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Materials and Methods 
 
Samples 
We used induced pluripotent stem cell (iPSC) lines from 19 individuals from the Yoruba 
HapMap population. The iPSC lines were reprogrammed from LCLs and characterized 
previously (9). All 19 individuals are female and unrelated. We chose to use only female 
individuals to avoid introducing additional variance that is not of interest in this study. 
 
iPSC Maintenance 
Feeder-free iPSC cultures were maintained on Matrigel Growth Factor Reduced Matrix (CB-
40230, Thermo Fisher Scientific) with Essential 8 Medium (A1517001, Thermo Fisher 
Scientific) and Penicillin/Streptomycin (30002Cl, Corning). Cells were grown in an incubator at 
37°C, 5% CO2, and atmospheric O2. Cells were passaged to a new dish every 3-5 days using a 
dissociation reagent (0.5 mM EDTA, 300 mM NaCl in PBS) and seeded with ROCK inhibitor 
Y-27632 (ab120129, Abcam). 
 
Cardiomyocyte Differentiation 
We differentiated iPSCs using a protocol previously optimized for use with the Yoruba HapMap 
panel (9).  This protocol implements slight modifications to the cardiomyocyte differentiation 
protocols from Lian et al. 2013 and Burridge et al. 2014 (12, 25). Feeder-free iPSCs were seeded 
onto wells of a 6-well plate and grown for 3-5 days prior to differentiation. When most lines 
were 70%-100% confluent, E8 media was replaced with “heart media” along with 1:100 
Matrigel hESC-qualified Matrix (08-774-552, Corning) and 12uM of GSK-3 inhibitor 
CHIR99021 trihydrochloride (4953, Tocris). “Heart media” is composed of RPMI (15-040-CM, 
Thermo Fisher Scientific) with B27 Supplement minus insulin (A1895601, Thermo Fisher 
Scientific), 2mM GlutaMAX (35050-061, Thermo Fisher Scientific), and 100mg/mL 
Penicillin/Streptomycin (30002Cl, Corning). CHIR99021 is a small molecule that activates WNT 
signaling and initiates the differentiation on day 0 (after the ‘day 0’ cell collection) (12). “Heart 
media” was replaced 24 hours later at day 1 of differentiation. 48 hours later, at day 3 of 
differentiation, cells were fed with new “heart media” containing 2uM of the WNT inhibitor 
Wnt-C59 (5148, Tocris) (12). We cultured cells in Wnt-C59 heart media for 48 hours. At day 5, 
Wnt-C59 was removed and base “heart media” was added. “Heart media” was refreshed on days 
7, 10, 12, and 14 of differentiation. Cells began spontaneous mechanical beating between days 7 
and 10 of differentiation (Table S1). 
 
Sample Collection and Processing 
We performed cardiomyocyte differentiations in batches of two to five cell lines at a time. Every 
24 hours from day 0 (iPSC, before treatment with CHIR99021) to day 15 for every cell line, cells 
in one well of a 6-well culture dish were harvested using mechanical scraping. Cells were rinsed 
and suspended in PBS and flash-frozen in liquid nitrogen. On day 15 of cardiomyocyte 
differentiation for all cell lines, we performed flow cytometry to establish purity using a cardiac-
specific marker, cardiac Troponin T (564767, BD Biosciences) (Table S2). Cells were profiled 
on the BD LSRFortessa Cell Analyzer. 
 
After each time-course was completed, we processed each cell line and balanced our study 
design with respect to differentiation batch, RNA extraction batch, person who performed the 



RNA extraction, library batch, and sequencing lane to mitigate technical batch effects (Table 
S1).  For all experimental steps after cell collection, all time points of a given cell line were 
processed together to minimize technical variation related to our factor of interest, which is time. 
We recorded 27 technical and biological covariates and measured their contribution to variation 
in our data (Fig. S3b). 
 
We extracted RNA from frozen cells using the Qiagen Qiashredder and RNeasy Mini Kit (79656 
& 217004, Qiagen). RNA concentration and quality was measured using the Agilent 2100 
Bioanalyzer. The average RIN score for all samples was 9.51, with a standard deviation of 1.09. 
 
Library preparation was performed using the Illumina TruSeq RNA Sample Preparation Kit v2 
(RS-122-2001 & -2002, Illumina). Libraries in each batch were multiplexed together so that 
every sequencing lane contained samples from at least two cell lines. Cell lines were randomized 
such that lines that were processed together in a sequencing batch were not also together in an 
RNA extraction batch or a differentiation batch. In total, most sequencing lanes contained 23 to 
24 multiplexed samples each. Samples were sequenced 50 base pairs, single-end using the 
Illumina HiSeq4000 according to manufacturer instructions. The same multiplexed library pool 
was sequenced twice with the goal of achieving at least 15 million reads per sample (Fig. S2). 
 
Genotype data 
We used previously collected and imputed genotype data for the 19 Yoruba individuals from the 
HapMap and 1000 Genomes Project (26). 
 
RNA-seq quantification 
All RNA-seq samples were aligned to the human genome (GRCh37) using Subread. We counted 
reads and estimated gene level expression with reads per kilobase million (RPKM) using the 
`edgeR` R package. We then filtered to genes that were protein-coding, autosomal, and had at 
least 10 samples such that RPKM >= .1 and raw read counts >= 6. This yielded 16,319 genes. 
The RPKM distribution in each sample was then quantile normalized and each gene, across all 
samples, was standardized (mean 0, standard deviation 1). 
 
Biological Replication 
We computed replication of day 0 cell lines within previously generated iPSC lines (9) and 
replication of day 15 cell lines within previously generated iPSC-derived cardiomyocyte cell 
lines (9). Notably, the samples from Banovich et al. were also generated in the Gilad lab and use 
the same panel of iPSCs. Count data from all 4 data sets was re-processed under a uniform 
pipeline:  

1. Count data was log2(count+1) transformed 
2. Each gene was standardized to have mean zero and standard deviation 1 
3. Top gene expression PCs (in each data set separately) were regressed out.  

We regressed out the top 3 PCs in the day 0 and day 15 data sets, top 10 PCs in the Banovich et 
al iPSC data set, and top 3 PCs in the Banovich et al. iPSC-derived cardiomyocyte data set. The 
choice of 3 PCs was selected to match the number of PCs in the non-dynamic eQTL analysis. 
The choice of 10 PCs in the Banovich et al. iPSC data set was selected to match their analysis. 
 
