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Supplementary Figure 1 

Reanalysis of the CRISPR–Cas9 tiling screen from Canver et al.
1
. 

(a) An overview of the BCL11A CRISPR–Cas9 enhancer dissection tiling screen. (b) Zoom-in panels of DHS +55, +58, +62, and 

BCL11A exon 2 to highlight critical regions identified by CRISPR-SURF. All significant regions identified with FDR < 0.05. All panels are 

shown at same scale. 



 
 

Supplementary Figure 2 

Reanalysis of a CRISPRi tiling screen from Fulco et al.
2
. 

(a) An overview of the MYC CRISPRi enhancer discovery tiling screen. (b) Zoom-in panels of MYC TSS, e1–e7, and r1 (regions 
identified in Fulco et al.

2
) along with newly identified regions by CRISPR-SURF (SURF1 and SURF2). All significant regions identified 

with FDR < 0.05. All panels are shown at same scale. 



 
 

Supplementary Figure 3 

Reanalysis of a CRISPRa tiling screen from Simeonov et al.
3
. 

(a) An overview of the IL2RA CRISPRa enhancer discovery tiling screen. (b) Zoom-in panels of IL2RA TSS and CaREs 1–6 (regions 

identified in ref. 3) along with regions newly identified by CRISPR-SURF (SURF3 and SURF4). All significant regions identified with 

FDR < 0.05. All panels are shown at same scale. 



 
 

Supplementary Figure 4 

CRISPR-SURF analysis of parallel CRISPRi and CRISPR–Cas9 DHS tiling screens targeted to the BCL11A locus. 

(a) An overview of the BCL11A CRISPRi and CRISPR–Cas9 DHS tiling screens. (b) Shown are zoom-in panels of BCL11A exon 2 and 

common significant regions (FDR < 0.05) between the CRISPRi and CRISPR–Cas9 tiling screens as determined by CRISPR-SURF. 

 



Supplementary	Notes	
	
Supplementary	Note	1:	CRISPR-SURF	Installation	and	Usage	
	
All	information	can	be	found	at	our	GitHub	page:	https://github.com/pinellolab/CRISPR-SURF	
	
Installation	with	Docker	
With	Docker,	no	installation	is	required	-	the	only	dependence	is	Docker	itself.		
	
Docker	can	be	downloaded	freely	here:	
https://store.docker.com/search?offering=community&type=edition	
	
To	get	a	local	copy	of	CRISPR-SURF,	simply	execute	the	following	command:	

• docker pull pinellolab/crisprsurf 

CRISPR-SURF	Design	
The	CRISPR-SURF	Design	script	allows	users	to	design	sgRNAs	for	their	CRISPR	tiling	screens.	
CRISPR-SURF	Design	can	be	run	in	the	terminal	with	the	following	command:	
	
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_design [options] 
	
Users	can	specify	the	following	options:	
	
-bed, --bed 
      Input bed file to design tiling sgRNAs. (Required) 
-genome, --genome 
      Input genome 2bit file. (Required) 
-pams, --pams 
      Specification of different CRISPR PAMs where brackets [] allow for multiple 
nucleotides for a given position (i.e. [ATCG]GG -> NGG, TTT[ACG] -> TTTV, [ATCG]G -> 
NG). Multiple PAMs separated by spaces can be inputted (i.e. [ATCG]GG TTT[ACG]). 
(Required) 
-orient, --orientations 
      Orientation of the spacer sequence relative to the PAM. This must match the 
length of the -pams option as an orientation must be specified for each PAM. Multiple 
orientations are separated by spaces (i.e. left right). (Options: left, right | 
Required) 
-guide_l, --guide_length 
      Length of the sgRNA to design. (Default: 20) 
-g_constraint, --g_constraint 
      Constraint forcing the 5' sgRNA bp to be G base. All guides with no 5’ G will 
be filtered out. (Options: true, false | Default: false) 
-out, --out_dir 
      Name of output directory. (Default: ./) 
	
	
	



Running	CRISPR-SURF	Design	Yourself	
	
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_design -bed BED_FILE 
-genome 2BIT_GENOME_FILE -pams [ATCG]GG TTT[ACG] -orient left right –out example_run 
	
IMPORTANT:	The	BED_FILE	and	2BIT_GENOME_FILE	must	be	in	the	working	directory	where	
the	command-line	code	is	run.	
	
CRISPR-SURF	Count	
The	CRISPR-SURF	Count	script	generates	a	required	input	file, sgRNAs_summary_table.csv,	for	
both	the	CRISPR-SURF	interactive	website	and	command-line	deconvolution	analysis.	CRISPR-
SURF	Count	can	be	run	in	the	terminal	with	the	following	command:	
	
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_count [options] 
	
Users	can	specify	the	following	options:	
	
-f, --sgRNA_library   
      Input sgRNA library file. Formatting specified below. (Required) 
-control_fastqs, --control_fastqs 
      List of control FASTQs with sgRNA sequencing prior to selection separated by 
spaces (i.e. rep1_control.fastq rep2_control.fastq rep3_control.fastq). (Default: 
None) 
-sample_fastqs, --sample_fastqs 
      List of sample FASTQs with sgRNA sequencing following selection separated by 
spaces (i.e. rep1_sample.fastq rep2_sample.fastq rep3_sample.fastq). (Default: None) 
-nuclease, --nuclease 
      Nuclease used in the CRISPR tiling screen experiment. This information is used 
to determine the cleavage index if indels are specified as the perturbation. 
(Options: cas9, cpf1 | Default: cas9) 
-pert, --perturbation 
      Perturbation type used in the CRISPR tiling screen experiment. This information 
is used to determine the perturbation index for a given sgRNA. (Options: indel, 
crispri, crispra | Default: indel) 
-norm, --normalization 
      Normalization method between sequencing libraries. (Options: none, median, 
total | Default: median) 
-count_method, --count_method 
      Counting method for sgRNAs from FASTQ. The tracrRNA option aligns a consensus 
sequence directly downstream of the sgRNA. The index option uses provided indices to 
grab sgRNA sequence from the sequencing reads. (Options: tracrRNA, index | Default: 
tracrRNA) 
-tracrRNA, --tracrRNA 
      If -count_method == tracrRNA. The consensus tracrRNA sequence directly 
downstream of the sgRNA for counting from FASTQ. (Default: GTTTTAG) 
-sgRNA_index, --sgRNA_index 
      If -count_method == index. The sgRNA start and stop indices (0-index) within 
the sequencing reads (i.e. 0 20). (Default: 0 20) 
-count_min, --count_minimum 
      The minimum number of counts for a given sgRNA in each control sample. 
(Default: 50) 



-dropout, --dropout_penalty 
      The dropout penalty removes sgRNAs that have a 0 count in any of the 
control/sample replicates. (Default: True) 
-TTTT, --TTTT_penalty 
      The TTTT penalty removes sgRNAs that have a homopolymer stretch of Ts >= 4. 
(Default: True) 
-sgRNA_length, --sgRNA_length 
      Length of sgRNAs used in the CRISPR tiling screen experiment. This must match 
the sgRNA length provided in the sgRNA library file. (Default: 20) 
-reverse, --reverse_score 
      Reverse the enrichment score. Generally applied to depletion screens where a 
positive score is associated with depletion of a sgRNA. (Default: False) 
-out_dir, --out_directory 
      The output directory for CRISPR-SURF counts. (Default: ./) 
	
To	start,	you	will	need	one	of	the	following:	

• Option	(1)	sgRNA	Library	File	with	FASTQs	
• Option	(2)	sgRNA	Library	File	with	counts	

Option	(1):	

sgRNA	Library	File	Format	Example	(.CSV):	
 

	
	
Required	Column	Names:	

• Chr	-	Chromosome	
• Start	-	sgRNA	Start	Genomic	Coordinate	
• Stop	-	sgRNA	Start	Genomic	Coordinate	
• sgRNA_Sequence	-	sgRNA	sequence	not	including	PAM	sequence	
• Strand	-	Targeting	strand	of	the	sgRNA	
• sgRNA_Type	-	Label	for	sgRNA	type	(observation,	negative_control,	positive_control)	

	



Example	CRISPR-SURF	Count	on	Canver	et	al.	2015	for	Option	(1)	

The	following	command	will	run	CRISPR-SURF	Count	for	Option	(1)	on	provided	example	data:	

docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_count -f 
/SURF/command_line/exampleDataset/sgRNA_library_file.csv -control_fastqs 
/SURF/command_line/exampleDataset/rep1_neg.fastq.gz 
/SURF/command_line/exampleDataset/rep2_neg.fastq.gz -sample_fastqs 
/SURF/command_line/exampleDataset/rep1_pos.fastq.gz 
/SURF/command_line/exampleDataset/rep2_pos.fastq.gz -nuclease cas9 -pert indel 
 
Running	CRISPR-SURF	Count	Option	(1)	Yourself	

Place	the	sgRNA	library	file	and	FASTQs	in	the	same	directory.	The	control	FASTQs	represent	the	
sgRNA	distribution	prior	to	selection,	while	the	sample	FASTQs	represent	the	sgRNA	
distribution	following	selection.	Assuming	the	sgRNA	library	file	is	
named	sgRNA_library_file.csv, the	FASTQs	(2	replicates)	are	
named rep1_control.fastq, rep2_control.fastq, rep1_sample.fastq, rep2_sample.fastq, and	
it's	a	CRISPR-Cas9	tiling	screen,	the	command-line	code	would	look	like:	
	
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_count -f 
sgRNA_library_file.csv -control_fastqs rep1_control.fastq rep2_control.fastq -
sample_fastqs rep1_sample.fastq rep2_sample.fastq -nuclease cas9 -pert indel 
	
Simply	change	-pert indel to -pert crispri or -pert crispra for	CRISPRi	and	CRISPRa	
screens,	respectively.	
	
IMPORTANT:	The	number	of	control	FASTQs	must	equal	the	number	of	sample	FASTQs.	If	a	
single	control	FASTQ	(i.e.	plasmid	sequencing)	is	used	for	multiple	sample	FASTQs,	just	
enumerate	the	-control_fastqs option	with	the	same	single	control	FASTQ.	
	
