, NADPH; 38, NADP+; 39, UDP-N-130 acetylglucosamine; 40, Threonine; 41, Betaine; 42, Methanol; 43, Tryptophan; 44, Acetone; 45, 131 132 2-aminobutyrate; 46, Caprate; 47, Cholate; 48, Lactate 49, 3-hydroxyisovalerate; 50, 3-methyl-2oxovalerate; 51, 2-hydroxy-3-methylvalerate; 52, Isoleucine; 53, Ethanol; 54, Methylamine; 55, 133 GTP; and 56, Malonate. b) Representative two-dimensional (2D) ¹H-¹H TOCSY NMR spectrum 134 of М. 135 smegmatis.

136 Figure S2

137

Fig S2: Principal component analyses (PCA) score plots showing distinctive metabolic 138 profiles between different stress conditions. 2D plots of a) acidic stress versus control. b) 139 140 oxidative stress versus control. c) nutrient starvation versus control. d) 3D plot of acidic stress, oxidative stress, nutrient starvation, and control, suggesting all groups could be distinctly 141 142 categorized. The shaded area indicated the 95% confidence region. The dots inside the plots 143 correspond to biological replicates under each category.

144 Figure S3

145

Fig S3: Partial Least Squares - Discriminant Analysis (PLS-DA) score plots showing distinctive metabolic profiles between different stress conditions. 2D plots of a) acidic stress *versus* control. b) oxidative stress *versus* control. c) nutrient starvation *versus* control. d) 3D plot of acidic stress, oxidative stress, nutrient starvation, and control. The shaded area indicated the 95% confidence region. The dots inside the plots correspond to biological replicates under each category.

Fig S4: Cloning and purification of MSMEG_5124: (a) 1 % agarose gel showing the clone
confirmation of pET-MS_5124 plasmid by restriction digestion using BamHI and HindIII. Lane
1: 1kb ladder; lane 2: A fall out of ~2kbp; lane 3: digested pET28a vector. (b) 10 % SDS-PAGE
showing purified protein (MSMEG_5124) lane 1: Molecular weight marker (in kDa). Lane 2 and
lane 3: purified MSMEG_5124 with 6X histidine tag (~72.8 kDa).

175Fig S5: The standard plot for NADH quantification: Concentration of NADP (in μ M) versus176absorbance (at 340nm) plot used as the standard for quantification of NADH produced in the177enzymeassaysforMSMEG_5124.

Table S1: List of *M. smegmatis* metabolites that were assigned to their respective ¹H chemical
 shifts (ppm) in the ¹H NMR spectrum.

S.No	Metabolites	PPM
1	2-Aminobutyrate	3.706(t), 1.887(m), 0.968(t)
2	2-Hydroxy-3-methylvalerate	3.88(d), 1.705(m), 1.351(m), 1.162(m),
	(HMVA)	0.932(d), 0.872(t)
3	3-Hydroxyisovalerate	1.233(s), 2.35(s)
4	3-Methyl-2-Oxovalerate	0.88(t), 1.086(d), 1.444(m), 1.687(m),
		2.922(m)
5	Acetate	1.90(s)
6	Acetone	2.221(s)
7	ADP	8.534(s), 8.261(s), 6.122(d), 4.52(m), 4.35(m),
		4.00(m)
8	Alanine	1.46(d), 3.805(q)
9	AMP	8.596(s), 8.25(s), 6.12(d), 4.49(t), 4.355(m),
		4.02(m)
10	Aspargine	2.777(dd), 2.89(dd), 3.98(dd)
11	Aspartate	2.66(dd), 2.79(dd), 3.916(dd)
12	АТР	8.52(s),8.25(s), 6.128(d), 4.56(t), 4.41(m),
		4.23(m), 4.30(m)
13	Beta-alanine	3.16(t), 2.54(t)
14	Betaine	3.263(s), 3.885(s)
15	Caprate	0.839(t), 1.281(m), 1.528(m), 2.519(m)
16	Cholate	0.711(s), 0.905(s), 0.960(d), 1.00(m), 1.16(m),
		1.130(m), 1.140(m), 1.491(m), 1.568(m),
		1.623(m),
		1.75(m),1.89(m), 2.01(m), 2.05(m), 2.23(m),
		3.501(m), 3.39(m), 4.06(m)
17	Citrate	2.53(d), 2.666(d)
18	Citrulline	1.526(m), 1.59(m), 1.84(m), 1.889(m),

