# Practical Access to Axially Chiral Sulfonamides and Biaryl Amino Phenols *via* Organocatalytic Atroposelective *N*-Alkylation

Lu et al.

## **Supplementary Methods**

**General information.** <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: <sup>1</sup>H (chloroform  $\delta$  7.26; DMSO  $\delta$  2.50; acetone-*d*<sub>6</sub>  $\delta$  2.05), <sup>13</sup>C (chloroform  $\delta$  77.0; DMSO  $\delta$  39.5; acetone-*d*<sub>6</sub>  $\delta$  205.87, 30.60). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. Melting point (MP) was obtained on Buchi B-540. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254nm. High resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer. **Optical rotations** were recorded on an mrc AP81 automatic polarimeter. Enantiomeric excesses (ee) were determined by HPLC analysis on Agilent HPLC units, including the following instruments: pump, LC-20AD; detector, SPD-20A; column, Chiralcel OD-H, Chiralpak AD-H, AS-H, ID or IE.

All commercially available reagents listed below were used as received for the reactions without any purification. 3,5-dimethylaniline, 2-naphthol, 3-Bromo-2-naphthol, 6-Bromo-2-naphthol, 7-Bromo-2-naphthol, 7-Methoxy-2-naphthol, 6-Hydroxy-2-naphthoic acid, 9-Phenanthrol, 3,5-Dibromophenol and 4-Bromo-3,5-dimethylphenol were purchased from Sigma aldrich. Liquid reagents were handled with a micropipette. THF was dried on alumina columns using a solvent dispensing system.

For the kinetic resolution, selectivity factors (S) were calculated according to Kagan's equation: S =  $\ln((1-c)(1-ee_{rsm}))/\ln((1-c)(1+ee_{rsm}))$ , wherein c is conversion of the reaction,  $ee_{rsm}$  is the enantiomeric excess of the recovered starting material. Conversions (Conv.) were calculated by <sup>1</sup>H NMR.

The MBH cabonate **2a** and **2b** were synthesized in one step from commercially available materials by literature methods.<sup>[1]</sup>

#### Substrates syntheses:

#### Synthesis of 1a-1k:

These substrates were synthesized following our previous method.<sup>[2]</sup>

## Synthesis of 11:



Our previous one-pot method was followed to yield this intermediate in 52% yield as a brown solid.<sup>[3]</sup> **MP**: 155 - 156 °C. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 – 7.84 (m, 2H), 7.56 (dd, J = 8.9, 2.3 Hz, 1H), 7.42 – 7.32 (m, 4H), 6.45 (dd, J = 8.9, 2.4 Hz, 1H), 5.25 (s, 1H), 3.98 (s, 2H), 3.67 (s, 3H). <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>):  $\delta$  158.37, 151.46, 144.25, 133.40, 132.57, 130.40, 129.37, 128.33, 126.90, 124.11, 123.60, 117.78, 112.92, 106.77, 102.25, 101.38, 55.98. **HRMS (ESI)** m/z Calcd for [C<sub>17</sub>H<sub>14</sub>BrNNaO<sub>2</sub>, M + Na]<sup>+</sup>: 366.0100; Found: 366.0104.



A solution of amino alcohol (1 mmol) in anhydrous THF (5 mL) was cooled to -78 °C. n-Butyllithium (6 mmol, 2 M in cyclohexane) was added slowly to the reaction flask and stirred for 1 h at -78 °C. The reaction mixture was then left to stir at room temperature overnight. Reaction quenched with NH<sub>4</sub>Cl and extracted with ethyl acetate. Combined organic layers washed with brine and dried with Na<sub>2</sub>SO<sub>4</sub> and evaporated *in vacuo*. Crude residue was purified by column chromatography (81% yield). Off-white solid. **MP**: 180 - 181 °C. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.77 – 7.67 (m, 2H), 7.28 – 7.14 (m, 5H), 6.42 – 6.38 (m, 2H), 5.27 (s, 1H), 3.54 (s, 3H), 3.39 (s, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.16 , 151.49 , 146.96 , 132.95 , 130.65 , 129.94 , 129.34 , 128.25 , 126.61 , 124.42 , 123.39 , 117.76 , 113.32 , 108.73 , 106.15 , 101.26 , 55.77 . **HRMS (ESI)** m/z Calcd for [C<sub>17</sub>H<sub>16</sub>NO<sub>2</sub>, M + H]<sup>+</sup>: 266.1176; Found 266.1167.

A solution of amino alcohol (0.6 mmol) in anhydrous  $CH_2Cl_2$  (15 mL) was cooled to 0 °C. Pyridine (0.9 mmol) and MsCl (0.6 mmol) were added successively to the reaction flask. The reaction mixture was then left to stir at room temperature overnight. The solvent was evaporated *in vacuo*. Crude residue was purified by column chromatography (62% yield). White solid. **MP:** 214 - 215 °C. <sup>1</sup>**H NMR** (400 MHz, Acetone-*d*<sub>6</sub>):  $\delta$  8.52 (br, 1H), 7.91 – 7.86 (m, 2H), 7.49 (t, *J* = 8.2 Hz, 1H), 7.42 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.21 (ddd, *J* = 7.4, 2.2, 0.9 Hz, 1H), 7.01 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.61 (br, 1H), 3.65 (s, 3H), 2.79 (s, 3H). <sup>13</sup>C **NMR** (100MHz, Acetone-*d*<sub>6</sub>):  $\delta$  158.77 , 152.72 , 137.80 , 133.81 , 130.31 , 129.79 , 129.07 , 128.23 , 126.70 , 123.81 , 123.19 , 118.47 , 115.69 , 112.46 , 112.29 , 107.51 , 55.22 , 38.88 . **HRMS (ESI)** m/z Calcd for [C<sub>18</sub>H<sub>16</sub> NO<sub>4</sub>S, M - H]<sup>-</sup>: 342.0806; Found: 342.0808.

#### Synthesis of 1m-1o:



The NOBIN analogs were synthesized by the known procedures.<sup>[4,5]</sup>

A solution of NOBIN analog (0.6 mmol) in Pyridine (1mL), TsCl (0.6 mmol) were added to the reaction flask. The reaction mixture was then left to stir at room temperature overnight. The solvent was evaporated *in vacuo*. Crude residue was purified by column chromatography.

## Synthesis of 1p:



The first step followed our previous procedure to deliver the free amino phenol intermediate.<sup>[2]</sup>

To a solution of the amino phenol (1 mmol) in THF at -78 °C was added a solution of NaHMDS (3.3 equiv) in THF (5 mL) via syringe. The reaction mixture was warmed to room temperature and stirred for 30 minutes. The reaction was then recooled to -78 °C and a solution of (Boc)<sub>2</sub>O (1 equiv) in THF (5 mL) was added dropwise to the reaction mixture. The reaction was allowed to stir at -78 °C for 2 hours, then gradually warm to room temperature. The reaction was then heated to 65 °C and allowed to stir overnight. The reaction was quenched by the addition of 20 mL of water and 2 M HCl was added gradually till pH = 3. The reaction mixture was extracted with ethyl acetate (3 X 15 mL), the combined organic phase was washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo*. The crude residue was purified by column to yield the desired compounds (82% yield) as a white solid. **MP**: 197 – 198 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.92 – 7.86 (m, 3H), 7.38 (qdd, *J* = 6.8, 4.1, 1.8 Hz, 2H), 7.33 (dd, *J* = 8.9, 1.5 Hz, 1H), 7.21 – 7.15 (m, 1H), 5.91 (s, 1H), 5.30 (br, 1H), 3.77 (s, 3H), 2.44 (s, 3H), 1.85 (s, 3H), 1.36 (s, 9H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$  153.61, 153.43, 151.23, 133.55, 132.76, 132.59, 132.11, 130.54, 129.28, 128.33, 127.21, 123.80, 123.75, 121.57, 121.13, 117.79, 114.76, 80.52, 60.13, 28.16, 16.59, 13.12. **HRMS (ESI)** m/z Calcd for [C<sub>24</sub>H<sub>26</sub>NO<sub>4</sub>, M - H]: 392.1868; Found: 392.1866.