Option	(2):	

sgRNA	Library	File	Format	Example	(.CSV):	

	

Required	Column	Names:	

• Chr	-	Chromosome	
• Start	-	sgRNA	Start	Genomic	Coordinate	
• Stop	-	sgRNA	Start	Genomic	Coordinate	
• sgRNA_Sequence	-	sgRNA	sequence	not	including	PAM	sequence	



• Strand	-	Targeting	strand	of	the	sgRNA	
• sgRNA_Type	-	Label	for	sgRNA	type	(observation,	negative_control,	positive_control)	
• Replicate1_Control_Count	-	sgRNA	Count	in	Replicate	1	Control	FASTQ	(pre-selection)	
• Replicate2_Control_Count	-	sgRNA	Count	in	Replicate	2	Control	FASTQ	(pre-selection)	
• Replicate1_Sample_Count	-	sgRNA	Count	in	Replicate	1	Sample	FASTQ	(post-selection)	
• Replicate2_Sample_Count	-	sgRNA	Count	in	Replicate	2	Sample	FASTQ	(post-selection)	

IMPORTANT:	Minimum	of	two	experimental	replicates	are	needed.	Additional	columns	
(ReplicateN_Control_Count,	ReplicateN_Sample_Count)	can	be	included	for	more	experimental	
replicates.	

Example	CRISPR-SURF	Count	on	Canver	et	al.	2015	for	Option	(2)	

The	following	command	will	run	CRISPR-SURF	Count	for	Option	(2)	on	provided	example	data:	

docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_count -f 
/SURF/command_line/exampleDataset/sgRNA_library_file_w_counts.csv -nuclease cas9 -
pert indel 
 
Running	CRISPR-SURF	Count	Option	(2)	Yourself	

Go	into	the	directory	where	the	sgRNA	library	file	is	located.	Assuming	the	sgRNA	library	file	
with	counts	is	named	sgRNA_library_file_w_counts.csv and	it's	a	CRISPR-Cas9	tiling	screen,	
the	command-line	code	would	look	like:	
	
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_count -f 
sgRNA_library_file_w_counts.csv -nuclease cas9 -pert indel 
	
Simply	change	-pert indel to -pert crispri or -pert crispra for	CRISPRi	and	CRISPRa	
screens,	respectively. 
 
IMPORTANT:	Additional	ReplicateN_Control_Count	and	ReplicateN_Sample_Count	columns	
can	be	added	depending	on	the	number	of	replicates	used	in	the	experiment.	The	number	of	
ReplicateN_Control_Count	columns	must	equal	ReplicateN_Sample_Count	columns.	If	a	single	
control	column	(i.e.	plasmid	count)	is	used	for	multiple	sample	counts,	just	duplicate	the	single	
control	column	with	the	appropriate	column	names.	

CRISPR-SURF	Deconvolution	

The	CRISPR-SURF	Deconvolution	command-line	tool	
takes	sgRNAs_summary_table.csv (generated	from	CRISPR-SURF	Count)	as	input.	The	file	
requirements	are	stated	below.	
	
	



Required	Column	Names:	

• Chr	-	Chromosome	
• Start	-	sgRNA	Start	Genomic	Coordinate	
• Stop	-	sgRNA	Start	Genomic	Coordinate	
• Perturbation_Index	-	Genomic	coordinate	of	expected	perturbation	center	(cleavage	

position	for	CRISPR-Cas,	sgRNA	center	for	CRISPRi/a,	editing	window	for	base-editors)	
• sgRNA_Sequence	-	sgRNA	sequence	not	including	PAM	sequence	
• Strand	-	Targeting	strand	of	the	sgRNA	
• sgRNA_Type	-	Label	for	sgRNA	type	(observation,	negative_control,	positive_control)	
• Log2FC_Replicate1	-	Replicate	1	Log2FC	enrichment	score	of	sgRNA	
• Log2FC_Replicate2	-	Replicate	2	Log2FC	enrichment	score	of	sgRNA	

IMPORTANT:	Minimum	of	two	experimental	replicates	are	needed.	Additional	columns	
(Log2FC_ReplicateN)	can	be	included	for	more	experimental	replicates.	
	
CRISPR-SURF	deconvolution	can	be	run	in	the	terminal	with	the	following	command:	
	
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_deconvolution 
[options] 
	
Users	can	specify	the	following	options:	
	
-f, --sgRNAs_summary_table 
      Input sgRNAs summary table. Direct output of CRISPR-SURF Count. (Required) 
-pert, --perturbation_type 
      The CRISPR perturbation type used in the tiling experiment. (Options: cas9, 
cpf1, crispri, crispra | Required) 
-range, --characteristic_perturbation_range 
      Characteristic perturbation length. If 0 (default), the -pert argument will be 
used to set an appropriate perturbation range. (Default: 0) 
-scale, --scale 
      Scaling factor to efficiently perform deconvolution with negligible 
consequences. If 0 (default), the -range argument will be used to set an appropriate 
scaling factor. (Default: 0) 
-limit, --limit 
      Maximum distance between two sgRNAs to perform inference on bp in-between. Sets 
the boundaries of the gaussian profile to perform efficient deconvolution. If 0 
(default), the -pert argument will be used to set an appropriate limit. (Default: 0) 
-avg, --averaging_method 
      The averaging method to be performed to combine biological replicates. 
(Options: mean, median | Default: median) 
-null_dist, --null_distribution 
      The method of building a null distribution for each smoothed beta score. 
(Options: negative_control, gaussian, laplace | Default: gaussian) 
-sim_n, --simulation_n 
      The number of simulations to perform for construction of the null distribution. 
(Default: 1000) 



-test_type, --test_type 
      Parametric or non-parametric test for betas. (Options: parametric, 
nonparametric | Default: parametric) 
-lambda_list, --lambda_list 
      List of lambdas (regularization parameter) separated by spaces to use during 
the deconvolution step (i.e. 1 2 3 4 5 6 7 8 9 10). If 0 (default), the -pert 
argument will be used to set a reasonable lambda list. (Default: 0) 
-lambda_val, --lambda_val 
      The lambda value to be used during the deconvolution step. If 0 (default), the 
-lambda_list argument will be used. (Default: 0) 
-corr, --correlation 
      The Pearson's r correlation coefficient between biological replicates to 
determine a reasonable lambda for the deconvolution operation. If 0 (default), the -
range argument will be used to set an appropriate correlation. (Default: 0) 
-genome, --genome 
      The genome to be used to create the IGV session file. (Options: hg19, hg38, 
mm9, mm10, etc. | Default: hg19) 
-effect_size, --effect_size 
      Effect size to estimate statistical power. (Default: 1) 
-padjs, --padj_cutoffs 
      List of p-adj. (Benjamini-Hochberg) cut-offs separated by spaces for 
determining significance of regulatory regions in the CRISPR tiling screen (i.e. 0.05 
0.01 0.001 0.0001). (Default: 0.05 0.01 0.001 0.0001) 
-out_dir, --out_directory 
      The name of the output directory to place CRISPR-SURF analysis files. (Default: 
CRISPR_SURF_Analysis_TIMESTAMP) 
 

Example	CRISPR-SURF	Deconvolution	on	Canver	et	al.	2015	

The	following	command	will	run	CRISPR-SURF	deconvolution	analysis	on	provided	example	
data:	

docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_deconvolution -f 
/SURF/command_line/exampleDataset/sgRNAs_summary_table.csv -pert cas9 
	

Running	CRISPR-SURF	Deconvolution	Yourself		

Go	into	the	directory	where	the	sgRNAs	summary	table	is	located.	Assuming	the	sgRNAs	
summary	table	is	named sgRNAs_summary_table.csv and	it's	a	CRISPR-Cas9	tiling	screen,	the	
command-line	call	would	look	like:	
 
docker run -v ${PWD}/:/DATA -w /DATA pinellolab/crisprsurf SURF_deconvolution -f 
sgRNAs_summary_table.csv -pert cas9 
 
Simply	change	-pert cas9 to -pert crispri or -pert crispra for	CRISPRi	and	CRISPRa	
screens,	respectively. 
 
 
 



Output	Files	

1.	sgRNAs_summary_table_updated.csv:	An	updated	sgRNAs	summary	table	with	
deconvolution	and	p-adj.	values.	

2.	igv_session.xml:	An	IGV1	session	for	the	following	tracks	

• raw_scores.bedgraph	-	sgRNA	enrichment	scores	
• deconvolved_scores.bedgraph	-	deconvolution	beta	profile	
• positive_significant_regions.bed	-	positive	significant	regions	at	set	FDR	
• negative_significant_regions.bed	-	negative	significant	regions	at	set	FDR	
• neglog10_pvals.bedgraph	-	negative	log10	p-values	for	betas	
• statistical_power.bedgraph	-	statistical	power	track	at	set	effect	size	and	FDR	

3.	significant_regions.csv:	List	of	the	significant	regions	and	its	associated	statistics	and	
supporting	sgRNAs.	

4.	beta_profile.csv:	Full	deconvolution	beta	profile	with	associated	statistics.	

5.	correlation_curve_lambda.csv:	The	correlation	curve	generated	for	determining	lambda.	

6.	crispr-surf_parameters.csv:	The	CRISPR-SURF	analysis	parameters	used	during	the	analysis	
session.	

7.	crispr-surf.log:	The	log	file	for	CRISPR-SURF	analysis.	

CRISPR-SURF	Interactive	Website	

In	order	to	make	CRISPR-SURF	more	user-friendly	and	accessible,	we	have	created	an	
interactive	website:	http://crisprsurf.pinellolab.org.	The	website	implements	all	the	features	of	
the	CRISPR-SURF	command-line	tool	(except	CRISPR-SURF	Count)	and,	in	addition,	provides	
interactive	and	exploratory	plots	to	visualize	your	CRISPR	tiling	screen	data.	

The	website	offers	two	functions:	1)	running	CRISPR-SURF	on	data	provided	by	the	user	and	2)	
visualizing	CRISPR-SURF	analysis	on	several	published	data	sets,	serving	as	the	first	database	
dedicated	to	CRISPR	tiling	screen	data.	There	is	a	10,000	sgRNA	limitation	for	analysis	with	the	
web	application	due	to	server	capacity.	Analysis	of	CRISPR	tiling	screen	data	with	>10,000	
sgRNAs	requires	the	use	of	the	command-line	tool	or	provided	Docker	image.	