Cell line clustering model (split-GPM) 



We applied a generative model that assumes a joint clustering over the 19 cell lines and 16,319 
genes. That is, the model encodes a global assignment of each of 𝐺 genes to 𝐿 gene clusters and 
assignment of each of 𝑁 cell lines to 𝐾 cell line clusters. For each cell line cluster, each gene 
cluster specifies a Gaussian process (GP) representing a latent gene expression trajectory across 
time. Thus, the model identifies groups of cell lines with globally different behavior, and groups 
of genes with similar expression trajectories within each cell line cluster. 
 
Let 𝑦&'be the observed gene expression trajectory for gene 𝑔 in cell line 𝑛 at times 𝑡&'. Our 
observations are generated as follows: 

𝛷&	~	𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋) 
𝛬'	~	𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜓) 
𝑓<=	~	𝐺𝑃?0, 𝐾(𝜃)C 

𝑦&'|	𝛷& = 𝑘, 𝛬' = 𝑙, 𝑓<=	, 𝑡&'~	𝑁(𝑓<=?𝑡&'C, 𝜎H𝐼)			
 
𝜋 ∈ 𝑅L ≥ 0	𝑠. 𝑡. ∑L<QR 𝜋< = 1,			𝜓		 ∈ 𝑅T ≥ 0	𝑠. 𝑡. ∑T=QR 𝜓= = 1	are cell line cluster mixture 
weights and gene cluster mixture weights respectively, 𝜃 are GP kernel hyperparameters and 𝜎H 
is a global variance parameter. 𝑓<= is a function drawn from a gaussian process, while 𝑓<=(𝑡) is 
the function evaluated at points t. 
 
We collect {𝛷&}&QR,…X into an 𝑁x𝐾 binary matrix 𝛷	𝑠. 𝑡. 𝛷&< = 1	 ⟺	𝛷& = 𝑘.	Likewise, we 
collect Z𝛬'['QR…\  into a 𝐺x𝐿 binary matrix 	𝑠. 𝑡. 𝛬'= = 1	 ⟺ 𝜆' = 𝑙. The observed data points 
are conditionally independent given the functions and assignments. Our full likelihood is: 
 

𝑝({𝑦&'}|	{𝑓<=}, 𝑡&', 𝛷, 𝛬) = 	 _
X,\,L,T

&,',<,=

𝑁(𝑦&'|𝑓<=?𝑡&'C, 𝜎H)R(`ab)R(cde)				

 
 
 
split-GPM approximate inference 
Exact computation of the posterior 𝑝({𝑓<=}, 𝛷, 𝛬, |	Z𝑦&'[, Z𝑡&'[) is intractable so we resort to a 
variational approximation that factorizes and minimizes the KL-divergence of the true posterior: 
 

𝑞({𝑓<=}, 𝛬, 𝛤) = 	_
L,T

<,=

𝑞(𝑓<=)_
X

&

𝑞(𝛷&)	_
\

'

𝑞(𝛬')	

 
𝑓<=~	𝐺𝑃(0, 𝐾(𝜃))	

𝛷&~	𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝛷h&)	
𝛬'~	𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙?𝛬'iC			

 
This model bears strong resemblance to the Overlapping Mixture of Gaussian process of Lazaro-
Gredilla et.al (27) and inference proceeds the same way with the exception that the assignment 



matrix is decomposed into 𝛷 and 𝛬. To update the assignments, we iteratively update 𝛷 and 𝛬 
until convergence or until a fixed number of iterations is reached. 
 

𝐸𝐿𝐵𝑂(𝑞) = 𝐸m[𝑙𝑜𝑔	𝑝(Z{𝑦&'[|{𝑓<=}, Z𝑡&'[, 𝛷, 𝛬)] + 𝐸m[𝑙𝑜𝑔	𝑝({𝑓<=}, 𝛷, 𝛬)
−	𝐸m[𝑙𝑜𝑔	𝑞({𝑓<=}, 𝛷, 𝛬)]	

 
 
We iteratively estimate assignment variables and trajectory estimates, then perform gradient 
based optimization with respect to the kernel parameters. This approximation requires 𝐾 ∙ 𝐿 GP 
regressions, each computed over every data point. To make the problem tractable we further 
approximate each GP via SVGP (28). 
 
In this analysis, we train a model with 𝐾 = 2	cell line clusters, 𝐿 = 20 gene clusters and an RBF 
kernel with shared length-scale and variance parameters for all 𝐾 ∙ 𝐿 clusters. 
 
Non-dynamic cis-eQTL calling per time point 
Separately, each time point has a small sample size (maximum of 19 samples). Therefore, we 
used the WASP combined haplotype test (CHT) (15) to increase power, integrating both total 
expression and allelic imbalance data into the same test, to detect cis-eQTLs in each of the 16 
time points, independently. In order to increase accuracy of allele-specific expression estimates, 
RNA-seq data was re-quantified for eQTL calling by filtering Subread mapped reads using the 
WASP mapping pipeline under default settings in order to reduce biases in allelic mapping. We 
tested cis-eQTL association for variants within 50 KB of each gene’s transcription start site. 
Further, we tested the same set of variant-gene pairs in all time points, limiting to variant-gene 
pairs that passed the following filters in all 16 time points: 

1. Variant has minor allele frequency >= .1 
2. Gene passes all filters described in “RNA-seq quantification” section 
3. Gene has >= 100 reads mapped summed across all cell lines  
4. Exon of the gene contains a heterozygous variant in at least 5 cell lines 
5. Sum of reads mapping to minor allele across all cell line, heterozygous variant pairs >= 

25 
These filters yielded 1,009,173 variant-gene pairs (6,362 unique genes) tested in each time point. 
The same variant-gene pairs were tested in each time point to reduce bias when comparing 
genetic regulatory effects between time points. We included the first three raw read count 
expression PCs from samples belonging to the corresponding time point as covariates. The 
choice to control for three PCs was motivated by maximizing the number of significant non-
dynamic eQTLs detected in each time step (Fig. S9B). We ran one permutation of the CHT 
genome-wide. It is worth noting that the CHT is not well calibrated (Fig. S10). Multiple testing 
correction was performed using empirical FDR (eFDR) (29) to assess genome-wide significance 
based on a vector of observed p-values and a vector of null (permuted) p-values. An empirical 
approach to FDR correction should account and control for the lack of calibration observed when 
the CHT was applied to our data. 
 