## Synthesis of 1q:



To a solution of **1a** (0.4 mmol) in acetone (4 mL) were added K<sub>2</sub>CO<sub>3</sub> (0.2 mmol) and MeI (0.4 mmol). The reaction mixture was allowed to stir at room temperature overnight. The solvent was evaporated *in vacuo*. The crude residue was purified by column chromatography to produce the desired product **1q** (25% yield) as a syrup. <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.93 (dd, *J* = 9.1, 0.8 Hz, 1H), 7.84 – 7.78 (m, 1H), 7.36 (d, *J* = 9.1 Hz, 1H), 7.34 – 7.32 (m, 1H), 7.32 – 7.25 (m, 2H), 7.10 – 7.05 (m, 1H), 5.64 (br, 1H), 3.79 (s, 3H), 3.67 (s, 3H), 2.49 (s, 3H), 2.32 (s, 3H), 1.70 (s, 3H). <sup>13</sup>C NMR (75 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  154.66, 154.10, 132.73, 131.70, 131.40, 131.05, 130.73, 129.22, 128.35, 127.42, 126.93, 124.00, 123.51, 121.22, 117.39, 113.08, 59.76, 56.05, 39.03, 16.09, 13.05. HRMS (ESI) m/z Calcd for [C<sub>21</sub>H<sub>23</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 408.1240; Found: 408.1242.

## Attempt of kinetic resolution of 1a catalyzed by NHC:



To a 4 mL vial was added the racemic **1a** (0.075 mmol), triazolium salt (0.0075 mmol) and 4Å MS (25 mg). The mixture was taken into the glovebox, where aldehyde (9  $\mu$ L, 0.052 mmol), anhydrous DCM (0.75 mL) and DIPEA (18  $\mu$ L, 0.075 mmol) were added. The reaction mixture was taken outside the glovebox. The vial was then sealed and the reaction mixture was allowed to stir at ambient temperature for 24 h. The crude reaction mixture was directly purified by silica gel column chromatography with hexanes/ethyl acetate (10:1 v/v) as eluent to afford the ester product and the recovered starting material in pure form.

# **Recovered 1a:**



Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.92 – 7.87 (m, 2H), 7.53 (s, 1H), 7.43 – 7.37 (m, 2H), 7.29 (d, *J* = 8.9 Hz, 1H), 7.14 – 7.12 (m, 1H), 5.82 (s, 1H), 5.29 (s, 1H), 3.80 (s, 3H), 2.73 (s, 3H), 2.44 (s, 3H),

1.91 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  155.01 , 150.98 , 133.24 , 132.98 , 132.43 , 132.00 , 131.17 , 129.40 , 128.77 , 127.67 , 124.19 , 123.64 , 123.15 , 121.52 , 117.78 , 114.09 , 60.15 , 39.59 , 16.58 , 13.34 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>20</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 370.1119; Found: 370.1119.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 4.0 (*c* = 0.2, CHCl<sub>3</sub>). 26% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm, *t*<sub>R</sub> = 10.02 min for major isomer, *t*<sub>R</sub> = 12.42 min for minor isomer).

Supplementary Figure 1. HPLC Trace of 1a from NHC-Catalyzed Kinetic Resolution.





Syrup. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 8.02 (m, 1H), 7.99 – 7.95 (m, 1H), 7.57 – 7.42 (m, 3H), 7.36 – 7.30 (m, 2H), 6.06 (s, 1H), 3.76 (s, 3H), 2.66 (s, 3H), 2.42 (s, 3H), 2.24 – 2.21 (m, 2H), 2.00 – 1.88 (m, 1H), 1.87 (s, 3H), 0.81 (d, *J* = 3.5 Hz, 3H), 0.79 (d, *J* = 3.5 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.53, 154.26, 146.53, 132.24, 132.12, 132.04, 131.95, 131.33, 130.53, 128.50, 127.41, 126.24, 124.94, 124.88, 124.80, 121.75, 120.61, 59.87, 42.95, 39.56, 25.63, 21.95, 21.91, 16.33, 13.25. HRMS (ESI) m/z Calcd for [C<sub>25</sub>H<sub>29</sub>NNaO<sub>5</sub>S, M + Na]<sup>+</sup>: 478.1658; Found: 478.1654.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 8.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 27% ee (HPLC condition: Chiralcel ID column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 31.59$  min for major isomer,  $t_{R} = 37.63$  min for minor isomer).

Supplementary Figure 2. HPLC Trace of Acylation Product from NHC-Catalyzed Kinetic Resolution.



# Representative procedure for the kinetic resolution of 1 catalyzed by (DHQD)<sub>2</sub>AQN:



To a 4 mL vial containing 1 (0.04 mmol) and  $(DHQD)_2AQN$  (7.0 mg, 20 mol%) were added  $CH_2Cl_2$  (0.5 mL),  $CH_3CN$  (0.5 mL) and MBH carbonate (6  $\mu$ L). The reaction mixture was allowed to stir for 24 h at 24 °C. The volatiles were removed *in vacuo* at 24 °C and the residue was purified by silica gel column chromatography with hexanes/ethyl acetate (10:1 v/v) as the eluent to afford the product **4** and unreacted starting material **1**.

For the preparation of authentic racemic products, DABCO was used instead of (DHQD)<sub>2</sub>AQN following the same procedure.

Note: NMR for the products were taken at 80 °C in DMSO-d<sub>6</sub>.

# **Characterization of compounds**





Syrup. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 – 7.87 (m, 2H), 7.53 (s, 1H), 7.43 – 7.37 (m, 2H), 7.29 (d, *J* = 8.9 Hz, 1H), 7.14 – 7.12 (m, 1H), 5.82 (s, 1H), 5.29 (s, 1H), 3.80 (s, 3H), 2.73 (s, 3H), 2.44 (s, 3H), 1.91 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  155.01 , 150.98 , 133.24 , 132.98 , 132.43 , 132.00 , 131.17 , 129.40 , 128.77 , 127.67 , 124.19 , 123.64 , 123.15 , 121.52 , 117.78 , 114.09 , 60.15 , 39.59 , 16.58 , 13.34 . HRMS (ESI) m/z Calcd for [C<sub>20</sub>H<sub>20</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 370.1119; Found: 370.1119.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 12.0 (c = 0.2, CHCl<sub>3</sub>). The absolute configuration of **1a** was assigned by analogy to **1b**. 98% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 8.60 min for major isomer,  $t_{R}$  = 10.66 min for minor isomer).





# Product 3a



Syrup. <sup>1</sup>**H NMR** (500 MHz, DMSO-*d*<sub>6</sub>, 80 °C) δ 9.08 (br, 1H), 7.87 – 7.81 (m, 2H), 7.32 – 7.23 (m, 3H), 7.14 (s, 1H), 7.10 – 7.04 (m, 1H), 6.02 (s, 1H), 5.56 (s, 1H), 4.14 (d, *J* = 16.6 Hz, 1H), 4.05 (q, *J* = 7.2 Hz, 2H), 3.93 (d, *J* = 16.2 Hz, 1H), 3.75 (s, 3H), 2.47 (s, 3H), 2.35 (s, 3H), 1.74 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (125 MHz, DMSO-*d*<sub>6</sub>, 80 °C) δ 166.07, 156.88, 152.29, 136.60, 135.84, 135.52, 133.94, 132.32, 132.03, 130.12, 129.75, 128.60, 128.24, 128.03, 126.50, 124.76, 123.15, 118.97,

117.97 , 60.72 , 60.03 , 50.37 , 40.18 , 16.22 , 14.26 , 13.35 . HRMS (ESI) m/z Calcd for  $[C_{26}H_{29}NNaO_6S, M + Na]^+$ : 506.1608; Found: 506.1604.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 28.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 60% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 9.15$  min for minor isomer,  $t_{R} = 10.11$  min for major isomer).