The	web	application	can	also	run	on	a	local	machine	using	the	provided	Docker	image	we	have	
created.	To	run	the	website	on	a	local	machine	after	the	Docker	installation,	execute	the	
following	command	from	the	command	line:	

• docker run -p 9993:9993 pinellolab/crisprsurf SURF_webapp 



After	execution	of	the	command,	the	user	will	have	a	local	instance	of	the	website	accessible	at	
the	URL:	http://localhost:9993	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	2:	CRISPR-SURF	Computational	Methods	
	
Design	sgRNA	Tiling	Library	
CRISPR-SURF	provides	a	tool	for	the	design	of	a	sgRNA	libraries	for	tiling	screens.	Given	a	.bed	
file,	a	genome,	and	PAM	sequences	of	interest,	the	tool	simply	enumerates	all	possible	
targeting	sgRNAs	where	the	spacer	or	PAM	sequence	overlaps	with	the	target	region(s).	The	
tool	does	not	provide	a	score	for	the	designed	sgRNAs.	The	orientation	of	the	spacer	sequence	
(relative	to	the	PAM),	sgRNA	length	and	5’	G	filters	are	other	parameters	users	can	use	to	
design	their	sgRNA	library.	The	design	tool	supports	all	PAM	sequences	(including	variants)	for	
all	CRISPR-Cas	nucleases	(Cas9,	Cpf1,	etc.)	and	sgRNAs	can	be	designed	for	multiple	PAMs	in	
parallel.	
	
The	CRISPR-SURF	sgRNA	design	tool	can	be	used	as	a	command-line	tool	(Supplementary	Note	
1)	or	on	our	interactive	website	at http://crisprsurf.pinellolab.org.	On	our	website,	users	are	
provided	with	intuitive	plots	to	understand	the	spacing	of	their	tiled	sgRNAs.	Cumulative	
distribution	functions	(CDFs)	of	the	distances	between	consecutive	sgRNAs	and	a	genomic	track	
with	sgRNA	locations	and	their	expected	perturbation	profiles	are	available.	The	sgRNA	library	
can	be	downloaded	directly	from	our	website.	
	
Data	Pre-Processing	
Several	data	pre-processing	steps	are	necessary	before	performing	CRISPR-SURF	analysis.	Users	
can	either	provide	FASTQs	to	perform	the	data	pre-processing	steps	outlined	below	with	
CRISPR-SURF	Count,	or	provide	a	sgRNA	counts	file	that	can	be	directly	analyzed	by	CRISPR-
SURF.	
	
The	pre-processing	steps	can	be	broken	down	into	(1)	sgRNA	counting	and	normalization,	(2)	
sgRNA	filtering,	and	(3)	sgRNA	enrichment	scoring.	
	
(1)	 sgRNA	Counting	and	Normalization	
The	sgRNA	counting	step	with	FASTQ	files	is	performed	with	either	the	tracrRNA	sequence	
(consensus	sequence	directly	downstream	of	spacer	sequence)	or	sequencing	read	index.	The	
tracrRNA	sequence	option	allows	the	user	to	specify	a	consensus	tracrRNA	sequence	directly	
downstream	of	the	sgRNA	sequence,	allowing	for	the	counting	of	sgRNAs	following	the	
alignment	of	the	tracrRNA	sequence	to	each	sequencing	read.	The	sequencing	read	index	
option	allows	the	user	to	specify	the	sgRNA	start	and	stop	indices	(0-index)	within	each	
sequencing	read	to	count	sgRNAs.	We	discourage	the	mapping	of	guide	sequences	directly	to	a	
reference	genome	since	this	can	lead	to	ambiguous	alignments	and	incorrect	positioning,	
therefore	genomic	coordinates	are	required	as	input.	
	
(2) sgRNA	Filtering	
The	sgRNA	filtering	step	allows	the	user	to	specify	penalties	associated	with	sgRNA	count	
minimums,	dropouts,	and	existence	of	homopolymer	T	stretches	(>3)	within	the	sgRNA	
sequence.	The	count	minimum	penalty	filters	sgRNAs	based	on	its	counts	pre-selection	to	
ensure	there	is	sufficient	sgRNA	representation.	The	dropout	penalty	filters	sgRNAs	with	any	0	



counts	in	the	post-selection	population.	The	homopolymer	T	penalty	filters	sgRNAs	with	a	
stretch	of	>3	Ts	as	this	is	a	termination	signal	for	RNA	pol	III.	
	
(3) sgRNA	Enrichment	Scoring	
The	sgRNA	enrichment	scoring	step	calculates	a	𝑙𝑜𝑔$𝐹𝐶	value	using	the	ratio	of	pre-	and	post-	
selection	counts	for	each	sgRNA	per	biological	replicate.	A	pseudo-count	of	1	is	added	to	both	
the	pre-	and	post-	selection	counts	to	avoid	0	values.	
	
The	CRISPR-SURF	Count	module	can	be	used	to	perform	all	pre-processing	steps	outlined	
above.	See	https://github.com/pinellolab/CRISPR-SURF	for	more	information.	
	
L1-Regularized	Deconvolution	Framework	
The	deconvolution	framework	in	CRISPR-SURF	leverages	L1	regularization	and	is	adapted	from	
the	generalized	lasso2:	
	

𝛽 = 	𝑎𝑟𝑔𝑚𝑖𝑛	
/∈ℝ2

	
1
2
𝑦	 − 	𝑋𝛽 $

$	 + 	𝜆 𝐷𝛽 ;	 	

	
where	𝛽 ∈ ℝ<,	𝑦 ∈ ℝ=,	𝑋 ∈ ℝ=><,	𝐷 ∈ ℝ?><,	and	𝜆	 ≥ 0.	
	
Using	the	generalized	lasso,	we	encode	the	deconvolution	operation	as	follows:	
	

𝑋 = 𝑀𝐶	
	

𝛽 = 	𝑎𝑟𝑔𝑚𝑖𝑛	
/∈ℝ2

	
1
2
𝑦	 − 	𝑀𝐶𝛽 $

$	 + 	𝜆 𝐷𝛽 ;	 	

	
where	𝑀 ∈ ℝ=><	and	𝐶 ∈ ℝ<><.	
	
𝛽	is	the	coefficients	vector	where	𝛽C 	is	the	inferred	functional	score	for	base-pair(s)	𝑖,	𝑦	is	a	
response	vector	representing	the	sgRNA	enrichment	score	observations,	𝑀	is	the	filtering	
matrix	specifying	sgRNA	targeting	indices,	𝐶	is	the	convolution	matrix	encoding	the	convolution	
operation,	𝐷	is	the	penalty	matrix	in	the	form	of	a	difference	matrix,	and	𝜆	is	the	regularization	
parameter	tuning	the	ℓ;	fusion	penalty	(fused	lasso).	
	
To	choose	an	L1	regularization	for	the	deconvolution	framework,	we	compared	deconvolution	
accuracy	by	mean-squared	error	(MSE)	between	the	lasso	and	fused	lasso.	Comparisons	were	
performed	across	varying	introduced	noise,	targeting	density	(bp	per	sgRNA),	and	default	
CRISPR	perturbation	profiles;	1000	simulations	were	performed	per	comparison	
(Supplementary	Figures	SN2.1	and	2.2).	The	fused	lasso	performed	better	than	the	lasso	in	all	
direct	comparisons	and	is	the	L1	regularization	choice	for	the	CRISPR-SURF	framework.	While	
the	lasso	is	reasonable	for	feature	selection	of	independent	signals,	the	fused	lasso	is	more	



suited	when	there	is	a	natural	ordering	of	the	underlying	signal	(time-series,	genomic	
coordinates,	etc.).	Due	to	inherent	spatial	information	in	CRISPR	tiling	screen	data,	we	believe	
this	is	the	reason	the	fused	lasso	outperforms	the	standard	lasso	in	our	application.	
Additionally,	cumulative	distribution	functions	(CDFs)	of	the	MSE	highlight	CRISPR-SURF’s	ability	
to	robustly	deconvolve	a	signal	(Supplementary	Figures	SN2.3	and	2.4).	The	CRISPR-Cas	
nuclease	perturbation	profile	exhibited	greatest	variance	in	MSE	when	targeting	density	was	
varied,	however,	CRISPR-SURF	still	managed	to	reconstruct	a	functional	signal	in	94.4%	of	
simulations	with	a	targeting	density	of	50	bp	per	sgRNA.	
	
	
	
	



	
Supplementary	Figure	SN2.1:	Comparison	of	L1	regularization	methods	with	varying	noise	
(a)	Comparison	of	deconvolution	mean-squared	error	(MSE)	for	the	lasso	and	fused	lasso	L1	
regularization	methods	with	varying	Gaussian	noise	for	the	CRISPR-Cas	nuclease	perturbation	
profile.	A	total	of	1000	simulations	were	performed	for	each	comparison	for	both	the	lasso	and	
fused	lasso.	Grey	bars	represent	95%	confidence	intervals.	
(b)	Comparison	of	deconvolution	mean-squared	error	(MSE)	for	the	lasso	and	fused	lasso	L1	
regularization	methods	with	varying	Gaussian	noise	for	the	CRISPRi/a	perturbation	profile.	A	
total	of	1000	simulations	were	performed	for	each	comparison	for	both	the	lasso	and	fused	
lasso.	Grey	bars	represent	95%	confidence	intervals.	
	



	
Supplementary	Figure	SN2.2:	Comparison	of	L1	regularization	methods	with	varying	targeting	
density	
(a)	Comparison	of	deconvolution	mean-squared	error	(MSE)	for	the	lasso	and	fused	lasso	L1	
regularization	methods	with	varying	sgRNA	targeting	density	for	the	CRISPR-Cas	nuclease	
perturbation	profile.	A	total	of	1000	simulations	were	performed	for	each	comparison	for	both	
the	lasso	and	fused	lasso.	Grey	bars	represent	95%	confidence	intervals.	
(b)	Comparison	of	deconvolution	mean-squared	error	(MSE)	for	the	lasso	and	fused	lasso	L1	
regularization	methods	with	varying	sgRNA	targeting	density	for	the	CRISPRi/a	perturbation	
profile.	A	total	of	1000	simulations	were	performed	for	each	comparison	for	both	the	lasso	and	
fused	lasso.	Grey	bars	represent	95%	confidence	intervals.	



	
Supplementary	Figure	SN2.3:	CDF	of	deconvolution	MSE	with	varying	noise	
(a)	Cumulative	distribution	function	(CDF)	of	deconvolution	mean-squared	error	(MSE)	with	
varying	Gaussian	noise	for	the	CRISPR-Cas	nuclease	perturbation	profile.	A	total	of	1000	
simulations	were	performed	for	each	noise	scaling	parameter	(𝜎).	
(b)	Cumulative	distribution	function	(CDF)	of	deconvolution	mean-squared	error	(MSE)	with	
varying	Gaussian	noise	for	the	CRISPRi/a	perturbation	profile.	A	total	of	1000	simulations	were	
performed	for	each	noise	scaling	parameter	(𝜎).	
	