Sparse non-negative matrix factorization 
We performed sparse, non-negative matrix factorization of eQTL statistics for all time points to 
identify broad patterns in eQTL effects.  Here, we limited to genes with at least one significant 



eQTL (eFDR <= .05) across time points. If a gene had more than one significant eQTL, we 
selected a single variant for that gene with the smallest geometric mean p-value across all 16 
time points. We then filled in a matrix, X, where each row represents one gene, each column 
represents a time point, and each element represents the -log10 p-value corresponding to the 
row’s gene and the column’s time point. We then performed sparse non-negative matrix 
factorization on X (dim NxT) using the python function `sklearn.decomposition.NMF` (30). 
With K latent factors, this will reduce X into the product of a loadings matrix (L; dim NxK) and 
a factor matrix (F; dim KxT). F captures shared patterns of eQTL effect sizes across time while L 
reflects which factors are relevant for each eQTL. All default settings were used except we set 
`l1_ratio=1` to enforce an element-wise L1 penalty. We ran this analysis for a range of number 
of latent factors and L1 penalties (alpha) (Fig. S11). 
 
Linear dynamic eQTLs 
Linear dynamic eQTLs are cis-eQTLs whose effects are linearly modulated by differentiation 
time.  We detected linear dynamic eQTLs with a gaussian linear model that quantified the 
interaction between genotype and differentiation time on gene expression, while controlling for 
the linear effects of both genotype and differentiation time. We also controlled for linear effects 
of the first five cell line collapsed PCs (see below) and, critically, the linear effects of the 
interaction between the first five cell line collapsed PCs and differentiation time. 
 
We built a separate linear model for each tested variant-gene pair. Specifically, let 𝑡 denote the 
time point of the current sample, 𝑐 denote the cell line of the current sample, T denote the total 
number of time points, and C denote the total number of samples. 𝐸 ∈ 𝑅tuvdenotes the 
standardized expression matrix for the current gene, 𝐺 ∈ 𝑅tdenotes the dosage based genotype 
vector for the current variant, and 𝑃𝐶L ∈ 𝑅tdenotes the Kth cell line collapsed PC vector. We 
modeled the expression levels as follows: 
 

𝐸wx~	𝑁(𝜇 + 𝛽R𝐺w +	𝛽H𝑡 +	𝛽{𝑃𝐶wR +	𝛽|𝑃𝐶wR𝑡 + ⋯+	𝛽RR𝑃𝐶w~ +	𝛽RH𝑃𝐶w~𝑡 +	𝛽R{𝐺w𝑡, 𝜎)	
 
We used R `lm` to quantify the significance of the interaction between genotype and time (𝛽R{). 
We computed a null distribution by randomly permuting the time point variable that was used for 
the term capturing the interaction between genotype and time (𝛽R{), while keeping the time point 
variable in all other terms not permuted. An independent permutation was used for every tested 
variant gene pair. Using this permutation run, we computed significance with eFDR.  
 
We tested the same set of variant-gene pairs that was tested in the non-dynamic eQTL calling 
analysis. This was done to reduce bias when comparing non-dynamic eQTLs and dynamic 
eQTLs. 
 
Cell line confounder estimation using cell line collapsed PCA 
Different cell lines can display broadly different patterns of expression across the entire time 
course, including not only consistent shifts upward or downward in expression of subsets of 
genes, but different slopes and more generally different expression trajectory shapes (Fig. 1B).  
Variability in slope is of particular concern for detection of dynamic eQTLs – if a subset of cell 
lines display different slopes over time for many genes, this would lead directly to false positive 
dynamic eQTLs.  Specifically, these cell line subsets reflecting confounders could by chance 



correspond to the same grouping as genotype across numerous SNPs given the large number of 
SNPs compared to cell lines.  This would then produce apparently large effect 𝛽R{𝐺w𝑡 terms in 
the dynamic eQTL linear model, and thus numerous false positives.  To combat this problem, we 
used a PCA-based approach we refer to as “cell line collapsed PCA” to identify broad, cell line 
specific patterns across the entire time course. To do so, we simply rearranged the gene 
expression matrix from the standard RNA-seq quantification (RPKM levels across 297 samples 
by 16,319 genes) such that each row was now expression from one cell line and each column 
was a gene at a single time point.  We excluded time points that were not fully observed (days 2, 
4, and 13) to avoid missing entries, yielding a final matrix of size 19 by 212,147 (Fig. S13). 
After standardizing each column, we applied PCA to this matrix to learn a low dimensional 
representation.  Here, each cell line has a shared loading across all time points, and PCs reflect 
trajectories across all genes, rather than a standard application of PCA with loadings for each 
sample (a cell line, time point pair).  
 
To ensure that we effectively controlled for the potential confounding effects of cell lines 
displaying broad trajectory differences over time, we calculated the frequency at which each pair 
of cell lines share the same genotype across all significant dynamic eQTLs. As noted above, a 
confounder would cause subsets of cell line to have the same eQTL SNP genotype more often 
than expected by chance alone, corresponding to cell line clusters with broad differences. In fact, 
when we do not include cell line collapsed PC loadings in our model, we do see an abundance of 
such likely false positives (Table S4).  After controlling for 5 cell line collapsed PCs, the cell 
lines do not share the same genotype across significant dynamic QTLs more often than 
background (Fig. S16), confirming that cell line PCs help address confounding effects of 
individual cell line trajectories. 
 
An alternative approach of using pseudo-time, rather than actual time in association testing, does 
not fully address the problem mentioned here – cell lines don’t simply progress faster or slower 
along the same ultimate trajectory, but seem to deviate in a more complex pattern.  Here, this 
pattern appears to correspond to cell type purity, but more generally, differentiation or any 
temporal response that follows branching trajectories that can’t be captured by a single 
monotonic pseudo-time term could lead to similar false positives. 
 