Peak RetTime Type Peak RetTime Type Width Area Height Area Width Area Height Area [min] [min] [mAU\*s] [mAU] [min] [mAU\*s] 8 [min] [mAU] ŝ # 9.162 BV 0.2760 715.09100 39.34943 50.0124 1 9.150 BB 0.2736 75.01785 4.17610 20.0536 10.123 VB 0.2999 714.73596 36.42604 49.9876 2 10.113 BB 0.2984 299.06830 15.27339 79.9464





Syrup. <sup>1</sup>**H NMR** (500 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  9.05 (br, 1H), 7.84 – 7.80 (m, 2H), 7.33 – 7.22 (m, 3H), 7.13 (s, 1H), 7.08 – 7.03 (m, 1H), 5.94 (s, 1H), 5.50 (s, 1H), 4.09 (d, J = 16.5 Hz, 1H), 3.86 (d, J = 16.5 Hz, 1H), 3.73 (s, 3H), 2.45 (s, 3H), 2.34 (s, 3H), 1.72 (s, 3H), 1.38 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  164.43 , 155.92 , 151.33 , 136.97 , 134.96 , 134.50 , 133.00 , 131.37 , 131.17 , 129.10 , 128.79 , 127.66 , 127.28 , 126.34 , 125.55 , 123.82 , 122.21 , 118.03 , 117.03 , 79.99 , 59.06 , 49.32 , 27.18 , 15.29 , 12.38 . **HRMS (ESI)** m/z Calcd for [C<sub>28</sub>H<sub>33</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 534.1921; Found: 534.1926.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 25.0 (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>). 65% ee (HPLC condition: Chiralcel ID column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 11.26 min for major isomer,  $t_{R}$  = 12.61 min for minor isomer).

Supplementary Figure 5. HPLC Trace of Product 4a.



## **Recovered 1b**



Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.21 (s, 1H), 7.83 – 7.79 (m, 1H), 7.53 (s, 1H), 7.42 (tt, *J* = 8.3, 3.4 Hz, 2H), 7.18 – 7.14 (m, 1H), 5.74 (s, 1H), 5.72 (s, 1H), 3.79 (s, 3H), 2.72 (s, 3H), 2.45 (s, 3H), 1.88 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  154.95, 147.02, 132.82, 132.72, 132.19, 132.12, 131.21, 129.84, 128.10, 127.78, 125.25, 124.94, 123.66, 121.76, 116.29, 112.43, 60.12, 39.52, 16.55, 13.40. HRMS (ESI) m/z Calcd for [C<sub>20</sub>H<sub>19</sub>NO<sub>4</sub>SBr, M - H]<sup>-</sup>: 448.0224; Found: 448.0230.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 12.0 (c = 0.4, CHCl<sub>3</sub>). The absolute configuration of **1b** was assigned by conversion to **6a** followed by single crystal X-ray analysis. 98% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 11.88 min for major isomer,  $t_{R}$  = 12.78 min for minor isomer).



Supplementary Figure 6. HPLC Trace of Recovered 1b.

## **Product 4b**



White solid. **MP**: 112 - 113 °C. <sup>1</sup>**H NMR** (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  8.41 (br, 1H), 8.29 (s, 1H), 7.85 (dd, J = 7.8, 1.5 Hz, 1H), 7.35 (ddd, J = 8.1, 6.7, 1.4 Hz, 1H), 7.31 (ddd, J = 8.2, 6.8, 1.5 Hz, 1H), 7.19 (s, 1H), 7.02 (d, J = 8.2 Hz, 1H), 5.92 (s, 1H), 5.43 (s, 1H), 4.00 (d, J = 16.4 Hz, 1H), 3.87 (d, J = 16.4 Hz, 1H), 3.76 (s, 3H), 2.61 (s, 3H), 2.37 (s, 3H), 1.73 (s, 3H), 1.40 (s, 9H). <sup>13</sup>C **NMR** (125MHz, DMSO- $d_6$ , 80 °C):  $\delta$  164.40 , 156.25 , 147.42 , 136.41 , 135.10 , 133.37 , 131.93 , 131.73 , 131.34 , 130.91 , 130.27 , 128.59 , 126.80 , 126.54 , 126.08 , 124.09 , 123.65 , 119.96 , 113.18 , 80.16 , 59.09 , 49.71 , 39.23 , 27.18 , 15.34 , 12.54 . **HRMS (ESI)** m/z Calcd for [C<sub>28</sub>H<sub>32</sub>BrNNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 612.1026; Found: 612.1022.

**Optical Rotation**:  $[\alpha]^{25}_{D} - 35.0$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 73% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 6.91$  min for major isomer,  $t_{R} = 7.65$  min minor for isomer).

Supplementary Figure 7. HPLC Trace of Product 4b.



## **Recovered 1c**



Syrup. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>): δ 7.69 – 7.67 (m, 1H), 7.42 (s, 1H), 7.28 (ddd, *J* = 8.1, 6.9, 1.3 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.07 – 7.00 (m, 1H), 6.05 (s, 1H), 5.78 (s, 1H), 4.01 (s, 3H), 3.69 (s, 3H), 2.54 (s, 3H), 2.33 (s, 3H), 1.79 (s, 3H). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>): δ 154.86, 146.87, 143.00, 132.04, 132.02, 131.02, 129.27, 127.91, 127.37, 125.86, 125.39, 124.75, 123.45, 121.75, 114.93, 106.69,

60.05 , 56.05 , 39.15 , 16.49 , 13.47 . HRMS (ESI) m/z Calcd for  $[C_{21}H_{22}NO_5S,\,M$  -  $H]^-:$  400.1224; Found: 400.1231.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 13.0 (c = 0.2, CHCl<sub>3</sub>). The absolute configuration of **1c** was assigned by analogy to **1b**. 97% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 17.36$  min for major isomer,  $t_{R} = 23.88$  min for minor isomer).

## Supplementary Figure 8. HPLC Trace of Recovered 1c.



## **Product 4c**



Syrup: <sup>1</sup>**H** NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.44 (br, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.40 (s, 1H), 7.27 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.17 – 7.10 (m, 2H), 7.00 (d, J = 8.4 Hz, 1H), 5.95 (s, 1H), 5.50 (s, 1H), 4.07 (d, J = 16.7 Hz, 1H), 4.02 (s, 3H), 3.88 (d, J = 16.4 Hz, 1H), 3.74 (s, 3H), 2.46 (s, 3H), 2.35 (s, 3H), 1.73 (s, 3H), 1.40 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  165.36 , 156.84 , 149.05 , 144.21 , 137.92 , 135.82 , 135.16 , 132.14 , 130.10 , 129.08 , 128.90 , 127.31 , 127.07 , 124.62 , 124.21 , 123.83 , 118.85 , 107.25 , 104.99 , 80.93 , 60.03 , 56.38 , 50.34 , 40.23 , 28.12 , 16.25 , 13.33 . HRMS (ESI) m/z Calcd for [C<sub>29</sub>H<sub>35</sub>NNaO<sub>7</sub>S, M + Na]<sup>+</sup>: 564.2026; Found: 564.2021.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 8.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 51% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 13.47$  min for minor isomer,  $t_{R} = 16.03$  min for major isomer).