		3.147(m), 3.126(m), 3.74(m)			
19	Dimethylamine	2.718(s)			
20	DSS (Standard)	0.0(s), 0.62(t), 1.75(m), 2.91(t)			
21	dTTP	7.68(s), 6.333(m), 4.618(m), 4.22(m), 4.17(m),			
		2.38(m), 1.918(s)			
22	Ethanol	1.185(t), 3.664(q)			
23	Formate	8.44(s)			
24	Fumarate	6.50(s)			
25	Glucose-1-Phosphate	5.45(dd), 3.908(m), 3.86(m), 3.76(m),			
		3.487(m), 3.398(t)			
26	Glutamate	2.03(m),2.10(m), 2.34(m), 3.75(dd)			
27	Glutamine	2.141(m), 2.459(m), 3.76(t)6			
28	GTP	8.110(s), 6.12(s),5.96(s), 4.54(m),			
		4.35(m4.24(m)			
29	Homoserine	2.01(m), 2.16(m), 3.77(m), 3.85(dd)			
30	IMP	8.553(s), 8.231(s), 6.136(d), 4.51(m), 4.36(m),			
		4.01(m)			
31	isoleucine	0.926(t), 0.992(d), 1.248(m), 1.457(m),			
		1.968(m), 3.661(d)			
32	Lactate	4.096(q), 1.313(d)			
33	Leucine	3.721(m), 1.701(m), 0.94(m)			
34	Lysine	3.74(t), 3.02(t), 1.89(m), 1.71(m), 1.46(m)			
35	Malonate	3.09(s)			
36	Maltose	5.41(d), 5.39(d), 5.211(d), 3.96(m), 3.93(m),			
		3.84(m), 3.76(m), 3.70(m), 3.66(m), 3.62(m),			
		3.58(m), 3.421(m), 3.27(m)			
37	Methylamine	2.573(s)			
38	N-Acetyl-glucosamine				
39	NAD	9.314(s), 9.121(d), 8.824(d), 8.406(s),			
		8.184(m), 8.154(s), 6.07(d), 6.021(d),			

		4.522(m),			
40	NADP+	9.281(s), 9.08(d), 8.80(d), 8.41(s), 8.18(m),			
		8.13(s), 6.112(d), 6.022(d), 4.99(q), 4.60(t),			
41	Phenyl alanine	7.42(m), 7.36(m), 7.32(m), 3.98(dd), 3.27(m),			
		3.13(m)			
42	Succinate	2.385(s)			
43	Threonine	4.244(m), 3.582(d), 1.313(d)			
44	Trehalose	5.18(d), 3.84(m), 3.80(m), 3.76(m),			
		3.64(dd),3.43(t)			
45	Tryptophan	7.72(d), 7.53(d), 7.32(s), 7.24(m), 7.19(m0,			
		4.04(dd), 3.47(dd), 3.29(dd)			
46	Tyrosine	7.17(d), 6.87(d), 3.93(dd), 3.18(dd), 3.04(dd)			
47	UDP Galactose	7.93(d), 5.97(m), 5.63(dd), 4.36(m), 4.25(m),			
		4.15(m),4.02(d), 3.90(dd), 3.805(dt), 3.75(m)			
48	UDP-Glucose	7.925(d), 5.977(m), 5.593(dd), 4.36(m),			
		4.27(m), 4.24(m), 4.189(m), 3.877(m),			
		3.77(m),			
49	UDP-N-Acetylglucosamine	8.177(d), 8.077(m), 5.19(d), 4.70(d), 3.904(m),			
		3.841(m), 3.784(m), 3.74(m),			
50	UMP	8.07(d), 5.98(m), 4.41(t), 4.34(t), 4.26(m),			
		3.97(m)			
51	Valine	0.996(d), 1.047(d), 2.281(m), 3.617(d)			

Table S2: Fold change and VIP score of a) acidic stress *versus* control. b) oxidative stress *versus* control. c) nutrient starvation *versus* control. d) Analysis of variance (ANOVA) table showing significantly (p<0.05) changed metabolites in comparison to acidic stress, oxidative stress, and nutrient starvation groups and control.

S.No	Metabolites	Fc	p.value	FDR	VIP score
1	D-Maltose	3.08	1.00E-09	1.30E-08	0.65
2	Capric acid	2.17	7.50E-05	2.00E-04	0.47
3	Taurine	1.77	3.60E-05	1.00E-04	0.62
4	Methylamine	1.59	1.30E-01	1.60E-01	0.22
5	2-Hydroxy-3-	1.46	3.30E-03	6.40E-03	0.25
	methylpentanoic acid				
6	Dimethylamine	1.45	1.20E-01	1.40E-01	0.25
7	Malonic acid	1.34	1.50E-02	2.50E-02	0.73
8	3-Methyl-2-oxovaleric acid	1.34	1.30E-02	2.20E-02	0.09
9	Citric acid	1.29	2.30E-01	2.60E-01	0.63
10	L-Asparagine	1.28	1.80E-02	3.00E-02	1.78
11	Uridinediphosphate glucose	1.11	3.40E-01	3.70E-01	0.11
12	3-Hydroxyisovaleric acid	1	9.80E-01	1.00E+00	0
13	L-Lactic acid	1	1.00E+00	1.00E+00	0
14	Betaine	0.96	6.30E-01	6.90E-01	0.04
15	NADP	0.92	6.60E-01	7.00E-01	0.03
16	ADP	0.84	8.90E-02	1.20E-01	0.15
17	NAD	0.83	2.00E-02	3.20E-02	0.39
18	Nicotinamide N-oxide	0.83	8.50E-02	1.20E-01	0.13
19	Acetone	0.83	1.90E-05	6.30E-05	0.25
20	Trehalose	0.82	1.70E-01	2.00E-01	1.15
21	Citrulline	0.8	1.00E-01	1.30E-01	0.42
22	Uridinediphosphate-N- acetylglucosamine	0.8	3.00E-02	4.60E-02	0.13

186 a) Fold changes and VIP scores of acidic stress *versus* control.