We controlled for the first five cell line collapsed PCs and their interaction with differentiation 
time when detecting both linear and nonlinear dynamic eQTLs. While there does not exist an 
optimal method to select the number of cell line collapsed PCs, we selected 5 cell line collapsed 
PCs that: (a) capture most of the variance in gene expression (Fig. S14a), (b) ensure cell lines do 
not share the same genotype across significant dynamic QTLs more often than background (Fig. 
S16), and (c) result in consistency between non-dynamic eQTLs and dynamic eQTLs (Fig. S21 
and S25). 
 
Simulating expression samples for linear dynamic eQTL power analysis 
Using the same notation as defined in the “Linear dynamic eQTLs” section, we define the 
alternate model as: 

𝐸wx~	𝑁(𝛽R𝐺w +	𝛽H𝑡 +	𝛽{(𝑡 ∗ 𝐺w), 𝜎) 
And the null model as: 

𝐸wx~	𝑁(𝛽R𝐺w +	𝛽H𝑡, 𝜎) 



For each setting of number of cell lines, t-statistic and minor allele frequency, we simulated 
10,000 independent tests (variant-gene pairs) where a specified proportion of those tests follow 
the null and alternate models. We made the simplifying assumption that each cell line contained 
16 time points (T=16). For each test: 

1. The genotype vector (𝐺w) was randomly generated assuming a specified minor allele 
frequency. Specifically, both alleles of the variant were drawn independently and both alleles 
were forced to have the specified minor allele frequency 
2. 𝛽R was randomly generated for each test from a separate gaussian distribution with mean 

0 and standard deviation of .1 
3. 𝛽H was randomly generated for each test from a separate gaussian distribution with mean 

0 and  standard deviation of .1 
4. 𝛽{ was equal to the t-statistic multiplied by 	𝜎. For convenience,  𝜎 was fixed to be .1 
5. 𝐸wx was randomly drawn 
6. p-values were computed using the linear model described in the “Linear dynamic eQTLs” 

section excluding any fixed effects containing cell line collapsed PCs 
Significance of simulated tests was assessed at p-value <= 0.00017 (threshold corresponding to 
eFDR <= .05 for linear dynamic eQTLs in actual data). 
 
Nonlinear dynamic eQTLs 
To detect dynamic eQTLs whose effect size changes non-linearly with time, we used a second 
order polynomial basis function over time, which alters the above linear dynamic eQTL model as 
follows: 
 
𝐸wx~	𝑁(𝜇 + 𝛽R𝐺w +	𝛽H𝑡 +	𝛽{𝑡H +	𝛽|𝑃𝐶wR +	𝛽~𝑃𝐶wR𝑡 + 𝛽�𝑃𝐶wR𝑡H + ⋯+	𝛽R�𝑃𝐶w~ +	𝛽R�𝑃𝐶w~𝑡

+ 𝛽R�𝑃𝐶w~𝑡H +	𝛽R�𝐺w𝑡 +	𝛽H�𝐺w𝑡H, 𝜎)	
 
We quantify the joint effect of the two interaction terms between genotype and time (𝛽R� and 
𝛽H�) with a likelihood ratio test with two degrees of freedom using the R `lmtest` package. We 
computed a null distribution by randomly permuting the time point variable that was used for the 
two terms capturing the interaction between genotype and time (𝛽R� and 𝛽H�), while keeping the 
time point variable in all other terms not permuted. An independent permutation was used for 
every tested variant gene pair. It is worth noting that the nonlinear dynamic eQTLs are not well 
calibrated (Fig. S18). Using this permutation run, we computed significance using eFDR. An 
empirical approach to FDR correction should account and control for the observed lack of 
calibration of this test. 
 
Simulating expression samples for nonlinear dynamic eQTL power analysis 
Linear dynamic eQTLs allow us to capture dynamic eQTLs whose effect size changes linearly 
with differentiation time. Nonlinear dynamic eQTLs allow us to capture dynamic eQTLs whose 
effect size changes as a quadratic function of differentiation time. However, both of these 
approaches are unable to capture arbitrary nonlinear functions of differentiation time. A 
statistical test that could capture arbitrary nonlinear functions of differentiation time is an 
ANOVA analysis where time is fit as a factor with 16 levels (ANOVA eQTLs). Here, we 
simulate several nonlinear dynamic eQTLs and access detection power using three different 
dynamic eQTL methods: 

1. Linear dynamic eQTLs 



2. Nonlinear dynamic eQTLs 
3. ANOVA dynamic eQTLs  

 
Using a similar notation as defined in the “Linear dynamic eQTLs” section, we define the 
alternate model as: 

𝐸wx~	𝑁(𝛽R𝐺w +	𝛽H𝑡&�� +	𝛽{(𝑡&�� ∗ 𝐺w), 𝜎) 
And the null model as: 

𝐸wx~	𝑁(𝛽R𝐺w +	𝛽H𝑡&��, 𝜎) 
 
Here, 𝑡&��is a transformation of t. We used four arbitrary transformations of t: 

1. 𝑡&�� = 𝑡(𝑡 − 10) 
2. 𝑡&�� = 𝑡(𝑡 − 7)(𝑡 − 15) 
3. 𝑡&�� = sin	(𝑝𝑖 ∗ x

~
) 

4. 𝑡&�� = 𝐼[𝑡 > 7] 
Transformed differentiation time (𝑡&��) was scaled to have the same standard deviation as the 
original values of differentiation time. For each setting of number of cell lines, t-statistic and 
time transformation, we simulated 10,000 independent tests (variant-gene pairs) where 30% of 
those tests follow the alternate model and 70% follow the null model. We made the simplifying 
assumption that each cell line contained 16 time points (T=16). For each test: 

1. The genotype vector (𝐺w) was randomly generated assuming a minor allele frequency of 
.4. Specifically, both alleles of the variant were drawn independently and both alleles 
were forced to have a minor allele frequency of .4. 

2. 𝛽R was randomly generated for each test from a separate gaussian distribution with mean 
0 and standard deviation of .1 

3. 𝛽{ was equal to the t-statistic multiplied by 	𝜎. For convenience,  𝜎 was fixed to be .1 
4. 𝐸wx was randomly drawn 
5. p-values were computed using the three statistical models described above 

Significance of simulated tests was assessed at p-value <= 0.00017 (threshold corresponding to 
eFDR <= .05 for linear dynamic eQTLs in actual data). 
 