Supplementary Figure 9. HPLC Trace of Product 4c.



## **Recovered 1d**



Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.04 (d, J = 1.9 Hz, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.50 (s, 1H), 7.45 (dd, J = 9.0, 1.9 Hz, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 8.9 Hz, 1H), 5.79 (s, 1H), 5.44 (s, 1H), 3.79 (s, 3H), 2.75 (s, 3H), 2.43 (s, 3H), 1.87 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  155.05 , 151.37 , 133.51 , 132.94 , 131.91 , 131.08 , 130.84 , 130.70 , 130.47 , 130.18 , 125.04 , 123.15 , 121.55 , 119.07 , 117.94 , 114.52 , 60.16 , 39.80 , 16.59 , 13.33 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>19</sub>NO4SBr, M - H]<sup>-</sup>: 448.0224; Found: 448.0222.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 18.0 (c = 1.0, CHCl<sub>3</sub>). The absolute configuration of **1d** was assigned by analogy to **1b**. 98% ee (HPLC condition: Chiralpak ID column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 10.07$  min for minor isomer,  $t_{R} = 11.51$  min for major isomer).

## Supplementary Figure 10. HPLC Trace of Recovered 1d.



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% | Peak<br># | RetTime<br>[min] | Type | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
| 1         | 9.826            | BV   | 0.3536         | 1.01352e4       | 433.75708       | 48.4516   | 1         | 10.079           | MM   | 0.4976         | 3.44885         | 1.15515e-1      | 1.1918    |
| 2         | 11.098           | VB   | 0.6121         | 1.07830e4       | 268.20438       | 51.5484   | 2         | 11.514           | BB   | 0.6177         | 285.92834       | 6.84037         | 98.8082   |

**Product 4d** 



Syrup: <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  9.31 (br, 1H), 8.07 (d, J = 2.0 Hz, 1H), 7.85 (d, J = 8.9 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.15 (s, 1H), 7.00 (d, J = 9.0 Hz, 1H), 5.95 (s, 1H), 5.50 (s, 1H), 4.10 (d, J = 16.5 Hz, 1H), 3.90 (d, J = 16.5 Hz, 1H), 3.74 (s, 3H), 2.59 (s, 3H), 2.35 (s, 3H), 1.72 (s, 3H), 1.40 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.35, 156.90, 152.87, 137.74, 135.98, 134.96, 132.62, 132.31, 131.86, 130.41, 129.96, 129.81, 129.27, 129.06, 127.44, 127.29, 120.18, 118.30, 116.19, 81.01, 60.04, 50.42, 40.49, 28.13, 16.24, 13.35. HRMS (ESI) m/z Calcd for [C<sub>28</sub>H<sub>32</sub>BrNNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 612.1026; Found: 612.1029.

**Optical Rotation**:  $[\alpha]^{25}_{D} - 20.0$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 66% ee (HPLC condition: Chiralpak ID column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 10.02$  min for major isomer,  $t_{R} = 11.57$  min for minor isomer).



## Supplementary Figure 11. HPLC Trace of Product 4d.

## **Recovered 1e**



Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.62 (d, J = 1.6 Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.95 (dd, J = 8.7, 1.8 Hz, 1H), 7.49 (s, 1H), 7.36 (d, J = 8.9 Hz, 1H), 7.17 (d, J = 8.8 Hz, 1H), 5.92 (br, 1H), 5.83 (s, 1H), 3.98 (s, 3H), 3.78 (s, 3H), 2.73 (s, 3H), 2.42 (s, 3H), 1.87 (s, 3H). <sup>13</sup>C NMR (125MHz, CDCl<sub>3</sub>):  $\delta$  167.14, 155.06, 153.31, 135.09, 133.44, 132.92, 132.57, 131.89, 131.80, 128.35, 127.04, 125.66, 123.45, 123.37, 121.64, 118.88, 114.58, 60.15, 52.31, 39.76, 16.58, 13.35. HRMS (ESI) m/z Calcd for [C<sub>22</sub>H<sub>22</sub>NO<sub>6</sub>S, M - H]<sup>-</sup>: 428.1173; Found: 428.1174.

**Optical Rotation**:  $[\alpha]^{25}_{D} + 23.0$  (c = 1.0, CHCl<sub>3</sub>). The absolute configuration of **1e** was assigned by analogy to **1b**. 95% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 15.45$  min for minor isomer,  $t_{R} = 19.40$  min for major isomer).



Supplementary Figure 12. HPLC Trace of Recovered 1e.

## **Product 4e**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  9.60 (br, 1H), 8.54 (d, J = 1.7 Hz, 1H), 8.05 (d, J = 8.9 Hz, 1H), 7.73 (dt, J = 8.9, 1.3 Hz, 1H), 7.44 – 7.37 (m, 1H), 7.16 (s, 1H), 7.13 (d, J = 8.9 Hz, 1H), 5.93 (s, 1H), 5.48 (s, 1H), 4.08 (d, J = 16.6 Hz, 1H), 3.91 – 3.88 (m, 4H), 3.75 (s, 3H), 2.56 (s, 3H), 2.36 (s, 3H), 1.73 (s, 3H), 1.38 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.97, 164.37, 155.96, 153.83, 136.75, 135.43, 135.06, 134.01, 131.34, 130.93, 130.51, 130.13, 129.48, 126.56, 126.40, 124.50, 124.33, 123.61, 118.97, 117.30, 80.02, 59.08, 51.21, 49.49, 27.13, 15.30, 12.39. HRMS (ESI) m/z Calcd for [C<sub>30</sub>H<sub>35</sub>NNaO<sub>8</sub>S, M + Na]<sup>+</sup>: 592.2083; Found: 592.2087.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 20.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 66% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 13.49$  min for major isomer,  $t_{R} = 15.85$  min for minor isomer).

#### Supplementary Figure 13. HPLC Trace of Product 4e.



## **Recovered 1f**



Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.87 (d, J = 8.9 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.53 (s, 1H), 7.48 (dd, J = 8.7, 1.9 Hz, 1H), 7.30 (d, J = 9.0 Hz, 1H), 7.25 (d, J = 1.9 Hz, 1H), 5.76 (s, 1H), 5.41 (s, 1H), 3.81 (s, 3H), 2.80 (s, 3H), 2.45 (s, 3H), 1.90 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  155.01 , 152.05 , 133.78 , 133.73 , 132.99 , 132.02 , 131.12 , 130.43 , 127.79 , 127.59 , 125.24 , 122.54 , 122.27 , 121.21 , 118.36 , 113.44 , 60.20 , 39.70 , 16.64 , 13.34 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>19</sub>NO<sub>4</sub>SBr, M - H]<sup>-</sup>: 448.0224; Found: 448.0232.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 68.0 (c = 0.5, CHCl<sub>3</sub>). The absolute configuration of **1f** was assigned by analogy to **1b**. 99% ee (HPLC condition: Chiralpak ID column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 8.61 min for major isomer,  $t_{R}$  = 9.88 min for minor isomer).



## Supplementary Figure 14. HPLC Trace of Recovered 1f.

## **Product 4f**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  9.40 (br, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.37 (dd, J = 8.7, 2.0 Hz, 1H), 7.33 (d, J = 8.9 Hz, 1H), 7.23 (s, 1H), 7.15 (s, 1H), 5.96 (s, 1H), 5.49 (s, 1H), 4.08 (d, J = 16.4 Hz, 1H), 3.91 (d, J = 16.4 Hz, 1H), 3.75 (s, 3H), 2.60 (s, 3H), 2.36 (s, 3H), 1.74 (s, 3H), 1.40 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ ):  $\delta$  165.33 , 156.90 , 153.41 , 137.70 , 136.07 , 135.27 , 134.83 , 132.31 , 131.82 , 130.51 , 130.34 , 129.92 , 127.60 , 127.05 , 126.94 , 126.15 , 120.48 , 119.49 , 117.35 , 81.03 , 60.05 , 50.49 , 40.54 , 28.14 , 16.27 , 13.37 . HRMS (ESI) m/z Calcd for [C<sub>28</sub>H<sub>32</sub>BrNNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 612.1026; Found: 612.1024.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 22.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 53% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 7.36$  min for major isomer,  $t_{R} = 8.74$  min for minor isomer).