23	Formic acid	0.78	1.00E-03	2.20E-03	0.28
24	Acetic acid	0.74	4.30E-02	6.10E-02	0.41
25	Adenosine monophosphate	0.72	6.00E-04	1.40E-03	0.55
26	Sucrose	0.7	1.40E-01	1.70E-01	0.17
27	Adenosine triphosphate	0.7	9.90E-02	1.30E-01	0.2
28	Inosinic acid	0.7	9.10E-03	1.60E-02	0.12
29	L-Lysine	0.67	1.30E-03	2.70E-03	0.29
30	L-Leucine	0.66	1.70E-03	3.50E-03	0.28
31	Uridinediphosphategalactose	0.66	2.50E-05	7.70E-05	0.2
32	L-Phenylalanine	0.65	9.10E-11	1.50E-09	0.21
33	Glucose 1-phosphate	0.62	4.00E-02	5.80E-02	0.25
34	Uridine 5'-monophosphate	0.61	1.10E-04	2.80E-04	0.3
35	Succinic acid	0.6	9.50E-06	3.40E-05	0.85
36	Cholic acid	0.6	3.90E-03	7.20E-03	0.27
37	Thymidine 5'-triphosphate	0.59	8.70E-06	3.40E-05	0.28
38	L-Glutamine	0.59	2.30E-06	1.00E-05	1.73
39	L-Alpha-aminobutyric acid	0.57	6.00E-04	1.40E-03	0.31
40	L-Aspartic acid	0.56	7.00E-05	2.00E-04	1.73
41	D-Glutamic acid	0.55	1.20E-08	9.00E-08	4.71
42	L-Homoserine	0.49	1.30E-08	9.00E-08	2.61
43	Isoleucine	0.37	3.90E-08	2.40E-07	0.32
44	1-Methylnicotinamide	0.33	8.20E-08	4.50E-07	0.42
45	Beta-Alanine	0.31	2.20E-06	1.00E-05	1.34
46	L-Threonine	0.31	4.50E-06	1.90E-05	1.25
47	L-Valine	0.3	4.40E-09	4.40E-08	0.77
48	L-Tyrosine	0.28	7.60E-11	1.50E-09	0.54
49	Alanine	0.26	5.70E-11	1.50E-09	1.19

Fc: fold change; VIP score: variable of importance score obtained from PLS-DA plot, p-value: p
values obtained after performing a t-test, FDR: value obtained after performing false discovery
test. Note: - Metabolite (in bold) indicate statistically differential metabolite. Metabolites with

191 VIP score >1 were considered to be contributing to the model significantly.

S.no	Metabolites	Fc	p.value	FDR	VIP score
1	L-Lysine	3.33	1.80E-07	1.10E-06	1.96
2	Methylamine	2.85	1.90E-05	6.60E-05	1.57
3	Uridinediphosphate-N-	2.36	3.50E-07	1.80E-06	1.4
	acetylglucosamine				
4	Betaine	2.36	3.20E-09	8.10E-08	1.7
5	L-Aspartic acid	2.2	1.30E-07	9.00E-07	2.69
6	Capric acid	2.1	8.00E-06	3.10E-05	1.4
7	D-Maltose	2.08	2.50E-08	4.20E-07	1.37
8	2-Hydroxy-3-	1.9	4.50E-05	1.50E-04	1.22
	methylpentanoic acid				
9	3-Methyl-2-oxovaleric acid	1.83	2.30E-07	1.30E-06	0.94
10	Isoleucine	1.5	1.20E-03	3.60E-03	0.83
11	Acetic acid	1.43	7.30E-02	1.40E-01	0.8
12	Dimethylamine	1.43	2.40E-03	6.60E-03	0.89
13	Taurine	1.36	3.50E-02	8.10E-02	0.71
14	L-Lactic acid	1.22	9.70E-02	1.60E-01	0.59
15	L-Glutamine	1.17	3.40E-03	9.00E-03	0.94
16	3-Hydroxyisovaleric acid	1.13	1.40E-01	2.20E-01	0.34
17	Uridinediphosphate glucose	1.13	8.50E-02	1.50E-01	0.41
18	Acetone	1.11	2.00E-01	2.90E-01	0.3
19	L-Leucine	1.1	3.60E-01	4.70E-01	0.25
20	L-Asparagine	1.1	1.70E-01	2.60E-01	0.61
21	Formic acid	1.1	2.20E-01	3.20E-01	0.3
22	L-Homoserine	1.09	2.90E-01	4.00E-01	0.48
23	Thymidine 5'-triphosphate	1.09	6.70E-01	7.00E-01	0.12
24	Citric acid	1.08	5.40E-01	6.20E-01	0.3
25	Citrulline	1.04	6.50E-01	6.90E-01	0.16
26	I -Phenylalanine	1.03	5 70E-01	640E-01	0.1