Linear dynamic eQTL classifications 
We classified the linear dynamic eQTLs as early (when the eQTL effect size decreased over 
time), late (when the eQTL effect size increased over time), or switch (when the eQTL effect 
size changes sign over the time course. To do so, we computed predicted eQTL effect size at day 
0 and day 15 according to the fitted linear dynamic eQTL model: 
Let 𝐸��'(𝑡 = 𝑥, 𝐺 = 𝑦) be the predicted expression (according to the fitted dynamic eQTL 
model) of gene 𝑔 at time 𝑥 for a sample with genotype dosage 𝑦 for variant 𝑣. We defined the 
eQTL effect size (𝛽�'(𝑡 = 𝑥)) of variant 𝑣 on gene 𝑔 at time 𝑥 as: 
 

𝛽�'(𝑡 = 𝑥) = 	𝐸��'(𝑡 = 𝑥, 𝐺 = 0) −	𝐸��'(𝑡 = 𝑥, 𝐺 = 2)	
 
If the sign of 𝛽�'(𝑡 = 0) is equal to the sign of 𝛽�'(𝑡 = 15),	we assigned that dynamic eQTL to: 

1. early if �𝛽�'(𝑡 = 0)� ≥ �𝛽�'(𝑡 = 15)� 
2. late if �𝛽�'(𝑡 = 0)� < 	 �𝛽�'(𝑡 = 15)� 
 



If the sign of 𝛽�'(𝑡 = 0) is not equal to the sign of 𝛽�'(𝑡 = 15),	we assigned that dynamic 
eQTL to: 

1. early if �𝛽�'(𝑡 = 0)� ≥ �𝛽�'(𝑡 = 15)� and �𝛽�'(𝑡 = 15)� < thresh 
2. late if �𝛽�'(𝑡 = 0)� < 	 �𝛽�'(𝑡 = 15)� and �𝛽�'(𝑡 = 0)� < thresh 
3. switch if �𝛽�'(𝑡 = 0)� ≥ thresh and �𝛽�'(𝑡 = 15)� ≥	thresh 

 
We assigned thresh = 1.  
 
Nonlinear dynamic eQTL classifications 
We classified the nonlinear dynamic eQTLs as early (when the eQTL effect size decreased over 
time), late (when the eQTL effect size increased over time), switch (when the eQTL effect size 
changes sign over the time course, or middle (when the eQTL is strongest in the middle of the 
time course). To do so, we computed predicted eQTL effect size at t=0, t=7.5, and t=15 
according to the fitted nonlinear dynamic eQTL model: 

𝛽�'(𝑡 = 0) = 	𝐸��'(𝑡 = 0, 𝐺 = 0) −	𝐸��'(𝑡 = 0, 𝐺 = 2)	
𝛽�'(𝑡 = 7.5) = 	𝐸��'(𝑡 = 7.5, 𝐺 = 0) −	𝐸��'(𝑡 = 7.5, 𝐺 = 2)	
𝛽�'(𝑡 = 15) = 	𝐸��'(𝑡 = 15, 𝐺 = 0) −	𝐸��'(𝑡 = 15, 𝐺 = 2)	

 
If 𝛽�'(𝑡 = 7.5) ≥ 	𝛽�'(𝑡 = 0) and 𝛽�'(𝑡 = 7.5) ≥ 	𝛽�'(𝑡 = 15), we assigned the dynamic 
eQTL to middle. 
If the sign of 𝛽�'(𝑡 = 0) is equal to the sign of 𝛽�'(𝑡 = 15),	we assigned that dynamic eQTL to: 

1. early if �𝛽�'(𝑡 = 0)� ≥ �𝛽�'(𝑡 = 15)� 
2. late if �𝛽�'(𝑡 = 0)� < 	 �𝛽�'(𝑡 = 15)� 
 

If the sign of 𝛽�'(𝑡 = 0) is not equal to the sign of 𝛽�'(𝑡 = 15),	we assigned that dynamic 
eQTL to: 

1. early if �𝛽�'(𝑡 = 0)� ≥ �𝛽�'(𝑡 = 15)� and �𝛽�'(𝑡 = 15)� < thresh 
2. late if �𝛽�'(𝑡 = 0)� < 	 �𝛽�'(𝑡 = 15)� and �𝛽�'(𝑡 = 0)� < thresh 
3. switch if �𝛽�'(𝑡 = 0)� ≥ thresh and �𝛽�'(𝑡 = 15)� ≥	thresh 

 
We assigned thresh = 1. 
 
ChromHMM enrichment analysis 
We computed enrichment of dynamic eQTLs within cell type specific chromHMM (15 state 
model) enhancer elements relative to 1,000 sets of randomly selected background variants 
matched for distance to transcription start site and minor allele frequency (16).  We considered 
the following four chromHMM states to represent enhancer elements: 

1. EnhG (state 6) 
2. Enh (state 7) 
3. BivFlnk (state 11) 
4. EnhBiv (state 12) 

 
We used the following five Roadmap cell types to represent iPSCs (17): 

1. E018: iPS-15b Cells 



2. E019: iPS-18 Cells 
3. E020: iPS-20b Cells 
4. E021: iPS DF 6.9 Cells 
5. E022: iPSC DF 19.11 Cells 

 
And the following five Roadmap cell types to represent heart-related cells (17): 

1. E065: Aorta 
2. E083: Fetal heart 
3. E095: Left ventricle 
4. E104: Right atrium 
5. E105: Right Ventricle 

 
To compute enrichment within iPSC specific enhancer elements, we limited to enhancer 
elements found in at least one of the 5 iPSC cell types and none of the heart-related cell types. 
Likewise, for enrichment with heart specific enhancer elements, we limited to enhancer elements 
found in at least one of the 5 heart-related cell types and none of the iPSC related cell types. 
Odds ratios were smoothed by adding smoothing constant of 1 to each overlap count. 
 
Dilated cardiomyopathy gene set enrichment analysis 
We define the dilated cardiomyopathy gene set as the union of all genes in Supplementary Table 
3 of Burke et al. (18). Enrichment was computed via Fisher's exact test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figures 
 

 
Figure S1: RNA-seq sample collection: Overview of RNA-seq sample collection. In 19 Yoruba 
HapMap cell lines, RNA was extracted and sequenced every 24 hours at 16 time points, 
generating 297 RNA-seq samples. 
 