# **Recovered 1g**



Syrup. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.9 Hz, 1H), 7.53 (s, 1H), 7.13 (d, J = 8.8 Hz, 1H), 7.07 (dd, J = 8.9, 2.5 Hz, 1H), 6.41 (d, J = 2.5 Hz, 1H), 5.84 (s, 1H), 5.09 (br, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 2.76 (s, 3H), 2.44 (s, 3H), 1.94 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.29, 155.09, 151.53, 133.87, 133.25, 132.88, 132.01, 130.89, 130.39, 124.75, 123.67, 121.67, 115.79, 115.07, 113.22, 102.55, 60.13, 55.28, 39.62, 16.59, 13.25. HRMS (ESI) m/z Calcd for [C<sub>21</sub>H<sub>22</sub>NO<sub>5</sub>S, M - H]<sup>-</sup>: 400.1224; Found: 400.1231.

**Optical Rotation**:  $[\alpha]^{25}_{D} + 28.0$  (c = 0.2, CHCl<sub>3</sub>). The absolute configuration of **1g** was assigned by analogy to **1b**. 98% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 9.44$  min for major isomer,  $t_{R} = 14.68$  min for minor isomer).



Supplementary Figure 16. HPLC Trace of Recovered 1g.

#### **Product 4g**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  9.08 (br, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.73 (d, J = 8.9 Hz, 1H), 7.16 – 7.11 (m, 2H), 6.93 (dd, J = 8.9, 2.5 Hz, 1H), 6.43 (d, J = 2.5 Hz, 1H), 5.97 (s, 1H), 5.55 (s, 1H), 4.11 (d, J = 16.7 Hz, 1H), 3.90 (d, J = 16.6 Hz, 1H), 3.73 (s, 3H), 3.60 (s, 3H), 2.51 (s, 3H), 2.35 (s, 3H), 1.75 (s, 3H), 1.39 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.37 , 158.25 , 156.92 , 152.87 , 137.88 , 135.89 , 135.57 , 135.40 , 132.24 , 132.17 , 129.91 , 129.79 , 129.48 , 127.20 , 124.02 , 117.25 , 116.33 , 115.31 , 104.36 , 80.95 , 60.01 , 55.12 , 50.22 , 40.30 , 28.10 , 16.27 , 13.25 . HRMS (ESI) m/z Calcd for [C<sub>29</sub>H<sub>35</sub>NNaO<sub>7</sub>S, M + Na]<sup>+</sup>: 564.2026; Found: 564.2029.

**Optical Rotation**:  $[\alpha]^{25}_{D} - 25.0$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 68% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 17.62$  min for minor isomer,  $t_{R} = 21.06$  min for major isomer).

#### Supplementary Figure 17. HPLC Trace of Product 4g.



## **Recovered 1h**



Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.87 (d, J = 8.9 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.56 (s, 1H), 7.40 (dd, J = 8.6, 2.2 Hz, 2H), 7.36 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.23 (d, J = 8.8 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.11 (d, J = 8.1 Hz, 2H), 6.81 – 6.75 (m, 1H), 6.11 (s, 1H), 4.86 (br, 1H), 3.75 (s, 3H), 2.40 (s, 6H), 1.78 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  154.52, 151.03, 143.82, 135.96, 132.89, 132.72, 132.39, 131.91, 131.01, 129.54, 129.21, 128.45, 127.42, 127.18, 123.78, 123.23, 122.68, 120.80, 117.64, 113.68, 60.10, 21.59, 16.60, 13.21. HRMS (ESI) m/z Calcd for [C<sub>26</sub>H<sub>24</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 446.1432; Found: 446.1430.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 50.0 (c = 0.2, CHCl<sub>3</sub>). The absolute configuration of **1h** was assigned by analogy to **1b**. 95% ee (HPLC condition: Chiralpak ID column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 9.36 min for major isomer,  $t_{R}$  = 11.38 min for minor isomer).

#### Supplementary Figure 18. HPLC Trace of Recovered 1h.



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% | Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
| 1         | 9.238            | BB   | 0.2915         | 854.86621       | 44.81683        | 48.2714   | 1         | 9.363            | BB   | 0.2995         | 540.59430       | 27.60513        | 97.5562   |
| 2         | 11.271           | BB   | 0.3659         | 916.09235       | 38.46063        | 51.7286   | 2         | 11.386           | MM   |                | 13.54197        | 5.24025e-1      | 2.4438    |

**Product 4h** 



Syrup. <sup>1</sup>H NMR (500 MHz DMSO- $d_6$ , 80 °C):  $\delta$  8.90 (br, 1H), 7.84 – 7.78 (m, 2H), 7.28 (ddd, J = 8.0, 6.7, 1.3 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.17 – 7.06 (m, 5H), 6.95 (s, 1H), 5.78 (s, 1H), 5.16 (s, 1H), 4.09 (d, J = 16.6 Hz, 1H), 3.82 (d, J = 16.4 Hz, 1H), 3.75 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H), 1.74 (s, 3H), 1.38 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.31, 156.92, 152.25, 143.43, 137.14, 137.06, 136.03, 135.80, 134.02, 132.51, 131.34, 129.90, 129.50, 129.41, 128.69, 128.17, 128.03, 127.66, 126.33, 125.09, 123.02, 118.88, 118.07, 80.79, 60.07, 50.67, 28.12, 21.28, 16.23, 13.41. HRMS (ESI) m/z Calcd for [C<sub>34</sub>H<sub>37</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 610.2234; Found: 610.2236.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 14.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 72% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 11.97$  min for minor isomer,  $t_{R} = 14.93$  min for major isomer).



## Supplementary Figure 19. HPLC Trace of Product 4h.

## **Recovered 1i**



Syrup. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.78 – 8.75 (m, 1H), 8.75 – 8.71 (m, 1H), 8.41 (ddd, J = 8.2, 1.5, 0.6 Hz, 1H), 7.81 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.73 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.47 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.15 (ddd, J = 8.1, 1.4, 0.6 Hz, 1H), 5.89 (s, 1H), 5.38 (s, 1H), 3.82 (s, 3H), 2.76 (s, 3H), 2.48 (s, 3H), 1.97 (s, 3H). <sup>13</sup>C NMR (100MHz, CDCl<sub>3</sub>):  $\delta$  155.09, 147.39, 133.67, 133.40, 132.52, 131.69, 130.70, 128.15, 127.72, 127.14, 127.01, 125.00, 124.72, 123.76, 123.35, 123.28, 122.96, 122.74, 121.27, 110.06, 60.20, 39.72, 16.64, 13.34. HRMS (ESI) m/z Calcd for [C<sub>24</sub>H<sub>22</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 420.1276; Found: 420.1274.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 16.0 (c = 0.4, CHCl<sub>3</sub>). The absolute configuration of **1i** was assigned by analogy to **1b**. 99% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 10.45 min for major isomer,  $t_{R}$  = 21.85 min for minor isomer).



Supplementary Figure 20. HPLC Trace of Recovered 1i.

