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ppm. 

 

Synthesis of MBLG 1. A solution of 3 (21 mg, 0.01 mmol) in DCM (20 mL) was 

degassed by argon bubbling for 10 min. Then iron(III) chloride (272 mg 1.68 mmol) 

was added. After stirring at room temperature for 1h under continuous bubbling with 

argon, the reaction was quenched by the addition of methanol. The crude products 

were further purified by silica gel column chromatography (DCM/petroleum ether = 

1:1 as eluent) to afford 1 (2 mg, 10%) as a purple solid. 

 

Synthesis of compound 9.  

3,4-bis(4-bromophenyl)-2,5-diphenyl-2,4-cyclopentadien-1-one (10) was prepared 

according to the reported procedure1. A mixture of 10 (2 g, 3.70 mmol), Pd(PPh3)4 

(428 mg, 0.37 mmol), K2CO3 (1.02 g, 7.41 mmol), 2,4,6-trimethylphenylboronic acid 

(1.46 g, 8.84 mmol), in 1,4-dioxane (20 mL) and water (10 mL) was stirred under 

argon atmosphere at 80 oC for 24 h. After the reaction, the products were extracted 

with DCM (30 mL) and washed with water (20 mL). The combined organic layer was 

dried over MgSO4 and concentrated in vacuum. The crude mixture was purified by 

silica gel column chromatography (ethyl acetate/petroleum ether = 4:1 as eluent), and 

the compound 9 was obtained as a dark red solid with a yield of 85% (1.95 g, 3.15 

mmol). Mass found: m/z 620.3 [M+]; Calcd. for C47H40O m/z 620.307. Elementary 

analysis. Found: C, 90.71%, H, 6.34% Calcd. for C47H40O: C, 90.93 %, H, 6.49%. 
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Supplementary Note 2 

NMR assignment for 1 

The peaks at 10.13 and 9.96 ppm are assigned to the protons at the nanographene 

core of 1, due to their much larger chemical shift compared with the hydrogen at the 

benzene rings. The number of peaks for the protons at the C114 core is consistent with 

the C6v molecular symmetry of 1. The peaks at 7.82 and 7.33 ppm are assigned to the 

protons at the benzene ring of peripheral mesityl group, the chemical shifts of which 

agree with those of previously reported compounds with mesityl substituents. The 

peaks at 4.05, 2.86 and 2.06 ppm are assigned to the protons of methyl groups of 

mesityl groups. The intensity ratio of all peaks matches well the structure of 1. 

The exclusive assignment of each peaks to each proton species in 1 is achieved 

with the assistance of NOESY. From the NOESY correlation between protons at the 

C114 core and those at methyl groups (Supplementary Figure 22), the peak at 4.05 ppm 

is assigned to the inward-facing methyl group (Hg), because it has much stronger 

coupling with the protons at the C114 core (Ha and Hb). Therefore, the peak at 2.06 

ppm is assigned to the outward-facing methyl group (Hc). 

The protons (Ha and Hb) at the inner core have different distances to the peripheral 

mesityl, and Hb is relatively closer to mesityl group than Ha. The coupling difference 

between protons at the inner core and protons of outward-spacing methyl groups 

could reflect the difference in distance more clearly, because only the intralayer 

spatial H···H couplings exist between them (Supplementary Figure 10). As shown in 

Supplementary Figure 22, the peak at 9.96 ppm reveals a larger NOE signal with the 

outward-spacing methyl group (Hc) and thus is assigned to Hb. Then, the peak at 

10.13 ppm is assigned to Ha. 

Using the NOESY correlation between the aromatic (Hf and Hd) and methyl (Hc, Hg 

and He) protons of mesityl group, we can assign the peak at 2.86 ppm to the para 

methyl group (He), because only the para methyl group is sufficient close to both 

aromatic protons (Hf and Hd) (Supplementary Figure 23). The inward-facing aromatic 

proton of mesityl (Hf) is in short distance with inward-facing (Hg) and para methyl 
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(He) groups (Supplementary Figure 23), and thus we can assign the peak at 7.82 ppm 

to the inward-facing aromatic proton of mesityl group (Hf). Also, the peak at 7.33 

ppm can be assigned to the outward-facing aromatic proton of mesityl group (Hd). 

The experimental assignment of all the hydrogens of 2 fits well the theoretical NMR 

spectrum computed with the structure of 2. 

NMR assignment for 2 

Similarly, the NMR peaks of 2 can be classified into three categories, i.e. protons at 

the inner nanographene core (11.13-8.17 ppm), those at the benzene ring of mesityl 

group (7.55-7.18 ppm) and at the methyl groups (3.39-1.98 ppm) (Supplementary 

Figure 24). The number of peaks for the protons at the inner C96 core is consistent 

with its C3 molecular symmetry. The intensity ratio of all peaks matches well the 

structure of 2. 