 
 
 
 
 
 
 
 
 



 
Figure S2: Library size of RNA-seq samples. The library sizes of 297 RNA-seq samples 
colored by their cell line identity. Within each cell line, samples are ordered along the x-axis by 
their differentiation time point from day 0 to 15.  
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Figure S3: Explaining principal components with sample covariates. (A) Variance in gene 
expression explained by first 10 gene expression principal components. (B) Variance explained 
of each gene expression principal component using sample covariates. Adjusted R2 was used to 
handle categorical sample covariates. Detailed explanation of each sample covariate can be 
found in Table S1. 
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Figure S4: Biological replication of day 0 and day 15 cells. We compared day 0 and day 15 
cell lines with matched iPSC lines and iPSC-derived cardiomyocyte lines, respectively, from 
Banovich et al. (9).  This analysis was restricted to cell lines present in both data sets. Spearman 
correlation across genes observed in both data sets between (A) day 0 cell lines and iPSC lines 
and between (B) day 15 cell lines and iPSC-derived cardiomyocyte cell lines. Distribution of 
spearman correlations shown for matched cell lines (blue) and different cell lines (green). The 
correlation of gene expression is greater for matched cell lines compared to different cell lines (p 
< .05 for both comparisons, Wilcoxon rank-sum test). 
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Figure S5: Expression time course of known cell type specific marker genes. Standardized 
gene expression levels of Nanog (A, stem cell marker gene) and Troponin T2 (B, cardiomyocyte 
marker gene) across 16 time points (x-axis) and 19 cell lines (colors). 
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Figure S6: Principal component analysis separated by cell line identity. (A) First two gene 
expression principal component loadings for all 297 RNA-seq samples, where each sample is 
colored by its cell line identity. (B, C) Principal component 1 and 2 loadings across 16 time 
points (x-axis) and 19 cell lines (colors). (D, E) Principal component 1 and 2 loadings across 19 
cell lines (x-axis) and 16 time points (colors). 
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Figure S7: split-GPM cell line cluster assignment robust to hyper-parameter choice. 
Number of times (out of 10 split-GPM runs with independent, random initializations) that each 
cell line pair was assigned to the same cell line cluster when 10 (A), 20 (B), 50 (C), and 100 (D) 
gene clusters were used. Cell lines are ordered by their cell line collapsed PC1 loadings. 
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Figure S8: Explaining time step principal components with sample covariates. In each time 
point independently, variance explained of each raw read count expression principal components 
(from samples belonging to the corresponding time point) using sample covariates. Adjusted R2 
was used to handle categorical sample covariates. Sample categorical covariates with more than 
8 categories were excluded from this analysis due to the small sample size when considering 
time points, independently. Detailed explanation of each sample covariate can be found in Table 
S1.  
 
 
 
 
 
 
 
 
 
 
 