	
	
	



	
Supplementary	Figure	SN2.4:	CDF	of	deconvolution	MSE	with	varying	targeting	density	
(a)	Cumulative	distribution	function	(CDF)	of	deconvolution	mean-squared	error	(MSE)	with	
varying	sgRNA	targeting	density	for	the	CRISPR-Cas	nuclease	perturbation	profile.	A	total	of	
1000	simulations	were	performed	for	each	targeting	density	(bp	per	sgRNA).	
(b)	Cumulative	distribution	function	(CDF)	of	deconvolution	mean-squared	error	(MSE)	with	
varying	sgRNA	targeting	density	for	the	CRISPRi/a	perturbation	profile.	A	total	of	1000	
simulations	were	performed	for	each	targeting	density	(bp	per	sgRNA).	
	
	
	
	



Parameterization	
The	convolution	matrix	𝐶	and	regularization	parameter	𝜆	need	to	be	specified	to	perform	the	
deconvolution	algorithm	for	CRISPR-SURF	analysis.	The	perturbation	profile,	encoded	within	𝐶,	
represents	the	perturbation	range	of	the	CRISPR	screening	modality	employed.	The	
perturbation	profile	is	represented	by	a	Gaussian	window,	where	a	characteristic	perturbation	
length	𝑃G	is	used	to	parameterize	the	Gaussian	window	𝐺.	
	

𝐺(𝑥, 𝐶) = 𝑒N
>O
$PO 	

	

𝐶 = −(𝑃G
$

2 ln 0.5)	
	
The	selection	of	a	characteristic	perturbation	length	𝑃G	is	different	for	varying	CRISPR	screening	
modalities.	CRISPR-Cas	nucleases	introduce	indel	mutations	to	the	DNA	sequence	and	provide	a	
much	narrower	perturbation	profile	compared	to	CRISPRi	and	CRISPRa	strategies	which	can	
epigenetically	modify	the	chromatin	landscape	across	hundreds	of	bp.	Through	the	observation	
of	96	unique	indel	distributions	for	CRISPR-Cas9,	the	data	suggests	the	average	indel	length	to	
be	around	6	-	12	bp	for	individual	sgRNAs,	and	a	median	of	7	bp	for	the	aggregate	indel	
distribution3.	Based	on	dCas9,	dCas9-KRAB,	and	dCas9-VP64	characterization	for	sgRNAs	tiled	
across	promoter	regions	genome-wide,	the	data	suggests	dCas9-KRAB	(CRISPRi)	and	dCas9-
VP64	(CRISPRa)	to	exhibit	a	characteristic	perturbation	length	of	at	least	200	bp	and	a	total	
perturbation	range	of	~1	kb	under	the	assumption	that	the	dCas9	signal	gives	an	estimation	of	
the	functional	element	bounds4.	Importantly,	we	acknowledge	that	our	method	parameterizes	
a	generalized	perturbation	profile	for	CRISPR-Cas,	CRISPRi,	and	CRISPRa	strategies,	whereas	
these	perturbation	profiles	may	be	sgRNA,	locus,	and	cell-type-dependent5.	We	further	
elaborate	on	perturbation	profiles	for	different	CRISPR	technologies	in	Supplementary	Note	6.	
In	future	implementations,	we	plan	on	releasing	a	framework	capable	of	specifying	guide-
specific	perturbation	profiles	if	the	parameters	underlying	the	aforementioned	dependencies	
are	elucidated.	
	
The	selection	of	the	regularization	parameter	𝜆	to	tune	the	ℓ;	fusion	penalty	is	done	
heuristically	by	leveraging	information	shared	between	biological	replicates.	The	deconvolution	
algorithm	is	performed	across	an	extensive	range	of	𝜆s	resulting	in	a	set	of	corresponding	𝛽	
coefficient	vectors	for	each	biological	replicate.	The	Pearson’s	r	correlation	coefficient	between	
replicate	𝛽	vectors	is	then	assessed	for	each	𝜆	across	all	pairwise	replicate	combinations,	and	a	
correlation	curve	is	generated.	Under	the	assumption	a	signal	exists	within	the	deconvolution,	
the	correlation	curve	rapidly	increases	and	then	stabilizes	at	a	near-maximum	correlation	with	
increasing	𝜆.	Deconvolutions	with	no	signal	do	not	recapitulate	the	same	pattern,	and	are	
characterized	by	low	Pearson’s	r	correlation	values	across	the	entire	𝜆	space,	illustrated	by	
random	permutations	of	the	sgRNA	observations	(Supplementary	Figure	SN2.5).	
	
	



	
Supplementary	Figure	SN2.5:	Correlation	curves	of	CRISPR-SURF	re-analyses	
The	correlation	curves	(Pearson’s	r)	of	experimental	replicates	generated	in	(a)	Canver	et	al.	
20156	(n	=	6),	(b)	Fulco	et	al.	20167	(n	=	2)	and	(c)	Simeonov	and	Gowen	et	al.	20178	(n	=	2)	
across	different	𝜆	in	CRISPR-SURF	analysis.	The	scaled	correlation	curve	scales	the	original	
correlation	curve	to	have	a	maximum	value	of	1.	Random	permutations	of	sgRNA	enrichment	
scores	were	used	to	view	correlation	curves	with	no	underlying	signal.	



	
The	correlation	curve	is	used	to	identify	a	reasonable	𝜆	under	the	notion	that	the	initial	rapid	
increase	in	replicate	correlation	primarily	regularizes	noise,	and	then	then	stabilizes	at	a	
correlation	value	once	𝜆	begins	to	effectively	regularize	the	true	underlying	signal.	We	refer	to	
the	correlation	value	for	the	identification	of	𝜆	as	𝐶U.	To	generalize	a	heuristic	for	identifying	𝜆	
from	correlation	curves,	we	scale	the	correlation	curves	and	perform	simulations	to	assess	the	
performance	of	region	identification	across	varying	𝐶U	–	𝜆	relationships.	In	the	simulations,	we	
find	that	CRISPR-Cas	perturbation	profiles	exhibit	an	optimum	𝐶U	range	of	0.7	to	0.9,	while	
CRISPRi	and	CRISPRa	perturbation	profiles	exhibit	an	optimum	𝐶U	range	of	0.8	to	1.0	
(Supplementary	Figure	SN2.6).	
	

	
Supplementary	Figure	SN2.6:	Selecting	𝝀	across	CRISPR	screening	modalities	
Simulations	(n	=	10000)	were	performed	to	assess	probability	of	detecting	a	signal	at	varying	𝐶W	
values	for	the	identification	of	λ	for	both	(a)	CRISPRi/a	and	(b)	CRISPR-Cas	perturbation	profiles.	
Aggregate	curves	were	generated	across	reasonable	perturbation	profiles	for	each	perturbation	
class	and	optimum	𝐶W	ranges	were	established	as	0.8	to	1.0	and	0.7	to	0.9	for	CRISPRi/a	and	
CRISPR-Cas	perturbations,	respectively	(c	and	d).	𝐶W	is	the	scaled	correlation	curve	value	used	
to	determine	λ,	while	𝑃G	represents	the	characteristic	perturbation	length.	
	
	
	



Parameter	Robustness	
To	assess	the	robustness	of	parameter	selection	for	both	𝑃G	and	and	𝐶U,	we	vary	both	
parameters	in	the	re-analysis	of	three	published	CRISPR	tiling	screen	data	sets,	and	evaluate	the	
results	against	regulatory	regions	outlined	in	the	previous	studies6,7,8.	The	𝑃G	parameter	is	
varied	from	5	to	30	bp	for	CRISPR-Cas	screens,	and	varied	from	100	to	400	bp	for	CRISPRi	and	
CRISPRa	screens.	The	𝐶U	parameter	is	varied	across	0.6	to	0.95	for	all	CRISPR	screening	
modalities.	The	identification	of	previously-described	functional	elements,	or	reference	regions,	
was	perfect	within	recommended	𝑃G	(CRISPR-Cas:	5	-	20	bp,	CRISPRi/a:	100	-	300	bp)	and	𝐶U	
(0.8	-	0.95)	values	in	all	three	studies	(Supplementary	Tables	SN3.4	–	3.9).	Significant	reference	
region	dropout	only	occurred	at	𝐶U	values	of	0.6	and	0.65,	which	is	outside	the	recommended	
𝐶U	values	based	on	simulations	described	above.	
	
Estimation	of	FDR	
Assessing	statistical	significance	of	the	resulting	𝛽	is	done	empirically	through	the	generation	of	
𝛽=XYY.	The	generation	of	𝛽=XYY 	is	performed	by	specifying	a	null	distribution	for	sgRNA	
enrichment	scores	𝑆=XYY,	and	then	performing	the	deconvolution	procedure	on	null	
observations	𝑦=XYY ∈ ℝ=	randomly-sampled	from	𝑆=XYY.	The	simulations	preserve	the	original	
sgRNA	targeting	indices	and	analysis	parameters	used	in	the	inference	of	𝛽.	
	
Following	the	generation	of	𝛽=XYY,	each	𝛽 = (𝛽;, 𝛽$, 𝛽[, … , 𝛽<)		is	assessed	with	its	respective	
𝛽=XYY = (𝛽=XYY;,∗, 𝛽=XYY$,∗, 𝛽=XYY[,∗, … , 𝛽=XYY<,∗)		values	to	take	into	account	the	local	spacing	of	
supporting	sgRNA	observations.	P-values	are	calculated	with	the	following:	
	

𝑃𝑣𝑎𝑙.C =
2
𝑁min sum 𝛽=XYYC,∗ ≤ 𝛽C , sum 𝛽=XYYC,∗ ≥ 𝛽C 	

	
where	𝑃𝑣𝑎𝑙.C 	is	the	p-value	for	base-pair(s)	𝑖,	N	is	the	total	number	of	simulations,	and	
𝛽=XYYC,e ∈ ℝ

<>f	is	the	matrix	of	null	𝛽s.	
	
To	account	for	multiple	hypothesis	testing,	the	Benjamini-Hochberg	(BH)	procedure	is	used	to	
control	FDR	as	it	has	been	shown	to	work	robustly	under	positive	dependency9.	
	