## **Product 4i**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  8.84 (d, J = 8.2 Hz, 1H), 8.76 (d, J = 8.2 Hz, 1H), 8.41 (dd, J = 8.2, 1.5 Hz, 1H), 7.77 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.71 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.50 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.40 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.21 (s, 1H), 7.08 (dd, J = 8.3, 1.3 Hz, 1H), 5.88 (s, 1H), 5.48 (s, 1H), 4.04 (d, J = 16.4 Hz, 1H), 3.87 (d, J = 16.4 Hz, 1H), 3.78 (d, J = 1.4 Hz, 3H), 2.59 (s, 3H), 2.39 (s, 3H), 1.80 (s, 3H), 1.37 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.42, 157.32, 147.55, 137.43, 136.22, 134.85, 133.13, 132.67, 132.07, 131.42, 131.02, 127.89, 127.70, 127.28, 126.95, 126.71, 126.48, 125.33, 124.54, 123.47, 123.24, 123.23, 115.26, 81.12, 60.04, 50.46, 28.10, 16.33, 13.50. HRMS (ESI) m/z Calcd for [C<sub>32</sub>H<sub>35</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 584.2077; Found: 584.2074.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 16.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 68% ee (HPLC condition: Chiralpak IE column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 24.80 min for

minor isomer,  $t_{\rm R} = 26.78$  min for major isomer).





# **Recovered 1j**



Syrup. <sup>1</sup>**H NMR** (500 MHz, Acetone-*d*<sub>6</sub>):  $\delta$  9.07 (br, 1H), 7.45 (d, *J* = 1.9 Hz, 1H), 7.41 (s, 1H), 7.24 (d, *J* = 1.9 Hz, 1H), 7.05 (br, 1H), 3.73 (s, 3H), 2.92 (s, 3H), 2.34 (s, 3H), 1.95 (s, 3H). <sup>13</sup>C NMR (125MHz, Acetone-*d*<sub>6</sub>):  $\delta$  156.80, 154.35, 131.53, 131.50, 130.81, 127.81, 126.45, 126.25, 124.33, 122.43, 121.93, 118.63, 59.32, 39.41, 15.65, 12.60. **HRMS (ESI)** m/z Calcd for [C<sub>16</sub>H<sub>16</sub> Br<sub>2</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 475.9173; Found: 475.9175.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 22.0 (c = 1.0, CHCl<sub>3</sub>). The absolute configuration of **1j** was assigned by analogy to **1b**. 73% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 6.58$  min for major isomer,  $t_{R} = 7.85$  min for minor isomer).

Supplementary Figure 22. HPLC Trace of Recovered 1j.



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% | Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |           |                  |      |                |                 |                 |           |
| 1         | 6.664            | BB   | 0.2563         | 253.79059       | 14.78525        | 49.8633   | 1         | 6.582            | BB   | 0.2548         | 274.68600       | 16.19757        | 86.3502   |
| 2         | 7.986            | MM   | 0.3264         | 255.18239       | 13.03028        | 50.1367   | 2         | 7.850            | BB   | 0.2960         | 43.42095        | 2.26197         | 13.6498   |

**Product 4j** 



Syrup. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  9.94 (br, 1H), 7.36 (s, 1H), 7.18 (s, 1H), 7.15 (s, 1H), 6.05 (s, 1H), 5.59 (s, 1H), 4.15 (s, 2H), 3.71 (s, 3H), 2.94 (s, 3H), 2.30 (s, 3H), 1.86 (s, 3H), 1.44 (s, 9H). <sup>13</sup>C NMR (125MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.28 , 157.36 , 156.70 , 137.84 , 135.54 , 135.07 , 131.48 , 130.82 , 126.72 , 126.68 , 126.52 , 125.65 , 125.17 , 121.97 , 118.65 , 81.03 , 60.03 , 50.70 , 40.55 , 28.20 , 16.23 , 13.38 . **HRMS (ESI)** m/z Calcd for [C<sub>24</sub>H<sub>29</sub>Br<sub>2</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 639.9974; Found: 639.9978.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 21.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 83% ee (HPLC condition: Chiralpak As-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 5.65 min for major isomer,  $t_{R}$  = 6.68 min for minor isomer).



# Supplementary Figure 23. HPLC Trace of Product 4j.

## **Recovered 1k**



White solid. **Mp**: 229 – 231 °C. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 (s, 1H), 6.84 (s, 1H), 5.85 (s, 1H), 4.83 (s, 1H), 3.75 (s, 3H), 2.91 (s, 3H), 2.46 (s, 3H), 2.38 (s, 3H), 2.06 (s, 3H), 1.93 (s, 3H). <sup>13</sup>C **NMR** (100MHz, CDCl<sub>3</sub>):  $\delta$  154.65 , 151.58 , 140.61 , 137.62 , 133.09 , 132.09 , 131.34 , 124.58 , 120.34 , 120.26 , 119.74 , 116.00 , 60.11 , 39.78 , 24.20 , 20.82 , 16.52 , 13.28 . **HRMS (ESI)** m/z Calcd for [C<sub>18</sub>H<sub>21</sub> BrNO<sub>4</sub>S, M - H]<sup>-</sup>: 426.0381; Found: 426.0384.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 17.0 (c = 1.0, CHCl<sub>3</sub>). The absolute configuration of **1k** was assigned by analogy to **1b**. 84% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 6.26$  min for major isomer,  $t_{R} = 11.56$  min for minor isomer).

Supplementary Figure 24. HPLC Trace of Recovered 1k.



#### **Product 4k**



Syrup. <sup>1</sup>**H NMR** (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  8.95 (s, 1H), 7.05 (s, 1H), 6.82 (s, 1H), 6.06 (s, 1H), 5.64 (s, 1H), 4.18 (d, J = 16.5 Hz, 1H), 4.05 (d, J = 16.5 Hz, 1H), 3.71 (s, 3H), 2.87 (s, 3H), 2.39 (s, 3H), 2.30 (s, 3H), 1.97 (s, 3H), 1.81 (s, 3H), 1.43 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.55, 156.76, 153.71, 138.03, 137.92, 137.77, 136.90, 135.17, 131.57, 131.40, 130.01, 127.87, 124.95, 117.48, 116.15, 81.12, 59.98, 50.31, 40.71, 28.17, 23.95, 21.67, 16.14, 13.40. HRMS (ESI) m/z Calcd for [C<sub>26</sub>H<sub>34</sub>BrNNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 590.1182; Found: 590.1183.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 12.0 (*c* = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 66% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm, *t*<sub>R</sub> = 6.28 min for minor isomer, *t*<sub>R</sub> = 13.76 min for major isomer).

#### Supplementary Figure 25. HPLC Trace of Product 4k.



# **Recovered 11**



Syrup. <sup>1</sup>**H** NMR (400 MHz, Acetone- $d_6$ ):  $\delta$  8.52 (br, 1H), 7.91 – 7.86 (m, 2H), 7.49 (t, J = 8.2 Hz, 1H), 7.42 (dd, J = 8.3, 1.1 Hz, 1H), 7.40 – 7.30 (m, 3H), 7.21 (ddd, J = 7.4, 2.2, 0.9 Hz, 1H), 7.01 (dd, J = 8.2, 1.2 Hz, 1H), 6.61 (br, 1H), 3.65 (s, 3H), 2.79 (s, 3H). <sup>13</sup>C NMR (100MHz, Acetone- $d_6$ ):  $\delta$  158.77, 152.72, 137.80, 133.81, 130.31, 129.79, 129.07, 128.23, 126.70, 123.81, 123.19, 118.47, 115.69, 112.46, 112.29, 107.51, 55.22, 38.88. HRMS (ESI) m/z Calcd for [C<sub>18</sub>H<sub>16</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 342.0806; Found: 342.0808.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 8.0 (c = 0.2, CHCl<sub>3</sub>). The absolute configuration of **11** was assigned by analogy to **1b**. 95% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 14.18 min for major isomer,  $t_{R}$  = 18.24 min for minor isomer).