 
Figure S9: Number of genes with non-dynamic eQTLs. (A) Variance explained of gene 
expression from samples belonging to a particular time point (color) by the first 10 gene 
expression PCs (x-axis) computed on samples belonging to that time point. (B) The number of 
genes with a significant eQTL (eFDR <= .05) in each time point (color) as a function of number 
of expression PCs controlled for (x-axis). (C) The number of genes with a significant eQTL 
(eFDR <= .05) in each time point when controlling for three expression PCs. 
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Figure S10: Q-Q plots for non-dynamic eQTLs. Q-Q plot for non-dynamic eQTLs in all 16 
time steps. Blue dots correspond to p-values from actual data relative to uniformly distributed p-
values, whereas green dots correspond to p-values from permuted data (using WASP’s 
permutation strategy) relative to uniformly distributed p-values. 
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Figure S11: Matrix factorization of eQTL summary statistics. Latent factors identified via 
sparse non-negative matrix factorization of non-dynamic eQTL -log10 p-values shown for a range 
of sparse prior choices (alpha; columns) when using 3, 4, and 5 factors (rows).  
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Figure S12: eQTL sharing across time points. The number of days in which each non-
dynamic eQTL is significant (eFDR <= .05) for all variant-gene pairs that are significant in at 
least one day. 
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Figure S13: Overview of cell line collapsed PCA. Gene expression can be represented as a 
three-dimensional matrix spanning days, cell lines, and genes. For standard PCA (top row), we 
rearrange this gene expression matrix such that rows now correspond to cell lines at specific days 
(e.g., RNA-seq samples) and columns correspond to genes. Here, PCA will learn a low 
dimensional representation for cell lines at specific days. For cell line collapsed PCA (bottom 
row), we rearrange this gene expression matrix such that rows now correspond to cell lines and 
columns correspond to genes at specific days. Here, PCA will learn a low dimensional 
representation for each cell line. 
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Figure S14: Analysis of cell line collapsed PCs. (A) Variance explained of gene expression by 
first 10 cell line collapsed principal components. (B, C) First two cell line collapsed principal 
components where each data point is a cell line colored by its (B) percentage of live cells 
expressing TNNT2 at time point 15 and (C) split-GPM cell line cluster assignment. 
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Figure S15: Detecting dynamic eQTLs with gaussian linear mixed model: Comparison of 
linear dynamic eQTL p-values between gaussian linear model (x-axis) and gaussian linear mixed 
model with cell line specific random effect (y-axis) across all tested variant-gene pairs (Pearson 
correlation=.983). 
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Figure S16: Frequency of cell line overlap in genotype bins. Frequency at which each cell line 
pair is in the same genotype bin ({0,1,2}) across the strongest associated variants of the 200 most 
significant eQTL genes (gold) compared to MAF-matched randomly selected background 
variants (blue).  Analysis shown for linear dynamic eQTLs while controlling for a range of the 
top cell line collapsed PCs. Non-dynamic eQTLs (from day 0) are also shown as a control. 
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Figure S17: Simulated power analysis for linear dynamic eQTLs. Power to detect simulated 
linear dynamic eQTLs (y-axis) based on 10,000 simulations at p-value <= 0.00017 (threshold 
corresponding to eFDR <= .05 for linear dynamic eQTLs in actual data) as a function of number 
of cell lines (x-axis) and t-statistic (color). t-statistic represents the ratio of the effect size of the 
interaction term and the standard deviation term used to simulate the expression data. We 
additionally vary (A-F) both the simulated MAF (columns) and the proportion of those tests that 
were simulated according to the alternative hypothesis (true dynamic eQTLs; rows). 
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Figure S18: Q-Q plots for linear and non-linear dynamic eQTLs. Q-Q plot for (A) linear and 
(B) non-linear dynamic eQTLs. Blue dots correspond to p-values from actual data relative to 
uniformly distributed p-values, whereas green dots correspond to p-values from permuted data 
relative to uniformly distributed p-values. 
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Figure S19: Percent variance explained of dynamic eQTL covariates. Distribution of percent 
variance explained (PVE; y-axis) of each covariate (x-axis) across significant (eFDR <= .05) (A) 
linear dynamic eQTLs and (B) nonlinear dynamic eQTLs. For linear dynamic eQTLs, the 
interaction term (genotypeXday) explains on average 3.16 % of the variance. For nonlinear 
dynamic eQTLs, the linear interaction term (genotypeXday) and the nonlinear interaction term 
(genotypeXday^2) explain on average 2.69 and 0.78 % of the variance, respectively. PVE for 
each covariate was estimated via ANOVA analysis which assumes an underlying order of 
covariates when iteratively computing the variance explained by each additional covariate. This 
was done to handle the covariance between covariates. For linear dynamic eQTLs, covariates 
were ordered as follows: all cell line collapsed PC related terms, genotype, day, and then 
genotypeXday. For nonlinear dynamic eQTLs, covariates were ordered as follows: all cell line 
collapsed PC related terms, genotype, day, day^2, genotypeXday, and then genotypeXday^2. 
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Figure S20: Comparing linear dynamic eQTLs to non-dynamic eQTLs. (A) The number of 
time points in which the dynamic eQTLs (most significant variant per dynamic eQTL gene) have 
a nominally significant (p <= .05) non-dynamic eQTL. (B) The number of dynamic eQTLs (most 
significant variant per dynamic eQTL gene) that are nominally significant (p <= .05) in each 
time point.  
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Figure S21: Comparing linear dynamic eQTLs with non-dynamic eQTLs: Non-dynamic 
eQTL p-values (y-axis) in all 16 time points (x-axis) of linear dynamic eQTLs (most significant 
variant per dynamic eQTL gene) stratified by linear dynamic eQTL classifications (early, switch, 
and late). 
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Figure S22: Dynamic eQTL enhancer enrichment. Enrichment of dynamic eQTLs within cell 
type specific chromHMM enhancer elements relative to 1000 sets of randomly selected 
background variants matched for distance to transcription start site and minor allele frequency. 
Dynamic eQTLs were classified as early (eQTL effect size decreasing over time) or late (eQTL 
effect size increasing over time). Analysis shown for linear dynamic eQTLs while controlling for 
a range of the top cell line collapsed PCs (A-K). 
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Figure S23: Two significant linear dynamic eQTLs are known GWAS variants. Linear 
interaction association between time point (x-axis) and genotype (color) of (A) rs7633988 and 
(B) rs6599234 on residual gene expression (cell line effects regressed on expression) of SCN5A 
(y-axis). 
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Figure S24: Non-linear simulated power analysis. Power to detect simulated dynamic eQTLs 
(y-axis) based on 10,000 simulations at p-value <= 0.00017 (threshold corresponding to eFDR 
<= .05 for linear dynamic eQTLs in actual data) as a function of number of cell lines (x-axis) and 
t-statistic (color). t-statistic represents the ratio of the effect size of the interaction term and the 
standard deviation term used to simulate the expression data. Simulated expression was 
generated based on various transformations (tnew; rows) of the original values of differentiation 
time (t). Transformed differentiation time was scaled to have the same standard deviation as the 
original values of differentiation time. Three different statistical models were used to identify 
dynamic eQTLs (columns): linear model (linear dynamic eQTL), quadratic linear model 
(nonlinear dynamic eQTL), and categorical ANOVA analysis. The simulated MAF was .4 and 
30% of all simulated tests were drawn from the alternative hypothesis. 
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Figure S25: Comparing nonlinear dynamic eQTLs to non-dynamic eQTLs.  Non-dynamic 
eQTL p-values (y-axis) in all 16 time points (x-axis) of nonlinear dynamic eQTLs (most 
significant variant per dynamic eQTL gene) stratified by nonlinear dynamic eQTL classifications 
(early, middle, and late).  
 
 

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

-
lo
g 1

0(
p−
va
lu
e)

early middle late



 
Figure S26: Middle dynamic eQTL example: Nonlinear interaction association between 
genotype (color) of rs8107849 and time point (x-axis) on residual gene expression (cell line 
effects regressed on expression) of ZNF606 (y-axis). 
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Figure S27: Nonlinear dynamic eQTL overlaps GWAS variant: (A) Manhattan plot showing 
interaction association p-values for C15orf39 according to nonlinear dynamic eQTL calling for 
all variants tested within 50KB of the C15orf39 transcription start site. (B) Manhattan plot 
showing GWAS p-values on the same region surrounding C15orf39 from three different GWAS 
studies (colors) (23, 24). Vertical line depicts genomic location of most significant nonlinear 
dynamic eQTL (rs28818910) for C15orf39. p-values shown for body mass index and body fat 
percentage are based on round 1 of UK Biobank (UKB) (23).  Body mass index and body fat 
percentage p-values for rs28818910 according to the round 2 of UKB (31) become slightly less 
extreme (p=1.322e-07 and p= 2.521e-06, respectively), but are still significant after multiple 
testing correction for all significant (eFDR <= .05) nonlinear dynamic eQTL variants 
(Bonferroni p= 0.000902 and Bonferroni p=.0172, respectively). 
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Supplementary Tables 
 
Table S1. Available as an excel file online. Sheet ‘A-Sample meta-data’ contains meta-data for 
each RNA-seq sample. Sheet ‘B-meta data description’ contains descriptions of each meta-data 
variable collected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Cell Line Percent of Live Cells Expressing TNNT2 

18489 44.3 

18499 24.2 

18505 NA 

18508 83.9 

18511 NA 

18517 47.8 

18520 NA 

18855 NA 

18858 NA 

18870 NA 

18907 7.9 

18912 47.8 

19093 27 

19108 NA 

19127 1.1 

19159 39.8 

19190 63.2 

19193 59.5 

19209 33.4 
 
Table S2: Flow cytometry results for each cell line at day 15 of cardiomyocyte 
differentiation. The percent of live cells expressing cardiac troponin (TNNT2) for every cell 
line at day 15 of differentiation. Cells with an NA indicate that flow cytometry was not 
performed on this cell line. 
  