Estimation	of	Statistical	Power	
The	statistical	power	of	a	CRISPR	tiling	screen	varies	across	the	tiled	space	due	to	the	non-
uniform	placement	of	sgRNAs.	With	the	capability	of	assessing	significance	of	each	𝛽 =
(𝛽;, 𝛽$, 𝛽[, … , 𝛽<)	separately,	the	deconvolution	framework	is	able	to	perform	density-aware	
significance	tests	where	a	greater	number	of	local	sgRNAs	increases	the	local	power	for	
detection	of	functional	regulatory	regions.		
	
To	give	an	estimation	of	the	power	underlying	CRISPR	tiling	screens	with	our	deconvolution	
framework,	we	assume	homoscedasticity	of	𝛽.	Conceptually,	we	first	replace	the	sgRNA	scores	
around	a	position	with	random	samples	from	the	null	distribution,	then	shift	these	sgRNA	
scores	based	on	the	perturbation	profile	and	position’s	effect	size,	and	finally	assess	



significance	at	the	position	following	deconvolution.	Power	is	the	fraction	of	the	samples	that	
pass	the	significance	threshold	at	the	position.	Formally,	we	use	𝛽=XYY 	to	construct	𝐻h	
distributions	and	estimate	𝐻i	as	a	shift	of	𝐻h,	with	the	shift	value	derived	from	effect	size	𝑒.	
We	construct	𝛽jkl	to	harbor	a	functional	element	with	effect	size	𝑒,	and	build	𝑦jkl	from	the	
convolution	operation	between	𝛽jkl	and	the	perturbation	profile	𝐺,	reflecting	the	observations	
of	this	theoretical	functional	element.	We	deconvolve	𝑦jkl,	preserving	all	parameters	in	the	
inference	of	𝛽,	to	get	𝛽jkl	and	use	𝛽jklC 	as	the	shift	value	to	estimate	statistical	power.	
	
For	given	base-pair(s)	𝑖	and	effect	size	𝑒,	statistical	power	is	estimated	with	the	following	steps:	
	

i. Establish	𝐻hC ∈ ℝ
f	with	𝛽=XYYC,∗	

ii. Identify	critical	value	𝛼	within	𝐻hC 	that	yields	significance	following	BH	correction	
iii. Construct	reference	array	𝛽jkl ∈ ℝ<	where	𝛽jklC = 𝑒	and	𝛽jklnC = 0	
iv. Convolve	𝛽jkl	with	perturbation	profile	𝐺	used	in	the	inference	of	𝛽;	𝛽jkl ∗ 𝐺 = 𝐻	
v. Construct	reference	response	vector	𝑦jkl	from	𝐻	
vi. Deconvolve	𝑦jkl	with	parameters	used	in	the	inference	of	𝛽	to	get	𝛽jkl	
vii. Establish	𝐻iC ∈ ℝ

f	distribution	by	shifting	𝐻hC 	distribution	by	a	value	of	𝛽jklC 	
viii. Estimate	statistical	power	with	;

f
sum 𝐻iC ≥ 𝛼 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	3:	Re-Analysis	of	Published	Datasets	
	
Canver	et	al.	20156:	CRISPR-Cas9	Tiling	Screen	

Enhancer	dissection	was	performed	with	CRISPR-Cas9	saturating	mutagenesis	on	three	
previously-described	enhancers	in	DHS	+55,	+58,	and	+62	to	find	critical	regions	involved	in	the	
regulation	of	BCL11A.	A	total	of	5	critical	regions	were	identified	in	the	study:	3	in	DHS	+55,	1	in	
DHS	+58,	and	1	in	DHS	+62.	
	
All	critical	regions	described	were	found	with	CRISPR-SURF	analysis,	and	no	additional	regions	
were	found	(Supplementary	Figure	1).	
	
Fulco	et	al.	20167:	CRISPRi	Tiling	Screen	

Enhancer	discovery	was	performed	across	the	MYC	locus	with	CRISPRi	in	order	to	find	enhancer	
elements	regulating	MYC	expression.	In	the	study,	a	total	of	7	enhancer	elements	(e1	–	e7)	and	
2	repressive	elements	(r1	and	r2)	were	identified.	
	
All	validated	enhancer	elements	(e1	–	e7)	and	the	repressive	element	(r1)	located	at	the	
promoter	of	an	isoform	of	PVT1	were	found	with	CRISPR-SURF	analysis.	The	second	repressive	
element	(r2)	described	in	the	study	did	not	reach	statistical	significance	with	FDR	<	0.05.	Two	
additional	elements,	one	activating	(SURF1)	and	one	repressive	(SURF2),	were	found	with	
CRISPR-SURF.	Both	the	newly-described	elements	are	supported	by	chromatin	accessibility	and	
epigenetic	marks	in	DHS	and	H3K27ac	peaks	(Supplementary	Figure	2).	The	repressive	region	
SURF2	is	located	at	the	CCDC26	promoter.	Recent	studies	have	suggested	promoter-promoter	
competition	between	PVT1	and	MYC	for	an	enhancer	contact	in	cis,	resulting	in	enhanced	cell	
growth	following	the	introduction	of	CRISPRi	to	the	PVT1	promoter10.	
	
Simeonov	and	Gowen	et	al	20178:	CRISPRa	Tiling	Screen	

Enhancer	discovery	was	performed	across	the	IL2RA	locus	with	CRISPRa	in	order	to	find	
enhancer	elements	that	play	a	role	in	regulating	IL2RA	expression.	In	the	study,	a	total	of	6	
CRISPRa	Responsive	Elements	(CaREs	1	-	6)	and	the	IL2RA	TSS	were	identified	to	positively	
regulate	IL2RA	expression.	
	
The	IL2RA	TSS	and	all	CaREs	(1	–	6)	were	identified	with	CRISPR-SURF	analysis.	Importantly,	
CRISPR-SURF	uncovered	sub-regions,	supported	by	DHS	and	H3K27ac	peaks,	within	the	
previously-described	CaREs	to	provide	higher-resolution	analysis	of	the	CRISPRa	tiling	screen.	
Furthermore,	CRISPR-SURF	identified	a	pair	of	repressive	elements	(SURF3	and	SURF4)	near	the	
PFKFB3	promoter	(Supplementary	Figure	3).	
	
	
	
	
	
	
	



Supplementary	Tables	for	CRISPR-SURF	Re-Analyses	
	

Replicate	Pair	1	 Replicate	Pair	2	
Pre-Deconvolution	
Correlation	

Post-Deconvolution	
Correlation	

1	 2	 0.237359026	 0.668566608	
1	 3	 0.000266402	 0.05723732	
1	 4	 0.286555534	 0.780606768	
1	 5	 0.302970456	 0.78375776	
1	 6	 0.324100629	 0.737622575	
2	 3	 -0.003690412	 -0.185419984	
2	 4	 0.311313532	 0.629266088	
2	 5	 0.267749374	 0.596891714	
2	 6	 0.201920327	 0.585492148	
3	 4	 0.065422331	 0.122935278	
3	 5	 0.132558463	 0.280522327	
3	 6	 0.028803555	 0.235850705	
4	 5	 0.616367784	 0.898845762	
4	 6	 0.391954497	 0.765724068	
5	 6	 0.435460336	 0.792012535	

Supplementary	Table	SN3.1:	Replicate	correlations	in	Canver	et	al.	20156	re-analysis	
The	correlations	(Pearson’s	r)	across	experimental	replicates	(n	=	6)	pre-	and	post-
deconvolution	for	the	Canver	et	al.	2015	study.	
	

Replicate	Pair	1	 Replicate	Pair	2	
Pre-Deconvolution	
Correlation	

Post-Deconvolution	
Correlation	

1	 2	 0.174314826	 0.923716181	
Supplementary	Table	SN3.2:	Replicate	correlations	in	Fulco	et	al.	20167	re-analysis	
The	correlations	(Pearson’s	r)	across	experimental	replicates	(n	=	2)	pre-	and	post-
deconvolution	for	the	Fulco	et	al.	2016	study.	
	

Replicate	Pair	1	 Replicate	Pair	2	
Pre-Deconvolution	
Correlation	

Post-Deconvolution	
Correlation	

1	 2	 0.651495291	 0.885857846	
Supplementary	Table	SN3.3:	Replicate	correlations	in	Simeonov	and	Gowen	et	al.	20178	re-
analysis	
The	correlations	(Pearson’s	r)	across	experimental	replicates	(n	=	2)	pre-	and	post-
deconvolution	for	the	Simeonov	and	Gowen	et	al.	2017	study.	
	

𝑃G	(bp)	 Overlap	against	Reference	(max	6)	
5	 6	
7	 6	



10	 6	
15	 6	
20	 6	
25	 6	
30	 5	

Supplementary	Table	SN3.4:	Assessment	of	characteristic	perturbation	length	for	Canver	et	
al.	20156	

The	characteristic	perturbation	length	(𝑃G)	was	varied	from	5	to	30	bp	for	the	CRISPR-Cas9	tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
6	significant	reference	regions:	DHS	+55	(3	critical	element),	DHS	+58	(1	critical	element),	DHS	
+62	(1	critical	element),	and	BCL11A	exon	2.	
	

𝑃G	(bp)	 Overlap	against	Reference	(max	9)	
100	 9	
150	 9	
200	 9	
250	 9	
300	 9	
350	 9	
400	 8	

Supplementary	Table	SN3.5:	Assessment	of	characteristic	perturbation	length	for	Fulco	et	al.	
20167 
The	characteristic	perturbation	length	(𝑃G)	was	varied	from	100	to	400	bp	for	the	CRISPRi	tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
9	significant	reference	regions:	e1,	e2,	e3,	e4,	e5,	e6,	e7,	MYC	TSS,	PVT1	TSS.	
	

𝑃G	(bp)	 Overlap	against	Reference	(max	7)	
100	 7	
150	 7	
200	 7	
250	 7	
300	 7	
350	 7	
400	 7	

Supplementary	Table	SN3.6:	Assessment	of	characteristic	perturbation	length	for	Simeonov	
and	Gowen	et	al.	20178	
The	characteristic	perturbation	length	(𝑃G)	was	varied	from	100	to	400	bp	for	the	CRISPRa	tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
7	significant	reference	regions:	CaRE	1,	CaRE	2,	CaRE	3,	CaRE	4,	CaRE	5,	CaRE	6,	IL2RA	TSS.	
	