192 b) Fold changes and VIP scores of oxidative stress *versus* control

27	L-Threonine	0.99	9.80E-01	9.80E-01	0.01
28	Beta-Alanine	0.98	8.10E-01	8.30E-01	0.09
29	Succinic acid	0.95	4.90E-01	5.80E-01	0.24
30	Trehalose	0.93	6.30E-01	6.90E-01	0.28
31	Cholic acid	0.92	4.00E-01	4.90E-01	0.21
32	Alanine	0.91	9.40E-02	1.60E-01	0.42
33	L-Valine	0.91	3.40E-01	4.40E-01	0.3
34	Uridinediphosphategalactose	0.9	1.20E-01	1.90E-01	0.3
35	L-Alpha-aminobutyric acid	0.89	4.10E-01	5.10E-01	0.24
36	L-Tyrosine	0.89	6.30E-02	1.30E-01	0.41
37	ADP	0.83	4.10E-02	8.90E-02	0.52
38	Uridine 5'-monophosphate	0.82	5.40E-02	1.10E-01	0.51
39	Sucrose	0.8	3.00E-01	4.00E-01	0.34
40	Glucose 1-phosphate	0.76	7.40E-02	1.40E-01	0.56
41	D-Glutamic acid	0.71	8.90E-08	7.40E-07	2.16
42	Inosinic acid	0.7	1.60E-02	3.90E-02	0.6
43	Malonic acid	0.69	1.30E-02	3.10E-02	1.08
44	Nicotinamide N-oxide	0.67	7.80E-05	2.40E-04	0.9
45	NAD	0.59	1.70E-06	7.50E-06	1.47
46	Adenosine monophosphate	0.52	6.40E-08	6.60E-07	1.62
47	Adenosine triphosphate	0.44	4.60E-06	1.90E-05	1.35
48	1-Methylnicotinamide	0.42	6.60E-08	6.60E-07	1.4
49	NADP	0.13	2.10E-12	1.10E-10	1.7

Fc: fold change; VIP score: variable of importance score obtained from PLS-DA plot, p-value: p values obtained after performing a t-test, FDR: value obtained after performing false discovery test. Note: - Metabolite (in bold) indicate statistically differential metabolite. Metabolites with VIP score >1 were considered to be contributing to the model significantly.

S.no	Metabolites	Fc	p.value	FDR	VIP score
1	2-Hydroxy-3-	10.45	2.80E-07	5.30E-07	1.05
	methylpentanoic acid				
2	L-Leucine	4.91	1.80E-05	2.70E-05	0.84
3	Capric acid	3.88	8.10E-08	2.00E-07	0.62
4	Taurine	3.88	1.90E-10	8.80E-10	1.04
5	Methylamine	3.45	2.10E-03	2.60E-03	0.48
6	L-Lysine	2.88	1.20E-07	2.70E-07	0.62
7	L-Tyrosine	2.83	1.90E-08	5.30E-08	0.66
8	Malonic acid	2.68	7.70E-08	2.00E-07	1.65
9	Acetone	1.93	7.50E-12	4.20E-11	0.5
10	3-Hydroxyisovaleric acid	1.87	4.30E-16	2.10E-14	0.4
11	3-Methyl-2-oxovaleric acid	1.83	3.50E-04	4.80E-04	0.13
12	Betaine	1.75	7.40E-06	1.20E-05	0.4
13	Acetic acid	1.43	5.50E-03	6.30E-03	0.48
14	Formic acid	1.38	4.80E-04	6.30E-04	0.29
15	Dimethylamine	1.31	4.40E-01	4.50E-01	0.12
16	L-Lactic acid	1.3	4.60E-02	4.90E-02	0.32
17	Citrulline	1.28	4.40E-02	4.70E-02	0.43
18	D-Glutamic acid	1.22	5.00E-04	6.40E-04	2.27
19	L-Alpha-aminobutyric acid	1	1.00E+00	1.00E+00	0.0001
20	L-Homoserine	0.79	4.60E-03	5.40E-03	1.06
21	Cholic acid	0.73	1.50E-01	1.50E-01	0.13
22	L-Valine	0.7	2.60E-02	2.90E-02	0.29
23	L-Threonine	0.63	4.90E-03	5.70E-03	0.61
24	Nicotinamide N-oxide	0.57	2.90E-04	4.10E-04	0.23
25	Trehalose	0.56	2.00E-03	2.40E-03	2.02
26	NAD	0.5	2.60E-07	5.30E-07	0.7

198 c) Fold changes and VIP scores of nutrient starvation *versus* control.

27	ADP	0.46	4.20E-06	7.20E-06	0.31
28	Uridinediphosphate glucose	0.45	7.00E-07	1.30E-06	0.4
29	Inosinic acid	0.43	7.70E-06	1.20E-05	0.15
30	Isoleucine	0.41	1.50E-05	2.30E-05	0.23
31	Alanine	0.4	7.80E-09	2.30E-08	0.83
32	Succinic acid	0.35	2.40E-07	5.10E-07	0.88
33	Adenosine triphosphate	0.33	1.50E-05	2.30E-05	0.35
34	L-Phenylalanine	0.3	4.10E-15	1.00E-13	0.24
35	L-Glutamine	0.28	5.30E-09	1.70E-08	1.87
36	Uridine 5'-monophosphate	0.21	1.50E-09	5.80E-09	0.38
37	L-Aspartic acid	0.18	1.90E-09	6.90E-09	2.06
38	NADP	0.11	1.00E-07	2.40E-07	0.23
39	Uridinediphosphategalactose	0.08	8.90E-14	8.90E-13	0.29
40	Adenosine monophosphate	0.08	6.40E-13	4.60E-12	0.93
41	Uridinediphosphate-N-	0.08	4.30E-10	1.80E-09	0.29
	acetylglucosamine				
42	D-Maltose	0.06	2.40E-14	4.00E-13	0.35
43	Thymidine 5'-triphosphate	0.05	7.80E-13	4.80E-12	0.37
44	Sucrose	0.04	7.20E-05	1.00E-04	0.36
45	1-Methylnicotinamide	0.04	1.10E-10	5.60E-10	0.4
46	Glucose 1-phosphate	0.04	3.80E-06	6.70E-06	0.41
47	Beta-Alanine	0.004	3.50E-09	1.20E-08	1.32
48	Citric acid	0.0024	1.40E-07	3.10E-07	1.65
49	L-Asparagine	0.0006	4.00E-14	5.00E-13	3.6