# Supplementary Figure 26. HPLC Trace of Recovered 11.



## Product 41



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  9.01 (s, 1H), 7.81 (td, J = 7.4, 1.1 Hz, 2H), 7.45 (t, J = 8.2 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H), 7.26 – 7.21 (m, 2H), 7.16 (dd, J = 8.4, 1.1 Hz, 1H), 7.10 (ddd, J = 9.1, 7.4, 1.3 Hz, 2H), 5.95 (d, J = 1.4 Hz, 1H), 5.52 (d, J = 1.4 Hz, 1H), 4.12 (d, J = 16.5 Hz, 1H), 3.88 (d, J = 16.5 Hz, 1H), 3.58 (s, 3H), 2.53 (s, 3H), 1.39 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  165.26, 159.44, 152.68, 141.36, 137.81, 134.48, 129.52, 128.89, 128.52, 128.07, 127.17, 126.13, 125.79, 125.08, 124.53, 122.94, 118.94, 115.44, 112.00, 80.97, 56.58, 50.03, 40.70, 28.14. HRMS (ESI) m/z Calcd for [C<sub>26</sub>H<sub>29</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 506.1608; Found: 506.1606.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 12.0 (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>). 68% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 0.7 mL/min, wavelength = 254 nm,  $t_{R}$  = 22.15 min for minor isomer,  $t_{R}$  = 26.30 min for major isomer).

## Supplementary Figure 27. HPLC Trace of Product 41.



#### **Recovered 1m**



White solid. **MP**: 181 – 182 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 9.0 Hz, 1H), 8.02 (d, J = 9.1 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.45 – 7.41 (m, 1H), 7.38 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.32 (d, J = 8.9 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.16 – 7.10 (m, 3H), 7.05 (d, J = 8.5 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 6.50 (br, 1H), 4.62 (br, 1H), 2.37 (s, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  151.87, 144.09, 135.85, 134.67, 132.96, 131.56, 131.14, 130.66, 129.67, 129.31, 128.45, 128.27, 127.61, 127.51, 127.23, 125.65, 125.26, 123.96, 123.72, 119.12, 118.26, 117.80, 111.89, 21.56. **HRMS (ESI)** m/z Calcd for [C<sub>27</sub>H<sub>21</sub>NO<sub>3</sub>S, M - H]<sup>-</sup>: 438.1170; Found: 438.1174.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 30.0 (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>). The absolute configuration of **1m** was assigned by analogy to **1b**. 98% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH =

80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_R$  = 7.11 min for minor isomer,  $t_R$  = 7.83 min for major isomer).



Supplementary Figure 28. HPLC Trace of Recovered 1m.

# **Product 4m**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  9.13 (br, 1H), 8.02 (dd, J = 9.0, 2.1 Hz, 2H), 7.92 (d, J = 8.9 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.56 – 7.46 (m, 2H), 7.34 – 7.26 (m, 3H), 7.23 – 7.18 (m, 2H), 7.15 – 7.05 (m, 4H), 6.90 (d, J = 8.5 Hz, 1H), 5.79 (s, 1H), 5.21 (s, 1H), 4.25 (d, J = 16.5 Hz, 1H), 3.96 (d, J = 16.4 Hz, 1H), 2.34 (s, 3H), 1.37 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  165.20 , 153.16 , 143.62 , 138.33 , 137.15 , 134.70 , 134.39 , 134.14 , 133.04 , 130.04 , 129.74 , 129.55 , 129.22 , 128.62 , 128.32 , 128.26 , 128.17 , 128.07 , 127.58 , 126.81 , 126.78 , 126.70 , 126.36 , 125.63 , 123.08 , 118.82 , 116.35 , 80.87 , 50.52 , 28.14 , 21.31 . HRMS (ESI) m/z Calcd for [C<sub>35</sub>H<sub>33</sub>NNaO<sub>5</sub>S, M + Na]<sup>+</sup>: 602.1971; Found: 602.1975.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 36.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 71% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 17.40$  min for major isomer,  $t_{R} = 21.82$  min for minor isomer).

Supplementary Figure 29. HPLC Trace of Product 4m.



| Peak<br># | RetTime Type<br>[min] | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% | Peak<br># | RetTıme<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|-----------------------|----------------|-----------------|-----------------|-----------|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                       |                | -               |                 |           |           |                  |      |                |                 |                 |           |
| 1         | 17.678 BB             | 0.5827         | 338.86722       | 8.87109         | 50.0496   | 1         | 17.402           | BB   | 0.5782         | 934.78473       | 24.83263        | 85.6904   |
| 2         | 21.356 BB             | 0.7838         | 338.19522       | 6.46997         | 49.9504   | 2         | 21.821           | BV   | 0.7811         | 156.10153       | 2.93678         | 14.3096   |

**Recovered 1n** 

MeO



White solid. **MP**: 201–202 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 8.9 Hz, 1H), 7.90 (t, J = 8.7 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.36 (ddd, J = 8.1, 6.7, 1.1 Hz, 1H), 7.29 (d, J = 9.1 Hz, 1H), 7.20 (d, J = 2.2 Hz, 1H), 7.11 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 6.96 – 6.91 (m, 2H), 6.64 (d, J = 8.4 Hz, 1H), 6.43 (br, 1H), 4.75 (br, 1H), 3.91 (s, 3H), 2.36 (s, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  157.55 , 151.76 , 143.94 , 135.87 , 132.99 , 132.57 , 132.50 , 131.42 , 129.61 , 129.24 , 129.21 , 128.40 , 128.19 , 127.46 , 127.15 , 127.00 , 123.87 , 123.75 , 120.43 , 120.17 , 119.34 , 117.78 , 112.22 , 106.35 , 55.40 , 29.73 . **HRMS (ESI)** m/z Calcd for [C<sub>28</sub>H<sub>23</sub>NO<sub>4</sub>S, M - H]<sup>-</sup>: 468.1276; Found: 468.1272.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 30.0 (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>). The absolute configuration of **1n** was assigned by analogy to **1b**. 99% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 8.37 min for minor isomer,  $t_{R}$  = 10.35 min for major isomer).



Supplementary Figure 30. HPLC Trace of Recovered 1n.

## **Product 4n**



Syrup. <sup>1</sup>**H NMR** (500 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  9.07 (br, 1H), 7.93 – 7.84 (m, 3H), 7.44 – 7.39 (m, 2H), 7.31 (d, J = 8.9 Hz, 1H), 7.27 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.13 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 6.99 – 6.93 (m, 2H), 6.93 – 6.88 (m, 1H), 5.79 (d, J = 1.4 Hz, 1H), 5.20 (d, J = 1.4 Hz, 1H), 4.23 (d, J = 16.4 Hz, 1H), 3.96 (dd, J = 16.4, 1.2 Hz, 1H), 3.91 (s, 3H), 2.34 (s, 3H), 1.38 (s, 9H). <sup>13</sup>**C NMR** (125 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  165.23 , 158.36 , 153.07 , 143.54 , 137.18 , 136.17 , 134.73 , 134.49 , 134.39 , 129.96 , 129.71 , 129.52 , 129.38 , 128.58 , 128.38 , 128.14 , 128.03 , 127.56 , 127.20 , 126.74 , 126.32 , 125.68 , 123.06 , 119.09 , 118.80 , 116.53 , 107.21 , 80.85 , 55.88 , 50.54 , 28.14 , 21.31 . **HRMS (ESI)** m/z Calcd for [C<sub>36</sub>H<sub>35</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 632.2077; Found: 632.2072.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 55.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 68% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 16.42 min for major isomer,  $t_{R}$  = 30.40 min for minor isomer).