	



𝐶U	 Overlap	against	Reference	Regions	(max	6)	
0.6	 2	
0.65	 3	
0.7	 6	
0.75	 6	
0.8	 6	
0.85	 6	
0.9	 6	
0.95	 6	

Supplementary	Table	SN3.7:	Assessment	of	𝑪𝝀	–	𝝀	for	Canver	et	al.	20156	
The	𝐶U	 –	 𝜆	 relationship	 (Pearson’s	 r)	 was	 varied	 from	 0.6	 to	 0.95	 for	 the	 CRISPR-Cas9	 tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
6	significant	reference	regions:	DHS	+55	(3	critical	element),	DHS	+58	(1	critical	element),	DHS	
+62	(1	critical	element),	and	BCL11A	exon	2. 
	

𝐶U	 Overlap	against	Reference	Regions	(max	9)	
0.6	 9	
0.65	 9	
0.7	 9	
0.75	 9	
0.8	 9	
0.85	 9	
0.9	 9	
0.95	 9	

Supplementary	Table	SN3.8:	Assessment	of	𝑪𝝀	–	𝝀	for	Fulco	et	al.	20167 
The	𝐶U	–	𝜆	relationship	(Pearson’s	r)	was	varied	from	0.6	to	0.95	for	the	CRISPRi	tiling	screen	to	
assess	 impact	 on	 the	 ability	 to	 call	 significant	 regions	 (FDR	 <	 0.05).	 There	 are	 a	 total	 of	 9	
significant	reference	regions:	e1,	e2,	e3,	e4,	e5,	e6,	e7,	MYC	TSS,	PVT1	TSS.	
	

𝐶U	 Overlap	against	Reference	Regions	(max	7)	
0.6	 0	
0.65	 0	
0.7	 7	
0.75	 7	
0.8	 7	
0.85	 7	
0.9	 7	
0.95	 7	

Supplementary	Table	SN3.9:	Assessment	of	𝑪𝝀	–	𝝀	for	Simeonov	and	Gowen	et	al.	20178	



The	𝐶U	–	𝜆	relationship	(Pearson’s	r)	was	varied	from	0.6	to	0.95	for	the	CRISPRi	tiling	screen	to	
assess	 impact	 on	 the	 ability	 to	 call	 significant	 regions	 (FDR	 <	 0.05).	 There	 are	 a	 total	 of	 7	
significant	reference	regions:	CaRE	1,	CaRE	2,	CaRE	3,	CaRE	4,	CaRE	5,	CaRE	6,	IL2RA	TSS.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	4:	Downsampling	Simulations	
	
Downsampling	sgRNA	Library	
Simulations	were	performed	to	understand	the	effect	of	downsampling	the	sgRNA	library,	to	
establish	guidelines	for	more-efficient	screening	strategies	(Supplementary	Figure	SN4.1).	The	
downsampling	procedure	was	performed	by	aiming	to	maintain	the	most-homogenous	sgRNA	
coverage	across	the	total	tiling	region	of	interest.	In	other	words,	sgRNAs	were	removed	
iteratively	from	the	sgRNA	library	based	on	the	local	density	of	sgRNAs	around	its	target	site,	
determined	by	the	sum	of	distances	of	the	K	nearest	sgRNAs	to	its	left	and	right.	The	choice	of	
K=5	nearest	sgRNAs	in	both	directions	allowed	a	robust	and	reproducible	downsampling	
procedure.	The	sgRNA	with	the	smallest	distance	metric	is	removed	from	the	sgRNA	library,	the	
distance	metric	is	then	recalculated	for	all	sgRNAs,	and	this	procedure	iterates	until	a	target	
downsampling	value	(bp	per	sgRNA)	is	achieved.	
	

	
	

	
	
	
Supplementary	Figure	SN4.1:	Effects	of	downsampling	sgRNA	library	
The	identification	of	reference	regions	(FDR	<	0.05)	as	a	function	of	increasing	downsampling	of	
respective	sgRNA	libraries	in	(a)	Canver	et	al.	20156,	(b)	Fulco	et	al.	20167	and	(c)	Simeonov	and	
Gowen	et	al.	20178.	Reference	regions	are	identified	if	≥50%	of	the	region	is	recovered	in	the	
CRISPR-SURF	analysis.	The	downsampling	metric	is	defined	as	the	number	of	bp	per	sgRNA.	



The	downsampling	simulations	were	performed	on	the	three	studies	described	in	
Supplementary	Note	3.	The	subsequent	analyses	required	≥50%	of	the	previously-described	
regions,	or	reference	regions,	to	overlap	the	downsampled	region	calls	(FDR	<	0.05).	The	
CRISPR-Cas9,	CRISPRi,	and	CRISPRa	screens	started	at	a	density	of	8,	20,	and	20	bp	per	sgRNA.	
	
The	CRISPR-Cas9	screen	was	sensitive	to	sgRNA	downsampling,	and	was	only	able	to	maintain	
calling	all	reference	regions	with	83%	(10	bp	per	sgRNA)	of	its	original	sgRNA	library.	Significant	
region	dropout	occurred	with	69%	(12	bp	per	sgRNA)	of	its	original	sgRNA	library,	and	resulted	
in	the	ability	to	only	call	50%	of	the	originally	recovered	regions.	Below	41%	(20	bp	per	sgRNA)	
of	the	original	sgRNA	library,	the	analysis	is	not	able	to	recover	any	reference	regions.	
	
For	the	CRISPRi	screen,	CRISPR-SURF	was	able	to	efficiently	call	the	reference	regions,	even	
with	aggressive	sgRNA	downsampling.	The	dropout	of	the	r1	(PVT1	TSS)	element	occurred	
immediately	at	the	first	downsampling	metric	of	40	bp	per	sgRNA,	however,	it’s	important	to	
note	this	region	exhibited	the	smallest	effect	size	and	was	not	experimentally-validated	in	the	
previous	study.	The	other	8	reference	regions	(MYC	TSS	and	e1	–	e7)	were	experimentally-
validated	elements	and	were	called	up	to	100	bp	per	sgRNA.	This	translates	to	a	downsampled	
sgRNA	library	that	is	only	22%	of	the	original	sgRNA	library.	Below	14%	(160	bp	per	sgRNA)	of	
the	original	downsampled	sgRNA	library,	<50%	of	the	reference	regions	were	called.	
	
The	CRISPRa	screen	was	also	fairly	efficient	in	calling	reference	regions	with	significant	sgRNA	
downsampling.	With	a	downsampled	sgRNA	library	making	up	only	48%	(40	bp	per	sgRNA)	of	
the	original	sgRNA	library,	all	7	reference	regions	were	called.	Below	14%	(140	bp	per	sgRNA)	of	
the	original	downsampled	sgRNA	library,	<50%	of	the	reference	regions	were	called.	
	
The	dropout	of	reference	regions	across	the	CRISPR-Cas9,	CRISPRi,	and	CRISPRa	tiling	screens	is	
a	function	of	element	effect	size	and	width.	Elements	exhibiting	lower	regulatory	function	and	
supported	by	fewer	sgRNAs	were	more	susceptible	to	downsampling	simulations.	The	
simulations	highlight	the	importance	of	sgRNA	density	in	CRISPR-Cas	tiling	screens;	a	moderate	
reduction	in	the	original	sgRNA	library	can	result	in	significant	reference	region	dropout.	For	
CRISPRi	and	CRISPRa	tiling	screens,	there	are	strong	opportunities	for	the	design	of	more-
efficient	and	cost-effective	screens.	The	downsampling	simulations	show	that	reference	region	
identification	is	nearly	perfect	(CRISPRi:	8/9	reference	regions	called,	CRISPRa:	7/7	reference	
regions	called)	even	with	less	than	50%	of	the	original	sgRNA	libraries.	
	
Supplementary	Tables	for	sgRNA	Downsampling	Analyses	
	
Bp	per	sgRNA	 Overlap	against	CRISPR-SURF	Calls	(max	6)	 Overlap	against	Reference	(max	6)	

8	 6	 6	
10	 6	 6	
12	 3	 3	
14	 2	 2	
16	 1	 1	



18	 1	 1	
20	 0	 0	
22	 0	 0	
24	 0	 0	
26	 0	 0	
28	 0	 0	
30	 0	 0	

Supplementary	Table	SN4.1:	Downsampling	sgRNAs	assessment	for	Canver	et	al.	20156	

The	 sgRNA	 library	was	downsampled	 across	 8	 to	 30	bp	per	 sgRNA	 for	 the	CRISPR-Cas9	 tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
6	significant	reference	regions:	DHS	+55	(3	critical	element),	DHS	+58	(1	critical	element),	DHS	
+62	(1	critical	element),	and	BCL11A	exon	2. 
	
Bp	per	sgRNA	 Overlap	against	CRISPR-SURF	Calls	(max	12)	 Overlap	against	Reference	(max	9)	

20	 12	 9	
40	 8	 8	
60	 8	 8	
80	 8	 8	
100	 8	 8	
120	 3	 7	
140	 2	 5	
160	 1	 4	
180	 0	 3	
200	 0	 2	

Supplementary	Table	SN4.2:	Downsampling	sgRNAs	assessment	for	Fulco	et	al.	20167 
The	 sgRNA	 library	 was	 downsampled	 across	 20	 to	 200	 bp	 per	 sgRNA	 for	 the	 CRISPRi	 tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
9	significant	reference	regions:	e1,	e2,	e3,	e4,	e5,	e6,	e7,	MYC	TSS,	PVT1	TSS.	
	
Bp	per	sgRNA	 Overlap	against	CRISPR-SURF	Calls	(max	22)	 Overlap	against	Reference	(max	7)	

20	 22	 7	
40	 17	 7	
60	 13	 6	
80	 12	 6	
100	 11	 5	
120	 8	 4	
140	 7	 3	
160	 5	 2	
180	 4	 2	
200	 4	 1	



Supplementary	Table	SN4.3:	Downsampling	sgRNAs	assessment	for	Simeonov	and	Gowen	et	
al.	20178	
The	 sgRNA	 library	 was	 downsampled	 across	 20	 to	 200	 bp	 per	 sgRNA	 for	 the	 CRISPRi	 tiling	
screen	to	assess	impact	on	the	ability	to	call	significant	regions	(FDR	<	0.05).	There	are	a	total	of	
7	significant	reference	regions:	CaRE	1,	CaRE	2,	CaRE	3,	CaRE	4,	CaRE	5,	CaRE	6,	IL2RA	TSS.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	5:	Limitations	of	Previous	Analysis	Methods	for	CRISPR	Tiling	Screens	
	
Various	analysis	methods	have	been	proposed	for	CRISPR	tiling	screen	data.	We	focus	on	
describing	theoretical	concerns	of	methods	from	Canver	et	al.	20156	(CRISPR-Cas9),	Fulco	et	al.	
20167	(CRISPRi),	and	Simeonov	and	Gowen	et	al.	20178	(CRISPRa)	in	order	to	highlight	the	
motivations	for	the	development	of	CRISPR-SURF.	The	analysis	methods	for	CRISPRi/a	and	
CRISPR-Cas9	data	are	different,	therefore	we	split	them	up	into	different	sections	below.	
	