Hallmark gene 
set 

Gene 
cluster  

2 

Gene 
cluster 

4 

Gene 
cluster  

5 

Gene 
cluster 

6 

Gene 
cluster 

9 

Gene 
cluster  

11 

Gene 
cluster  

13 

Gene 
cluster  

16 
TNFA signaling 

via NFKB 
1 1 1 .000208 1 1 1 1 

Mitotic spindle 
 

1 1 1 1 .0166 1 1.80e-14 1 

TGF beta 
signaling 

1 1 1 .348 .000624 1 1 1 

DNA repair 
 

1 1 .000242 1 1 1 3.73e-7 1 

G2M checkpoint 
 

1 1 1 1 1 1 2.87e-63 .594 

Myogenesis 
 

9.29e-14 1 1 1.05e-5 1 1 1 1 

Protein secretion 
 

.00384 1 1 1 1 1 1 1 

Complement 
 

1 1.98e-5 1 1 1 1 1 1 

Unfolded protein 
response 

1 1 6.99e-5 1 1 1 1 1 

MTORC1 
signaling 

1 1 2.07e-10 1 1 .696 1 1 

E2F targets 
 

1 1 .0111 1 1 1 5.47e-73 .0458 

MYC targets V1 
 

1 1 3.03e-25 1 1 .329 1.28e-16 1.16e-5 

MYC targets V2 
 

1 1 7.04e-21 1 1 1 .981 1 

Epithelial 
mesenchymal 

transition 

1 .000310 1 2.05e-5 1 1 1 1 

Xenobiotic 
metabolism 

1 .000435 1 1 1 1 1 1 

Oxidative 
phosphorylation 

1 1 1 .134 1 8.11e-11 1 1 

Heme 
metabolism 

1.24e-6 1 1 1 1 1 1 1 

Coagulation 
 

1 1.72e-16 1 1 1 1 1 1 

Bile acid 
metabolism 

1 .00392 1 1 1 1 1 1 

Spermatogenesis 
 

1 1 1 1 1 1 .00433 1 

KRAS signaling 
up 

1 .00536 1 .622 1 1 1 1 

 
Table S3: Hallmark gene set enrichment of split-GPM gene clusters: Bonferroni corrected p-
values (Fisher’s exact) from gene set enrichment of gene clusters (columns) from split-GPM 
within Hallmark gene sets (rows). Only gene clusters and gene sets with at least one significant 
enrichment (Bonferroni p-value <= .05) are shown. 
 
 



 
 

# of cell line 
collapsed PCs 

# genes with significant 
dynamic eQTL (eFDR <= .05) 

# genes with significant 
dynamic eQTL (eFDR <= .01) 

0 2256 931 
1 1943 785 
2 1247 294 
3 648 250 
4 608 186 
5 550 150 
6 533 113 
7 556 212 
8 456 110 
9 288 22 
10 213 79 

 
 
Table S4: Number of linear dynamic eQTLs detected. The number of genes with a significant 
linear dynamic eQTL (eFDR <= .05 and eFDR <= .01) as a function of the number cell line 
collapsed PCs used as covariates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5. Available as a text file online. This table reports the percent variance explained (PVE) 
by the linear dynamic eQTL model’s fixed effects (excluding fixed effects related to cell line 
collapsed PCs) for all significant (eFDR <= .05) linear dynamic eQTLs. PVE for each covariate 
was estimated via ANOVA analysis which assumes an underlying order of covariates when 
iteratively computing the variance explained by each additional covariate. This was done to 
handle the covariance between covariates. For linear dynamic eQTLs, covariates were ordered as 
follows: all cell line collapsed PC related terms, genotype, day, and then genotypeXday. 
 
 
 
  



 
Hallmark gene 

set 
0 PCs 1 PC 2 PCs 3 PCs 4 PCs 5 PCs 

KRAS 
signalling dn 

.0076 .0007 .472 1.0 1.0 1.0 

Hypoxia 1 1 .33 .00095 .0048 .02 
Myogenesis .91 .01 1 .055 .011 .002 
Interferon 
Gamma 

Response 

1 .08 .39 .39 .086 .016 

 
Hallmark gene 

set 
6 PCs 7 PC 8 PCs 9 PCs 10 PCs 

KRAS 
signalling dn 

1.0 1.0 1.0 1.0 1.0 

Hypoxia .33 .022 1.0 1.0 .33 
Myogenesis .24 .055 .055 1.0 1.0 
Interferon 
Gamma 

Response 

.086 .0026 .086 1.0 .39 

 
 
Table S6: Hallmark gene set enrichment of linear dynamic eQTLs. Bonferroni corrected p-
values (Fisher’s exact) from gene set enrichment within Hallmark gene sets (rows) of the 200 
genes with the strongest linear dynamic eQTLs as a function of the number of cell line collapsed 
PCs used as covariates (columns). Only Hallmark gene sets with at least one significant 
enrichment (Bonferroni p-value <= .05) are shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Number of cell line collapsed PCs Enrichment p-value 
0 .08 
1 .01 
2 .01 
3 .00099 
4 6.8e-5 
5 .00099 
6 .01 
7 .00099 
8 .08 
9 .08 
10 .08 

 
 
Table S7: Dilated cardiomyopathy gene set enrichment of linear dynamic eQTLs. p-values 
(Fisher’s exact) from gene set enrichment within dilated cardiomyopathy gene set of the 200 
genes with the strongest linear dynamic eQTLs as a function of the number of cell line collapsed 
PCs used as covariates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S8. Available as a text file online. This table reports the percent variance explained (PVE) 
by the nonlinear dynamic eQTL model’s fixed effects (excluding fixed effects related to cell line 
collapsed PCs) for all significant (eFDR <= .05) nonlinear dynamic eQTLs. PVE for each 
covariate was estimated via ANOVA analysis which assumes an underlying order of covariates 
when iteratively computing the variance explained by each additional covariate. This was done 
to handle the covariance between covariates. For nonlinear dynamic eQTLs, covariates were 
ordered as follows: all cell line collapsed PC related terms, genotype, day, day^2, genotypeXday, 
and then genotypeXday^2. 
 
 