First, the Hj can be easily and exclusively assigned, because it is the sole triplet in 

the 1H NMR spectrum (Supplementary Figure 24). Then the two doublet (9.24 and 

9.11 ppm) should be Hi and Hk, which is also confirmed by the 1H-1H COSY 

spectrum (Supplementary Figure 24).  

To distinguish Hk and Hi, we check the NOE signals among the protons at the C96 

core (Supplementary Figure 26). As shown in asymmetric unit of 2 (insert figure in 

Supplementary Figure 26), Hk is in short distance with three protons (Hj, Hl and Hm) 

at the C96 core, whereas Hi is close to two protons (Hj and Hh). Indeed, the doublet 

peak at 9.24 ppm correlates with three proton signals and therefore is assigned to Hk 

(Supplementary Figure 26). On the other hand, the doublet peak at 9.11 ppm 

correlates to two proton signals and is assigned to Hi (Supplementary Figure 26). Also, 

Hh can be assigned to the peak at 9.18 ppm due to its correlation with Hi. The peaks at 

11.13 and 10.26 should be Hl and Hm. The rest two peaks at 9.73 and 9.38 ppm should 

be Hs and Ht (Supplementary Figure 26).  

According the C3 symmetry of C96 core, there are two inequivalent mesityl groups 

(A and B) (Supplementary Figure 27). Indeed, based on the NOESY correlations 

between the aromatic and methyl protons of mesityl groups (Supplementary Figure 

27), the peaks at 7.55, 7.18, 3.41, 2.63 and 1.99 ppm are grouped into one mesityl 
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group and the peaks of 7.44, 7.42, 3.26 2.92 and 2.31 ppm belong to the other.  

As shown in Supplementary Figure 28, mesityl A is close to Hh whereas mesityl B 

is far away. So, methyl groups (Hu and Hy) of mesityl A are close to Hh and their 

spatial coupling could be seen in NOESY (highlighted by the dashed blue line in 

Supplementary Figure 28). Therefore, the peaks at 3.41 and 1.99 ppm should come 

from Hy and Hu. The much stronger NOE of peak at 3.41 ppm to Hh compared with 

that of peak at 1.99 ppm is ascribed to the interlayer proton coupling due to the 

bilayer structure, which can help identify the signal at 3.41 ppm as the inward-spacing 

methyl group (Hy) of mesityl A and the signal at 1.99 ppm as the outward-spacing 

methyl group (Hu). Once Hy and Hu are assigned, the rest signals of mesityl A could 

be identified based on Supplementary Figure 27.  

The last signal group (7.44, 7.42, 3.26 2.92 and 2.31 ppm) come from mesityl B. 

The stronger coupling between the signal at 3.26 ppm and protons at the C96 core (Hm, 

Hl and Hj) (Supplementary Figure 28) indicates the peak at 3.26 ppm should be the 

inward-spacing methyl group (Hn). Consequently, Hr, Ho, Hq and Hp correspond to the 

peaks at 2.31, 7.44, 7.42 and 2.92 ppm, respectively. 

After the assignment of all the signals for peripheral mesityl groups, the exclusive 

assignment between Hl and Hm and between Hs and Ht is possible based on their 

different distance to peripheral mesityl groups. The coupling difference between 

protons at the inner core and protons of outward-spacing methyl groups could reflect 

the difference in distance more clearly, because only the intralayer spatial H···H 

couplings exist between them (Figure 3A). Hm is closer to outward-spacing methyl 

(Hr) at the mesityl B, compared to Hl, so the NOE signal between Hm and Hr should 

be stronger. As shown in Supplementary Figure 28, the correlation of the peak at 

10.26 ppm to the signal of Hr (2.31 ppm) is observed (highlighted by the dashed 

orange cycle in Supplementary Figure 28) and that between the peak at 11.13 ppm to 

Hr is not shown. Then, we could assign the peak at 10.26 ppm to Hm and 11.13 ppm to 

Hl. Similarly, we could identify Hs and Ht correspond to the peaks at 9.73 and 9.38 

ppm, respectively. 

We could see in Supplementary Figure 29, all the inward-spacing methyl groups 
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(Hy and Hu) have obviously stronger coupling to the protons at inner C96 core, 

compared to that of outward-spacing methyl groups (Hr and Hu), which clearly 

validates the bilayer structure of 2. 