CRISPRi	and	CRISPRa	Method	|	Moving	Average	
To	our	knowledge,	the	only	method	that	has	been	proposed	for	the	analysis	of	CRISPRi	and	
CRISPRa	tiling	screens	is	the	moving	average.	The	moving	average	is	a	naïve	way	of	smoothing	a	
signal	and	incorporating	spatial	information	into	the	analysis	by	assigning	sgRNA	scores	based	
on	the	average	of	a	certain	number	of	surrounding	sgRNAs.	The	number	of	sgRNAs	that	go	into	
each	“averaging	window”	is	the	only	parameter	for	the	moving	average.	Although	the	moving	
average	is	effective	for	smoothing	noisy	signals,	there	are	a	couple	assumptions	that	are	
violated	when	applied	to	CRISPR	tiling	screen	data.	
	
First,	the	moving	average	assumes	the	sgRNAs	are	uniformly-spaced	across	the	tiled	region	by	
fixing	the	number	of	sgRNAs	that	go	into	each	averaging	window.	This	assumption	is	violated	
due	to	the	non-uniform	placement	of	sgRNAs	across	a	tiling	region	(PAM	constraints).	This	is	
problematic	because	regions	where	fewer	sgRNAs	can	be	designed	will	have	much	larger	
averaging	window	lengths	compared	to	regions	where	more	sgRNAs	can	be	designed.	This	
implies	that	the	perturbation	range	is	connected	to	sgRNA	tiling	density.	The	purpose	of	the	
moving	average	is	to	combine	sgRNA	scores	with	shared	information	due	to	their	targeting	
proximities	in	order	to	smooth	the	signal,	however,	this	quickly	becomes	problematic	because	
sets	of	averaged	sgRNAs	have	varying	distances	between	them.	
	
Second,	the	moving	average	assumes	each	sgRNA	within	an	averaging	window	contributes	
equally	in	perturbing	a	functional	element	(if	one	exists)	near	the	center	of	the	averaging	
window.	If	a	functional	element	is	small	in	size	relative	to	the	averaging	window	length,	this	
leads	to	dilution	of	a	signal	as	sgRNAs	near	the	boundaries	of	the	averaging	window	will	have	
little	effect	on	the	functional	element.	This	is	problematic	because	quantitation	for	the	effect	
size	of	a	regulatory	element	is	dependent	on	element	length	with	the	use	of	a	moving	average.	
	
Lastly,	statistical	analyses	following	the	moving	average	are	either	absent	or	assume	equal	
statistical	power	across	all	genomic	regions	in	previous	studies.	In	Simeonov	and	Gowen	et	al.	
2017,	no	statistics	were	provided	for	the	discovery	of	CRISPRa	Responsive	Elements	(CaREs)	1	–	
6	as	they	were	likely	called	by	visual	inspection	after	applying	a	5-gRNA	moving	average	to	the	
raw	sgRNA	enrichment	scores.	In	Fulco	et	al.	2016,	a	t-test	was	used	to	assess	significance	
between	scores	generated	from	a	20-gRNA	moving	average	on	the	tiled	genomic	region	and	20	
randomly-selected	sgRNAs	from	the	non-targeting	sgRNA	control	population.	The	use	of	the	t-
test	in	this	context	assumes	equal	power	across	the	tiling	screen	with	a	set	20	sgRNA	
observations	in	both	samples.	In	reality,	the	power	at	any	given	region	depends	on	the	number	
of	relevant	sgRNA	observations.	Due	to	the	non-uniform	spacing	of	sgRNAs,	the	number	of	



sgRNAs	that	perturb	any	given	genomic	region	will	vary,	which	is	a	property	that	the	moving	
average	fails	to	incorporate	into	its	statistical	analysis.	
	
CRISPR-Cas9	Method	|	Hidden	Markov	Model	
A	Hidden	Markov	Model	(HMM)	was	proposed	in	Canver	et	al.	2015	to	analyze	CRISPR-Cas9	
tiling	screen	data.	There	are	many	theoretical	concerns	that	arise	when	using	a	HMM	for	the	
analysis	of	CRISPR	tiling	screen	data.	The	proposed	HMM	architecture	requires	uniformly	
spaced	observations	as	input	to	infer	underlying	genomic	regulatory	states,	and	this	is	done	by	
pre-processing	the	sgRNA	enrichment	scores	with	LOESS	smoothing.	The	LOESS	smoothed	
signal	is	then	treated	as	a	continuous	signal	and	uniformly	sampled	as	input	into	the	HMM	
model,	completely	disregarding	the	original	placement	of	the	sgRNAs.	This	is	problematic	
because	inference	can	be	performed	on	genomic	regions	where	sgRNAs	aren’t	actually	
targeted,	and	additionally	assumes	equal	statistical	power	across	the	tiling	screen.	
	
Furthermore,	the	proposed	HMM	architecture	has	very	strong	limitations	in	its	
parameterization	that	can	be	broken	up	into	an	assumption	and	initialization	problem.	The	
assumption	problem	with	the	proposed	HMM	lies	in	the	fact	that	a	researcher	must	pre-
determine	the	genomic	regulatory	states	that	are	possible	in	the	data.	Though	it	is	reasonable	
to	assume	Neutral,	Active,	and	Repressive	states	for	genomic	regulatory	regions,	these	
assumptions	greatly	impact	the	analysis	if	the	pre-chosen	states	are	not	present	in	the	data.	For	
instance,	if	a	Repressive	state	is	specified	in	the	HMM	architecture,	but	a	Repressive	state	is	not	
present	in	the	data	(all	regulatory	regions	are	Active	or	Neutral),	the	HMM	will	force	this	state	
to	exist	when	inferring	the	genomic	regulatory	states.	The	proposed	HMM	model	is	also	highly-
sensitive	to	parameter	initialization,	which	is	required	when	running	the	Baum-Welch	algorithm	
to	infer	the	unknown	parameters	of	the	HMM.	Fine-tuning	of	the	parameter	initialization	is	
often	required	to	achieve	satisfactory	results	with	the	proposed	HMM	model.	
	
Lastly,	it’s	important	to	note	that	the	methods	described	above	do	not	necessarily	model	
CRISPR	tiling	screen	data,	but	rather	focus	on	data	smoothing	and	subsequent	significance	
testing	on	the	smoothed	signal.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	6:	Motivation	for	CRISPR-SURF	
	
The	main	motivation	behind	the	development	of	CRISPR-SURF	was	to	address	theoretical	
concerns	associated	with	previously-described	methods	for	the	analysis	of	CRISPR	tiling	screen	
data.	As	mentioned	in	Supplementary	Note	5,	a	common	limitation	in	previous	methods	is	the	
use	of	arbitrary	smoothing	approaches	as	a	pre-processing	step	before	statistical	analysis.	
These	smoothing	operations	aggregate	information	across	observations	with	no	understanding	
of	the	perturbation	range	and	spacing	of	sgRNAs,	which	are	key	experimental	parameters	that	
determine	the	degree	of	shared	information	between	sgRNAs	and	the	power	underlying	a	
statistical	test	for	a	given	genomic	region.	During	the	development	of	CRISPR-SURF,	we	focused	
on	eliminating	the	need	arbitrary	smoothing,	parameterizing	key	experimental	parameters	into	
the	analysis,	and	modeling	sgRNA	enrichment	scores	as	observations	stemming	from	an	
underlying	genomic	regulatory	signal.	
	
Convolution	Operation	
In	contrast	to	directly	smoothing	sgRNA	enrichment	scores,	we	focused	our	modeling	approach	
on	reconstructing	a	genomic	regulatory	signal	(deconvolution)	that	best	explains	the	observed	
sgRNA	enrichment	scores.	Conceptually,	each	sgRNA	enrichment	score	represents	a	functional	
read-out	for	base	pairs	within	its	perturbation	range.	These	functional	read-outs	are	a	
distortion	of	the	underlying	genomic	regulatory	signal	because	of	the	variability	in	editing	
outcomes	for	each	sgRNA	as	each	sgRNA	is	represented	many	times	in	the	experiment.	We	
model	the	generation	of	tiled	sgRNA	enrichment	scores	by	means	of	a	convolution	operation	
because	this	modeling	choice	captures	the	perturbation	variability	of	each	sgRNA	and	preserves	
spatial	information	of	all	the	designed	sgRNAs.	We	apply	a	L1-regularized	deconvolution	
framework	to	reconstruct	the	underlying	genomic	regulatory	signal	after	modeling	CRISPR	tiling	
screen	data	by	means	of	a	convolution	operation.	
	
Modeling	CRISPR	tiling	screen	data	by	means	of	a	convolution	operation	allows	for	several	
advantages.	First,	the	convolution	operation	models	each	sgRNA	enrichment	score	
independently.	Theoretically,	this	is	important	because	each	cell	in	the	experiment	receives	a	
single	gRNA,	and	therefore	only	experiences	the	perturbation	effects	of	a	single	gRNA.	
Furthermore,	modeling	the	sgRNA	enrichment	scores	as	independent	allows	for	the	
preservation	of	the	exact	genomic	targets	of	all	the	designed	sgRNAs	as	the	enrichment	scores	
don’t	need	to	be	averaged	prior	to	statistical	analysis.	
	
Next,	the	convolution	operation	readily-adapts	to	varying	sgRNA	targeting	densities	(non-
uniform	spacing)	intrinsic	in	CRISPR	tiling	screen	data	due	to	sgRNA	design	limitations	(PAM	
constraints).	This	is	important	because	the	degree	of	shared	information	used	for	the	
reconstruction	of	the	genomic	regulatory	signal	is	finely-tuned	based	on	the	local	targeting	
density.	For	example,	genomic	region	scores	with	low	targeting	density	will	be	reconstructed	
with	relatively	independent	sgRNA	observations,	while	genomic	region	scores	with	high	
targeting	density	will	be	reconstructed	with	a	greater	degree	of	shared	information	between	
sgRNAs.	This	is	in	contrast	to	the	moving	average	and	proposed	HMM	model	which	destroys	
this	spatial	information	(Supplementary	Note	5).	