Fc: fold change; VIP score: variable of importance score obtained from PLS-DA plot, p-value: p values obtained after performing a t-test, FDR: value obtained after performing false discovery test. Note: - Metabolite (in bold) indicate statistically differential metabolite. Metabolites with VIP score >1 were considered to be contributing to the model significantly. d) Analysis of variance (ANOVA) table showing significantly (p<0.05) changed metabolites

205 in comparison to acidic stress, oxidative stress, and nutrient starvation groups and control.

Metabolites	F.value	p.value	FDR	VIP Score
D-Glutamic acid	362.5	6.1E-27	3.1E-25	1.16
Adenosine monophosphate	229.2	1.7E-23	4.2E-22	1.52
L-Asparagine	222.5	2.8E-23	4.6E-22	1.49
Taurine	134.8	1.3E-19	1.6E-18	0.93
Uridinediphosphategalactose	127.5	3.1E-19	2.8E-18	1.21
Alanine	127.0	3.3E-19	2.8E-18	0.23
1-Methylnicotinamide	119.5	9.0E-19	5.7E-18	0.93
L-Aspartic acid	118.7	1.0E-18	5.7E-18	0.08
Acetone	118.6	1.0E-18	5.7E-18	1.21
Malonic acid	114.4	1.8E-18	9.1E-18	0.74
L-Tyrosine	112.4	2.4E-18	1.1E-17	1.35
D-Maltose	106.3	6.0E-18	2.5E-17	1.30
3-Hydroxyisovaleric acid	96.4	2.9E-17	1.0E-16	1.04
L-Glutamine	93.5	4.7E-17	1.6E-16	0.68
2-Hydroxy-3-methylpentanoic	83.6	2.7E-16	8.3E-16	1.20
acid				
Uridinediphosphate-N-	83.5	2.8E-16	8.3E-16	0.34
acetylglucosamine				
Beta-Alanine	78.8	6.9E-16	1.9E-15	0.54
Capric acid	61.2	3.3E-14	8.7E-14	0.85
NAD	57.2	8.9E-14	2.2E-13	1.39
L-Phenylalanine	55.1	1.6E-13	3.7E-13	0.95
NADP	49.9	6.7E-13	1.5E-12	1.39
Betaine	45.3	2.6E-12	5.7E-12	1.17
L-Leucine	42.4	6.7E-12	1.4E-11	1.17
Thymidine 5'-triphosphate	40.9	1.1E-11	2.2E-11	0.81

L-Lysine	40.7	1.2E-11	2.3E-11	1.35
Citric acid	38.4	2.6E-11	4.8E-11	1.34
Uridine 5'-monophosphate	36.7	4.7E-11	8.5E-11	1.09
Isoleucine	35.2	8.5E-11	1.5E-10	0.19
Uridinediphosphate glucose	31.5	3.5E-10	5.9E-10	1.27
Glucose 1-phosphate	24.4	8.5E-09	1.4E-08	1.07
Formic acid	24.2	9.7E-09	1.5E-08	1.08
Succinic acid	23.4	1.4E-08	2.1E-08	0.83
Sucrose	23.3	1.5E-08	2.2E-08	1.18
Citrulline	20.9	5.2E-08	7.5E-08	0.96
ADP	20.1	8.1E-08	1.1E-07	1.30
L-Threonine	19.6	1.1E-07	1.5E-07	0.69
3-Methyl-2-oxovaleric acid	18.1	2.5E-07	3.3E-07	0.75
L-Homoserine	15.2	1.5E-06	2.0E-06	0.94
Adenosine triphosphate	13.4	4.9E-06	6.1E-06	1.04
L-Valine	13.4	5.2E-06	6.3E-06	0.76
Inosinic acid	9.9	6.6E-05	7.8E-05	1.01
Acetic acid	9.0	1.4E-04	1.7E-04	1.01
Trehalose	6.8	9.1E-04	1.0E-03	0.99
Nicotinamide N-oxide	6.5	1.3E-03	1.4E-03	0.88
Methylamine	5.5	3.1E-03	3.4E-03	0.71
L-Lactic acid	4.4	1.0E-02	1.1E-02	0.44
L-Alpha-aminobutyric acid	4.3	1.0E-02	1.1E-02	0.72
Dimethylamine	1.8	1.7E-01	1.7E-01	0.10
Cholic acid	0.5	6.9E-01	6.9E-01	0.15

Note: F value indicates the ratio of the variance of the group means to that of the pooled withingroup variance. The larger the F value, the greater the relative variance among the group means.
The p-value tells you the probability of obtaining an F value as extreme or more extreme as the

one observed under the assumption that the null hypothesis is true. FDR: value obtained after
performing a false discovery test. VIP score: variable of importance score obtained from PLSDA plot. VIP score >1 metabolites were considered to be contributing to the model significantly.