As shown in Supplementary Figures 30-32, the NOE correlations found in 2’ are in 

good agreement with those found in 2, which indicates 2 and 2’ have the same bilayer 

structure. The proton couplings through space found by NOESY is consistent with 

those found in the crystal structure of 2’. With the help of NOESY, all the peaks of 2’ 

are assigned, as the assignment for 2. 
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Supplementary Note 3 

Computational setup and models of MBLGs 

Density functional theory (DFT) calculations were carried out using the freely 

available program package CP2K/Quickstep.2 The DFT implementation in Quickstep 

is based on a hybrid Gaussian plane wave (GPW) scheme. Orbitals are described by 

an atom-centered Gaussian-type basis set, while an auxiliary plane wave basis is used 

to re-expand the electron density.3 The wave function optimization is performed using 

an efficient orbital transformation minimizer, which avoids the traditional matrix 

diagonalization method and gives optimal convergence control.4 Analytic 

Goedecker-Teter-Hutter (GTH) pseudopotentials5 were employed to represent the core 

electrons. The basis sets for the valence electrons (1s1 for H, 2s22p2 for C and 3s2 3p4 

for S) consist of short-ranged (less diffuse) double-ζ basis functions with one set of 

polarization functions (DZVP).6 The gradient-corrected Perdew–Burke–Ernzerhof 

(GGA-PBE) functional7 was used for all calculations with the Grimme’s dispersion 

correction.8 The plane wave basis for the electron density expansion is cut off at 400 

Ry. All the simulations only used the Γ point of the supercell for expansion of the 

orbitals considering the large size of the cell. The convergence criterion for wave 

function optimization was set by a maximum electronic gradient of 3 × 10-7 a.u. and 

an energy difference tolerance between self-consistent field (SCF) cycles of 10-13 a.u.  

The self-consistent continuum solvation (SCCS)7, 9-11 model was used to account 

for the solvation effect. In this approach, a dielectric cavity is constructed at the 

surface of the system. The dielectric function is defined as: 

]lnε  ) 2π / ) 
lnρlnρ

lnρlnρ
sin(2π-

lnρlnρ

lnρlnρ
exp[(ε 0

minmax

max

minmax

max







  (1) 

where ε0 is the dielectric constant of the bulk solvent, the ρmax and ρmin are the density 

thresholds that delimit the internal and external iso-contours of the smooth dielectric 

cavity. Non-electrostatic effects such as the cavitation energy, dispersion and 

repulsion effects are also included in this model. These contributions are expressed as 

Gcav = γS and Gdis+rep = αS + βV, where γ is the experimental solvent surface tension, 
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α and β are fitted parameters, S is the quantum surface and V is the solute volume. 

The experimental dielectric constant 2.641ε0   and solvent surface tension γ = 32.3 

dyn cm-1 of CS2 were used in our calculations. In specific terms, we employ the 

following parameterization of the solvent, which has been extensively fitted on more 

than 240 molecules and found to be in good agreement with both experiment and the 

widely used polarizable continuum model (PCM) as implemented in Gaussian0310: 

ρmin = 10−4 a.u., ρmax = 5×10−3 a.u., α = -20.8 dyn cm-1, and β = 0 GPa.  

For MBLGs, very large supercells with the sizes of up to 40 × 40 × 40 Å3 were 

used. The initial structures were obtained from experiment, and then optimized with 

DFT. Full 3D periodic boundary conditions (PBC) were applied. When calculating the 

energies of the CS2 molecule in gas phase and liquid phase, we first performed DFT 

based molecular dynamics (DFTMD) simulations. The time step for the MD runs is 

0.5 fs. Canonical ensemble conditions were imposed by a Nosé -Hoover thermostat 

with a target temperature of 330 K for gas phase CS2 and 298K for liquid phase CS2. 

About 5 ps DFTMD runs were performed to obtain the stable structures, which were 

then used as initial structures for static geometry optimization using the BFGS 

minimizer.  

Calculation of binding energies 

To determine the stability of the MBLGs, we calculated the binding energies of the 

MBLGs in solvent CS2. The method of the binding energy calculation in solvent is 

introduced below. 

 

Supplementary Figure 45. Thermodynamic cycle for the binding reaction. 

For an association reaction P(l)N(l)M(l)  , the binding free energy was 

calculated by using the thermodynamic cycle shown in Supplementary Figure 45. 
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Here, (g)ΔGb and (s)ΔGb are the binding free energies in gas phase and liquid 

solution, respectively. (M)ΔGs , (N)ΔGs  and (P)ΔGs are the solvation free 

energies of M, N and P, respectively. From this cycle, the (s)ΔGb  can be expressed 

as, 

 (N)ΔG-(M)ΔG-(P)ΔG(g)ΔG(s)ΔG sssbb              (2) 

In our calculation, the total energy difference (g)ΔEb is used to estimate the free 

energy change (g)ΔGb assuming the entropic contributions are small. Thus, the 

expression for the binding energy in our calculation is given by 

 (N)ΔG-(M)ΔG-(P)ΔG(g)ΔE(s)ΔG sssbb              (3) 

Solvation energies were obtained using a mixed implicit-explicit solvation 

approach, which is illustrated in Supplementary Figure 46. 