	
Lastly,	the	convolution	operation	allows	for	adequately-powered	statistical	tests	dependent	on	
the	targeting	density	for	a	genomic	region.	The	power	underlying	statistical	tests	at	different	
regions	should	vary	because	of	the	non-uniform	spacing	of	sgRNAs.	For	example,	a	region	with	
high	targeting	density	will	have	greater	power	to	achieve	statistical	significance	compared	to	a	
region	with	low	targeting	density	because	of	the	increased	number	of	supporting	sgRNA	
observations.	The	incorporation	of	statistical	power	into	the	analysis	provides	increased	
detection	sensitivity	at	regions	with	high	targeting	density,	and	additionally	informs	on	the	
possibility	of	false	negatives	at	regions	with	low	targeting	density.	This	is	in	contrast	to	the	
assumptions	of	equal	power	for	statistical	tests	with	the	moving	average	and	proposed	HMM	
model	(Supplementary	Note	5).	
	
CRISPR	Perturbation	Profiles	
The	usage	of	the	convolution	operation	to	model	CRISPR	tiling	screen	data	requires	knowledge	
on	the	different	perturbation	ranges	for	different	CRISPR	technologies;	we	refer	to	this	as	the	
perturbation	profile.	Genetic	perturbations	using	CRISPR-Cas	nucleases	(Cas9,	Cas12a,	etc.)	
introduce	indel	mutations	that	can	be	readily	observed	by	targeted	amplicon	sequencing,	while	
epigenetic	perturbations	using	CRISPRi/CRISPRa	remodel	chromatin	and	its	effects	can	be	seen	
in	chromatin	accessibility	assays	and	ChIP-seq	of	histone	modifications.	
	
CRISPR-Cas	genome	editing	has	been	well-characterized	with	targeted	amplicon	sequencing	by	
next-generation	sequencing	(NGS)	technology.	Though	indel	profiles	vary	from	target	to	target,	
the	majority	of	indel	mutations	are	relatively	short	(<30	bp)	and	centered	around	the	cleavage	
site	of	the	CRISPR-Cas	nuclease.	A	recent	study	characterized	the	indel	profiles	of	>40,000	
sgRNAs	and	>1,000,000,000	mutational	outcomes	for	CRISPR-Cas911.	In	Supplementary	Figure	
SN6.1,	we	show	this	average	indel	profile	overlaid	with	our	default	CRISPR-Cas	perturbation	
profile.	We	provide	the	average	indel	profile	from	this	study	as	a	perturbation	profile	to	use	in	
CRISPR-SURF	analysis.	
	



	
Supplementary	Figure	SN6.1:	CRISPR-Cas9	average	indel	profile	and	default	perturbation	
profile	
An	average	CRISPR-Cas9	indel	profile	constructed	from	>40,000	sgRNAs11	(blue	histogram)	
overlaid	with	the	default	CRISPR-Cas	perturbation	profile	(orange	curve)	in	CRISPR-SURF	
analysis.	
	
Targeted	epigenetic	modifications	by	CRISPRi	and	CRISPRa	have	been	less-characterized,	
however,	we	point	to	several	pieces	of	experimental	evidence	that	allow	us	to	reasonably	infer	
the	perturbation	range	of	these	technologies.	Chromatin	accessibility	assays	and	ChIP-seq	of	
histone	modifications	have	been	used	to	assess	the	epigenome-modifying	capabilities	of	
CRISPRi.	In	a	previous	study5,	it’s	been	show	that	targeting	of	dCas9-KRAB	to	enhancer	
elements	results	in	a	decrease	in	DNase-seq	signal	(associated	with	euchromatin)	and	an	
increase	in	H3K9me3	(histone	modification	associated	with	heterochromatin).	The	data	
presented	suggests	dCas9-KRAB	perturbations	spread	contiguous	H3K9me3	signal	spanning	
~1.2	kb.	
	
Another	previous	study	examined	the	effects	of	both	CRISPRi	and	CRISPRa	tiled	across	the	
promoter	region	of	genes,	and	assessed	the	effects	of	both	epigenetic-editing	technologies	as	a	
function	of	distance	to	the	transcription	start	site	(TSS)4.	Importantly,	in	this	study,	dCas9	was	
used	as	a	control	to	map	functional	regions	around	the	TSS.	We	assume	dCas9	does	not	have	



the	ability	to	remodel	chromatin,	and	therefore	provides	relatively	fine-mapping	of	the	
underlying	regulatory	region	conferring	function	to	the	TSS	regions.	The	data	suggests	that	both	
the	CRISPRi	and	CRISPRa	perturbations	start	affecting	functional	elements	up	to	~500	bp	away	
from	both	directions	(left	and	right	of	the	TSS).	Furthermore,	we	note	that	there	is	a	monotonic	
increase	in	functional	signal	as	the	sgRNA	target	trends	closer	to	the	TSS	from	both	directions.	
The	signal	peaks	when	the	CRISPRi	and	CRISPRa	sgRNAs	target	directly	over	the	TSS	functional	
element.	This	further	supports	the	convolution	operation	as	a	reasonable	approximation	for	
modeling	CRISPR	tiling	screen	data.	
	
In	summary,	both	studies	characterizing	CRISPRi/a	technologies	suggest	similar	perturbation	
ranges,	despite	using	different	cell	types	and	genomic	loci.	By	profiling	H3K9me3	marks	
following	introduction	of	a	targeted	CRISPRi	perturbation,	the	data	suggests	contiguous	
H3K9me3	signal	spanning	~1.2	kb	stemming	from	the	targeted	sgRNA.	When	assessing	CRISPRi	
and	CRISPRa	effects	as	a	function	of	distance	from	TSS	functional	elements,	the	data	suggests	
that	both	CRISPRi	and	CRISPRa	technologies	start	perturbing	functional	elements	up	to	~500	bp	
from	both	directions,	leading	to	a	perturbation	profile	spanning	~1kb.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Note	7:	Experimental	Methods	
	
Design	and	Synthesis	of	Lentiviral	sgRNA	Libraries	
The	sgRNA	library	for	both	the	CRISPR-Cas9	and	CRISPRi	screen	was	constructed	analogously	to	
prior	screens6,12.	The	summit	of	every	DNase	I	hypersensitive	site	(DHS)	within	
the	BCL11A	region	(n	=	55)	was	identified	from	fetal-	and	adult-derived	CD34+	subject	to	
erythroid	differentiation.	The	targeted	genomic	region	included	2	Mb	upstream	of	BCL11A	
encompassing	a	large	deletion	proximal	to	BCL11A	reported	to	phenocopy	BCL11A	
haploinsufficiency13.	The	regions	of	DHS	summit	+/−	200	bp	were	chosen	for	saturating	
mutagenesis	based	on	previous	work	that	suggested	functional	sequence	tended	to	be	located	
within	200	bp	of	the	peak	of	DNase	I	hypersensitivity6.	Using	the	DNA	Striker	tool12,	every	20-
mer	sequence	upstream	of	an	NGG	PAM	sequence	on	the	sense	or	anti-sense	strand	was	
identified	for	each	BCL11A	region	DHS	as	well	as	BCL11A	exon	2,	resulting	in	the	design	of	3943	
total	sgRNAs	(including	non-targeting	negative	control	guides).	
	
Oligonucleotides	were	synthesized	by	microarray.	The	oligos	were	batch	cloned	to	lentiGuide-
Puro	(Addgene	plasmid	ID	52963)	as	well	as	a	modified	version	of	lentiGuide-Puro	in	which	the	
guide	RNA	scaffold	was	replaced	by	a	structurally	optimized	form	(A-U	flip	and	stem	extension,	
called	combined	modification)	previously	reported	to	increase	the	efficiency	of	Cas9	
targeting14.	Plasmid	libraries	were	sequenced	to	1656	and	1392	reads	per	guide	coverage	for	
the	original	and	combined	modification	libraries,	respectively,	to	demonstrate	adequate	
representation.	We	generated	lentivirus	in	HEK293T	cells	and	titered	on	HUDEP-2	cells	to	
identify	the	amount	of	virus	required	to	achieve	0.3-0.5	MOI.	
	
Tiled	Pooled	CRISPR-Cas9	and	CRISPRi	screen	
HUDEP-2	cells	were	first	transduced	with	lentiCas9-Blast	(Addgene	plasmid	ID	52962)	or	pHR-
SFFV-dCas9-BFP-KRAB	(Addgene	plasmid	ID	46911)	and	stably	selected	with	blasticidin	10	
mcg/ml	or	sorted	for	BFP	expression.	Subsequently	the	cells,	were	transduced	with	pooled	
guide	RNA	lentiviral	libraries	at	MOI<0.5.	24	hours	following	transduction,	the	cells	were	
treated	with	puromycin	1	mcg/ml,	and	transferred	to	erythroid	differentiation	media,	with	
Iscove’s	Modified	Dulbecco’s	Medium	(IMDM)	(Life	Technologies)	supplemented	with	330	
mg/ml	holo-transferrin	(Sigma),	10	mg/ml	recombinant	human	insulin	(Sigma),	2	IU/ml	heparin	
(Sigma),	5%	human	solvent	detergent	pooled	plasma	AB	(Rhode	Island	Blood	Center),	3	IU/ml	
erythropoietin,	100	ng/ml	human	SCF,	1	mg/ml	doxycycline,	1%	L-glutamine,	and	2%	
penicillin/streptomycin.	
	
A	representation	of	at	least	1000	cells	per	guide	RNA	was	maintained	throughout	the	
experiment.	After	12	days,	cells	were	fixed,	permeabilized,	and	stained	for	intracellular	fetal	
hemoglobin	expression.		Cells	were	sorted	by	flow	cytometry	to	isolate	HbF+	cells.	In	addition,	
cells	prior	to	sorting	(called	pre-sort)	were	collected	as	a	control.	Genomic	DNA	was	isolated	
from	the	presort	and	HbF+	populations.	PCR	amplification	of	the	lentiviral	integrants	was	
performed	to	generate	indexed	adaptor-flanked	amplicons	for	deep	sequencing	as	previously	
described6.	Since	we	observed	similar	performance	for	the	enrichment	of	positive	control	and	
negative	control	guide	RNAs	cloned	into	original	lentiGuide-Puro	or	lentiGuide-Puro	with	



combined	modified	scaffold,	we	treated	these	conditions	as	technical	replicates	for	further	
analyses.	
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