Conditions	Measure	1 comps	2 comps	3 comps	4 comps	5 comps
Acidic-	R ²	0.9	0.96	0.97	0.98	0.99
Control						
	Q ²	0.87	0.92	0.92	0.86	0.78
Oxidative-	R ²	0.95	0.98	0.99	0.99	0.99
Control						
	Q ²	0.92	0.92	0.93	0.92	0.88
Starvation-	R ²	0.99	0.99	1	1	1
control						
	Q ²	0.98	0.97	0.98	0.98	0.98
Acidic-	\mathbb{R}^2	0.8	0.95	0.98	0.99	0.99
Oxidative-						
Starvation-						
Control						
	Q ²	0.77	0.93	0.95	0.97	0.97

213 Table S3: R² and Q² values of Partial Least Squares - Discriminant Analysis (PLS-DA).

214

- Note: The R^2 value indicated goodness of fit, and Q^2 indicates the goodness of predictability.
- A value closer to 1 indicates the accuracy of the prediction model. Comps: component

Table S4: Metabolic pathway impact analysis with metabolic pathways significantly influenced
a) acidic stress *versus* control. b) oxidative stress *versus* control. c) nutrient starvation *versus*control.

a) Metabolic pathway impact analysis: acidic stress *versus* control.

Acidic stress versus	Total	Hits ^b	-log(P) ^c	FDR ^d	Impact ^e
control	Cmpd ^a				
Phenylalanine, tyrosine and	22	2	25.318	4.35E-10	0.02
tryptophan biosynthesis					
D-Alanine metabolism	5	1	23.584	7.84E-10	0.00
Novobiocin biosynthesis	3	1	23.302	7.84E-10	0.00
Thiamine metabolism	21	1	23.302	7.84E-10	0.00
Phenylalanine metabolism	3	1	23.118	7.84E-10	0.00
Glycine, serine and	28	4	20.306	1.09E-08	0.21
threonine metabolism					
Taurine and hypotaurine	7	3	19.457	2.18E-08	0.00
metabolism					
Valine, leucine and	37	1	19.252	2.34E-08	0.00
isoleucine degradation					
D-Glutamine and D-	7	2	18.675	0.00000037	0.38
glutamate metabolism					
Lysine biosynthesis	15	3	18.542	3.73E-08	0.00
Cysteine and methionine	37	2	18.469	3.73E-08	0.06
metabolism					
Sulfur metabolism	13	2	18.169	4.61E-08	0.07
Selenoamino acid	16	2	17.287	0.000000103	0.01
metabolism					
Pantothenate and CoA	21	3	16.581	0.00000193	0.02
biosynthesis					
beta-Alanine metabolism	9	2	15.166	0.00000728	1.00
Alanine, aspartate and	20	5	15.122	0.00000728	0.69

glutamate metabolism					
Arginine and proline	40	3	14.979	0.000000791	0.05
metabolism					
Valine, leucine and	26	2	14.326	0.00000142	0.02
isoleucine biosynthesis					
Tyrosine metabolism	11	2	14.281	0.00000142	0.00
Aminoacyl-tRNA	66	8	13.426	0.00000318	0.00
biosynthesis					
Propanoate metabolism	21	2	13.23	0.00000368	0.00
Pyrimidine metabolism	37	2	13.044	0.00000423	0.11
Purine metabolism	66	5	12.754	0.00000541	0.14
Nitrogen metabolism	14	4	12.576	0.00000619	0.00
Butanoate metabolism	22	1	11.567	0.0000157	0.05
Benzoate degradation via	10	1	11.567	0.0000157	0.00
CoA ligation					
Nicotinate and nicotinamide	13	3	9.8877	8.1E-05	0.15
metabolism					
Peptidoglycan biosynthesis	19	2	9.0395	1.8E-04	0.08
Cyanoamino acid	8	2	7.5334	7.9E-04	0.00
metabolism					
Methane metabolism	13	1	6.9018	1.4E-03	0.10
Lysine degradation	13	1	6.6492	1.8E-03	0.00
Amino sugar and nucleotide	38	4	3.9977	0.02	0.21
sugar metabolism					
Galactose metabolism	26	4	3.3779	0.04	0.10
Streptomycin biosynthesis	10	1	3.2292	0.05	0.22
Polyketide sugar unit	5	1	3.2292	0.05	0.00
biosynthesis					
Citrate cycle (TCA cycle)	20	2	3.1543	0.05	0.12
Pentose and	26	2	2.6266	0.08	0.01

glucuronateinterconversions					
Starch and sucrose	30	5	2.173	0.13	0.39
metabolism					
Pyruvate metabolism	21	2	2.1177	0.13	0.08
Glycolysis or	30	4	1.8442	0.17	0.02
Gluconeogenesis					
Glyoxylate and	22	2	1.6469	0.20	0.43
dicarboxylate metabolism					
Ascorbate and aldarate	8	1	1.0865	0.35	0.00
metabolism					
Glutathione metabolism	17	1	0.4176	0.66	0.00