 

Supplementary Figure 46. Thermodynamic cycle to compute (X)ΔGs  within a 

mixed implicit-explicit solvation approach. 

The calculated binding energies were listed in Supplementary Table 1. As can be 

seen, the binding energies of MBLGs are large, which means the formation of the 

bilayer structure are thermodynamically favorable, which is consistent with the 

experimentally observed stability of the MBLGs. Note that we have also calculated 

the binding structures and energies using an implicit solvation model, which have 

considerable differences from those obtained using the mixed implicit-explicit 

solvation approach, indicating that the interaction between explicit CS2 and MBLGs is 

significant and cannot be neglected.  

There is however an issue that our calculated binding energies for the trimer 
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have to carry out molecular dynamics and free energy calculation (i.e. potential of 

mean force) on fully atomistic models (both solute and solvent molecules), which is 

however extremely expensive at the level of DFT. It may merit future study, but is 

beyond the scope of the present work. 

Calculation of NMR spectra 

The 1H-NMR spectra of MBLGs (orange lines in Figure 2d and 2h) and monolayer 

of MBLG 1 (Supplementary Figure 4) were calculated for comparison with NMR 

experiment to help resolve the structures of MBLGs. These calculations were 

performed using the GAUSSIAN 09 program package.18 The B3LYP functional19-21 

and the 6-31G* basis sets were employed. The calculated 1H-NMR spectra of MBLGs 

(orange lines in Figure 2d and 2h) are in good agreement with the experimental 

patterns, confirming the bilayer structures and other geometric features of MBLGs. 
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Supplementary Note 4  

Comparison of optical properties of 2. 

The emission spectra of aromatic compounds depend on the molecular structure, 

environment and aggregation state, and direct comparison between the monomer and 

dimer in the same dispersion is the ideal case. However, we took effort to dissociate 

MBLGs into monomers by varying temperature and solvents, but failed due to the 

high stability of MBLGs. Thus, direct comparison between MBLG with its monomer 

cannot be achieved at the current stage. 

 

Supplementary Figure 48. The molecular structure of C96H24(C12H25)6 

(R=n-C12H25) and monomer of 2 (R=mesityl) 

 

A monomer PL spectrum of an analogous molecule, C96H24(C12H25)6, was obtained 

from the single molecule technique22. Compared with the monomer of 2, this 

molecule has the same aromatic core and molecular symmetry, but different 

peripheral groups. As the electronic structures of molecules are primarily determined 

by the aromatic core and symmetry, we can expect the similar spectral shape between 

these two monomers. Therefore, the single molecule PL spectrum of C96H24(C12H25)6 

monomer reported22 is used as a prototype to interpret the spectral modification 

arising from dimerization. 

Unfortunately, we are not able to use the PL spectrum of C96H24(C12H25)6 monomer 

in solution as the reference because C96H24(C12H25)6 ensemble in solution consists of 

monomers and other aggregates23. The monomer PL spectrum however could be 

obtained in Ref. 22 because the monomers and aggregates were immobilized in the PS 
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matrix and the single molecule PL technique could select the monomers out of the 

aggregates. However, the PL quantum yield could be varied due to the other factors 

rather than dimer formation. A solution with pure monomers cannot be obtained at 

current stage. To avoid confusion, we prefer not to directly compare the quantum 

yield with monomer trapped in matrix. 
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Supplementary Note 5  

Transient absorption (TA) spectroscopic measurement 

The TA measurement is based on the Ti:sapphire ultrafast laser amplifier (Coherent 

Astrella, 800 nm, pulse duration ~100 fs, ~6 mJ/pulse and 1 KHz repetition rate) and 

the pump-probe transient absorption spectrometer (Eos Fire, Ultrafast System). Half 

of the output power of the amplifier is delivered to the pump-probe setup. The pump 

pulse (400 nm) is generated by doubling the frequency of the fundamental pulse (800 

nm) based on a BBO crystal, and its intensity is attenuated by two neutral density 

filter wheels. The broadband probe pulse (350-900 nm) is provided by a 

sub-nanosecond photonic crystal fiber based supercontinuum laser. Thus, the time 

resolution of the transient absorption spectrometer is determined by the probe pulse 

duration (~1 ns). The pump-probe delay is controlled electronically, and the maximum 

time window is set up to 20 microsecond. The pump and probe are focused and 

overlapped into a cuvette containing the sample solution. 
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Supplementary Table 

Binding Energy (eV) 1L+1L→2L 1L+2L→3L 

MBLG 1 -4.58 -3.31 

MBLG 2 -2.98 -2.09 

Supplementary Table 1. Binding energies (in eV) in solvent CS2 by using the mixed 

implicit-explicit solvation model and the DFT-PBE functional. 
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