Note: ^a Total number of metabolites in the pathway,^b Number of matched metabolites, ^c-log(P) is the negative natural log of the P value for each pathway, ^d False Discovery Rate (Benjamini-Hochberg),^e Impact: The Impact is the pathway impact value calculated from pathway topology analysis. Pathways with pathway-impact values ≥ 0.1 , p-value (p<0.05), and false discovery rate (FDR) (FDR<0.05) were considered to be perturbed significantly

229

b) Metabolic pathway impact analysis: oxidative stress *versus* control.

oxidative versus control	Total	Hits ^b	-log(P) ^c	FDR ^d	Impact ^e
	Cmpd ^a				
Glutathione metabolism	17	1	26.8	9.4814E-11	0.00
Nicotinate and nicotinamide	13	3	21.6	8.6862E-09	0.15
metabolism					
Nitrogen metabolism	14	4	19.8	3.6832E-08	0.00
Glycine, serine and	28	4	19.1	4.6296E-08	0.21
threonine metabolism					
Lysine biosynthesis	15	3	19.0	4.6296E-08	0.00

D-Glutamine and D-	7	2	18.4	7.413E-08	0.38
glutamate metabolism					
Amino sugar and nucleotide	38	4	18.1	8.2151E-08	0.21
sugar metabolism					
Aminoacyl-tRNA	66	8	17.4	1.5592E-07	0.00
biosynthesis					
Arginine and proline	40	3	17.0	2.0177E-07	0.05
metabolism					
Purine metabolism	66	5	16.2	3.5045E-07	0.14
Alanine, aspartate and	20	5	16.2	3.5045E-07	0.69
glutamate metabolism					
Pantothenate and CoA	21	3	15.8	5.0472E-07	0.02
biosynthesis					
beta-Alanine metabolism	9	2	15.6	5.0554E-07	1.00
Cysteine and methionine	37	2	15.6	5.0554E-07	0.06
metabolism					
Lysine degradation	13	1	15.5	5.0675E-07	0.00
Cyanoamino acid	8	2	15.0	8.0805E-07	0.00
metabolism					
Peptidoglycan biosynthesis	19	2	12.7	0.00000772	0.08
Pyrimidine metabolism	37	2	7.1	0.00	0.11
Starch and sucrose	30	5	4.8	0.02	0.39
metabolism					
Taurine and hypotaurine	7	3	4.1	0.04	0.00
metabolism					
Pentose and	26	2	3.2	0.08	0.01
glucuronateinterconversions					
Pyruvate metabolism	21	2	3.2	0.08	0.08
Glycolysis or	30	4	3.0	0.09	0.02
Gluconeogenesis					

Selenoamino acid	16	2	3.0	0.09	0.01
metabolism					
Novobiocin biosynthesis	3	1	2.8	0.11	0.00
Thiamine metabolism	21	1	2.8	0.11	0.00
Streptomycin biosynthesis	10	1	2.6	0.11	0.22
Polyketide sugar unit	5	1	2.6	0.11	0.00
biosynthesis					
Galactosemetabolism	26	4	2.5	0.12	0.10
Ascorbate and aldarate	8	1	2.5	0.12	0.00
metabolism					
D-Alanine metabolism	5	1	2.4	0.13	0.00
Phenylalanine, tyrosine and	22	2	2.4	0.13	0.02
tryptophan biosynthesis					
Sulfur metabolism	13	2	2.2	0.14	0.07
Methane metabolism	13	1	1.5	0.28	0.10
Tyrosine metabolism	11	2	1.4	0.31	0.00
Valine, leucine and	37	1	1.1	0.40	0.00
isoleucine degradation					
Butanoate metabolism	22	1	0.7	0.55	0.05
Benzoate degradation via	10	1	0.7	0.55	0.00
CoA ligation					
Glyoxylate and	22	2	0.7	0.56	0.43
dicarboxylate metabolism					
Phenylalanine metabolism	3	1	0.6	0.61	0.00
Citrate cycle (TCA cycle)	20	2	0.4	0.68	0.12
Valine, leucine and	26	2	0.4	0.69	0.02
isoleucine biosynthesis					
Propanoate metabolism	21	2	0.3	0.75	0.00

Note: ^a Total number of metabolites in the pathway,^b Number of matched metabolites, ^c-log(P) is the negative natural log of the P value for each pathway, ^d False Discovery Rate (Benjamini-Hochberg),^e Impact: The Impact is the pathway impact value calculated from pathway topology analysis. Pathways with pathway-impact values ≥ 0.1 , p-value (p<0.05), and false discovery rate (FDR) (FDR<0.05) were considered to be perturbed significantly

238	c) Metabolic	pathway	impact	analysis:	nutrient	starvation	versus	control
-----	--------------	---------	--------	-----------	----------	------------	--------	---------

nutrient starvation versus	Total	Hits ^b	-log(P) ^c	FDR ^d	Impact ^e
control	Cmpd ^a				
Aminoacyl-tRNA	66	8	37.035	2.2896E-15	0.00
biosynthesis					
Cyanoamino acid	8	2	36.778	2.2896E-15	0.00
metabolism					
Nitrogen metabolism	14	4	35.437	5.8368E-15	0.00
Alanine, aspartate and	20	5	34.855	7.8364E-15	0.69
glutamate metabolism					
Phenylalanine metabolism	3	1	33.132	3.5122E-14	0.00
Taurine and	7	3	28.881	2.0525E-12	0.00
hypotaurinemetabolism					
Arginine and proline	40	3	28.064	3.9833E-12	0.05
metabolism					
Pantothenate and CoA	21	3	26.985	1.025E-11	0.02
biosynthesis					
beta-Alanine metabolism	9	2	26.768	1.1328E-11	1.00
Glycolysis or	30	4	25.904	2.4188E-11	0.02
Gluconeogenesis					
Peptidoglycan biosynthesis	19	2	24.457	9.34E-11	0.08
Nicotinate and nicotinamide	13	3	21.797	1.224E-09	0.15

metabolism					
Purine metabolism	66	5	21.231	1.9908E-09	0.14
Selenoamino acid	16	2	20.546	3.6656E-09	0.01
metabolism					
Propanoate metabolism	21	2	19.606	8.7585E-09	0.00
Phenylalanine, tyrosine and	22	2	19.39	1.0194E-08	0.02
tryptophan biosynthesis					
Pyrimidine metabolism	37	2	19.329	1.0195E-08	0.11
Amino sugar and nucleotide	38	4	19.114	1.1938E-08	0.21
sugar metabolism					
Tyrosine metabolism	11	2	18.768	1.5985E-08	0.00
D-Alanine metabolism	5	1	18.664	1.6856E-08	0.00
Glycine, serine and	28	4	18.275	2.3685E-08	0.21
threonine metabolism					
Citrate cycle (TCA cycle)	20	2	18.082	2.7415E-08	0.12
Lysine biosynthesis	15	3	17.871	3.2389E-08	0.00
Novobiocin biosynthesis	3	1	17.783	3.2549E-08	0.00
Thiamine metabolism	21	1	17.783	3.2549E-08	0.00
Cysteine and methionine	37	2	16.842	8.0151E-08	0.06
metabolism					
Glyoxylate and	22	2	16.204	1.4619E-07	0.43
dicarboxylate metabolism					
Glutathione metabolism	17	1	16.099	1.5653E-07	0.00
Lysine degradation	13	1	15.943	1.7658E-07	0.00
Pentose and	26	2	15.885	1.8096E-07	0.01
glucuronateinterconversions					
Galactose metabolism	26	4	15.317	3.0892E-07	0.10
Butanoate metabolism	22	1	15.232	3.1595E-07	0.05
Benzoate degradation via	10	1	15.232	3.1595E-07	0.00
CoA ligation					

Ascorbate and aldarate	8	1	14.17	8.8741E-07	0.00
metabolism					
D-Glutamine and D-	7	2	13.302	2.0523E-06	0.38
glutamate metabolism					
Streptomycin biosynthesis	10	1	12.493	4.3623E-06	0.22
Polyketide sugar unit	5	1	12.493	4.3623E-06	0.00
biosynthesis					
Methane metabolism	13	1	7.6449	5.4E-04	0.10
Starch and sucrose	30	5	6.8585	1.2E-03	0.39
metabolism					
Sulfur metabolism	13	2	6.3757	1.8E-03	0.07
Pyruvate metabolism	21	2	6.0924	2.4E-03	0.08
Valine, leucine and	26	2	5.3424	4.9E-03	0.02
isoleucine biosynthesis					
Valine, leucine and	37	1	3.6576	0.02580	0.00
isoleucine degradation					

Note: ^a Total number of metabolites in the pathway, ^b Number of matched metabolites, ^c-log(P) is the negative natural log of the P value for each pathway, ^d False Discovery Rate (Benjamini-Hochberg), ^e Impact: The Impact is the pathway impact value calculated from pathway topology analysis. Pathways with pathway-impact values ≥ 0.1 , p-value (p<0.05), and false discovery rate (FDR) (FDR<0.05) were considered to be perturbed significantly

245

246Table S5: Pre-processing method to perform standard statistical analysis

Pre-Processing	Acidic -	Oxidative-	Starvation-	Acidic-
Method	Control	Control	Control	Oxidative-
				Control
Normalization		Sum		Sum

Transformation		Cube Root		
scaling	Pareto	Pareto	Pareto	Auto

249 Table S6: Primers used in the study

Gene name	Sequence (5'-3')	Annealing Temperature
		(°C)
TrimethylamineBiosynthesis		
synthesis pathways in M.		
smegmatis		
RT primers		
2,4-DCA MSMEG_5124FP	AGATCGTCTGTTTGGCAAC	58
2,4-DCAMSMEG_5124RP	GATCACTCAGCAGCGGAC	58
YeaXMSMEG_4371RTFP	AGAGATCCACGAGCAGTT	57
YeaXMSMEG_4371RTRP	CTGCGGGAGCACCTCGAC	57
TR2Fe-2SMSMEG_0657FP	TGCTCGTCCATCCATCCCG	57
TR2Fe-2SMSMEG_0657RP	GACGGCCAGCGGTGTCAT	57
Endogenous controls M.		
smegmatis		
MSMEG_2758 sigAFP	GAAGACACCGACCTGGAACT	55
MSMEG_2758 sigA RP	GACTCTTCCTCGTCCCACAC	55
Primers for cloning of M.		
smegmatisMSMEG_5124		
gene.		
MSMEG_5124FP	5'-GTGACATACCCGAACCTG	58
MSMEG_5124RP	3'-CTACAGGCGCGCGGCGAG	58