# Supplementary Figure 31. HPLC Trace of Product 4n.



#### **Recovered 1o**



White solid. **MP**: 224 – 225 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.63 (d, *J* = 1.6 Hz, 1H), 8.16 (d, *J* = 9.0 Hz, 1H), 8.08 (d, *J* = 8.9 Hz, 1H), 8.04 (d, *J* = 9.0 Hz, 1H), 7.96 – 7.88 (m, 1H), 7.60 (dd, *J* = 8.8, 1.7 Hz, 1H), 7.48 – 7.37 (m, 4H), 7.29 – 7.24 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.02 – 6.94 (m, 1H), 6.57 (d, *J* = 8.8 Hz, 1H), 6.47 (br, 1H), 5.12 (br, 1H), 3.99 (s, 3H), 2.36 (s, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>) δ 167.07, 153.97, 144.30, 135.87, 135.59, 134.68, 132.95, 132.85, 131.36, 131.20, 130.92, 129.68,

128.37, 128.25, 127.73, 127.07, 126.86, 125.78, 125.42, 125.07, 123.90, 119.41, 118.78, 117.89, 112.38, 52.25, 21.48. **HRMS (ESI)** m/z Calcd for [C<sub>29</sub>H<sub>23</sub>NO<sub>5</sub>S, M - H]<sup>-</sup>: 496.1225; Found: 496.1228.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 15.0 (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>). The absolute configuration of **10** was assigned by analogy to **1b**. 97% ee (HPLC condition: Chiralcel AD-H column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 8.74$  min for major isomer,  $t_{R} = 11.59$  min for minor isomer).

## Supplementary Figure 32. HPLC Trace of Recovered 1o.



#### **Product 4o**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  9.67 (br, 1H), 8.58 (d, J = 1.7 Hz, 1H), 8.12 (d, J = 8.9 Hz, 1H), 8.03 (d, J = 8.6 Hz, 2H), 7.58 (dd, J = 9.0, 1.8 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.46 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 8.9 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.5 Hz, 1H), 6.91 (d, J = 8.9 Hz, 1H), 5.79 (s, 1H), 5.23 (s, 1H), 4.27 (d, J = 16.5 Hz, 1H), 4.03 (d, J = 16.6 Hz, 1H), 3.90 (s, 3H), 2.34 (s, 3H), 1.36 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C)  $\delta$  166.97, 165.11, 155.67, 143.68, 138.45, 137.25, 137.13, 133.94, 133.92, 133.06, 131.78, 130.95, 129.60, 129.13, 128.68, 128.36, 128.02, 127.47, 126.99, 126.93, 126.51, 125.97, 125.30, 124.45, 119.79, 116.56, 80.91, 52.20, 50.92, 28.10, 21.29. HRMS (ESI) m/z Calcd for [C<sub>37</sub>H<sub>35</sub>NNaO<sub>7</sub>S, M + Na]<sup>+</sup>: 660.2026; Found: 660.2022.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 42.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 73% ee (HPLC condition: Chiralcel IA column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 17.16$  min for minor isomer,  $t_{R} = 19.11$  min for major isomer).





# **Recovered 1p**



White solid. **MP**: 197 – 198 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>): δ 7.92 – 7.86 (m, 3H), 7.38 (qdd, *J* = 6.8, 4.1, 1.8 Hz, 2H), 7.33 (dd, *J* = 8.9, 1.5 Hz, 1H), 7.21 – 7.15 (m, 1H), 5.91 (s, 1H), 5.30 (br, 1H), 3.77 (s, 3H), 2.44 (s, 3H), 1.85 (s, 3H), 1.36 (s, 9H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>): δ 153.61, 153.43, 151.23, 133.55, 132.76, 132.59, 132.11, 130.54, 129.28, 128.33, 127.21, 123.80, 123.75, 121.57, 121.13, 117.79, 114.76, 80.52, 60.13, 28.16, 16.59, 13.12. **HRMS (ESI)** m/z Calcd for [C<sub>24</sub>H<sub>26</sub>NO<sub>4</sub>, M - H]<sup>-</sup>: 392.1868; Found: 392.1866.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 20.0 (c = 0.4, CHCl<sub>3</sub>). 19% ee (HPLC condition: Chiralpak ID column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 5.62$  min for major isomer,  $t_{R} = 6.21$  min for minor isomer).





# **Product 4p**



Syrup. <sup>1</sup>**H** NMR (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  8.04 (d, J = 9.0 Hz, 1H), 7.97 – 7.91 (m, 1H), 7.56 – 7.52 (m, 2H), 7.38 (ddd, J = 13.7, 6.8, 5.2, 1.5 Hz, 2H), 7.17 – 7.11 (m, 1H), 6.28 (s, 1H), 6.04 (s, 1H), 5.55 (s, 1H), 4.86 – 4.71 (m, 2H), 3.70 (s, 3H), 2.35 (s, 3H), 1.74 (s, 3H), 1.45 (s, 9H), 1.23 (s, 9H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  164.49 , 153.70 , 153.66 , 153.11 , 138.44 , 133.05 , 132.72 , 130.49 , 129.85 , 129.66 , 128.54 , 127.35 , 126.98 , 125.22 , 124.35 , 124.34 , 122.40 , 119.85 , 116.06 , 81.24 , 79.44 , 67.81 , 60.01 , 28.35 , 28.18 , 16.46 , 13.53 . HRMS (ESI) m/z Calcd for [C<sub>32</sub>H<sub>39</sub> NNaO<sub>6</sub>, M + Na]<sup>+</sup>: 556.2669; Found: 556.2667.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 4.0 (*c* = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 6% ee (HPLC condition: Chiralpak ID column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm, *t*<sub>R</sub> = 5.46 min for major isomer, *t*<sub>R</sub> = 6.18 min for minor isomer).



Supplementary Figure 35. HPLC Trace of Product 4p.

# **Recovered 1q**



Syrup. <sup>1</sup>**H** NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  7.93 (dd, J = 9.1, 0.8 Hz, 1H), 7.84 – 7.78 (m, 1H), 7.36 (d, J = 9.1 Hz, 1H), 7.34 – 7.32 (m, 1H), 7.32 – 7.25 (m, 2H), 7.10 – 7.05 (m, 1H), 5.64 (br, 1H), 3.79 (s, 3H), 3.67 (s, 3H), 2.49 (s, 3H), 2.32 (s, 3H), 1.70 (s, 3H). <sup>13</sup>**C** NMR (75 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  154.66, 154.10, 132.73, 131.70, 131.40, 131.05, 130.73, 129.22, 128.35, 127.42, 126.93, 124.00, 123.51, 121.22, 117.39, 113.08, 59.76, 56.05, 39.03, 16.09, 13.05. HRMS (ESI) m/z Calcd for [C<sub>21</sub>H<sub>23</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 408.1240; Found: 408.1242.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 2.4 (*c* = 0.5, CHCl<sub>3</sub>). 13% ee (HPLC condition: Chiralpak ID column,

*n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_R$  = 11.19 min for major isomer,  $t_R$  = 12.56 min for minor isomer).



Supplementary Figure 36. HPLC Trace of Recovered 1q.

# **Product 4q**



Syrup. <sup>1</sup>**H NMR** (500 MHz, DMSO- $d_6$ , 80 °C):  $\delta$  8.03 (d, J = 9.1 Hz, 1H), 7.95 – 7.88 (m, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.37 – 7.27 (m, 2H), 7.16 (s, 1H), 7.13 (d, J = 8.5 Hz, 1H), 5.94 (s, 1H), 5.45 (s, 1H), 4.00 (d, J = 16.8 Hz, 1H), 3.87 – 3.78 (m, 4H), 3.74 (s, 3H), 2.42 (s, 3H), 2.36 (s, 3H), 1.70 (s, 3H), 1.40 (s, 9H). <sup>13</sup>C NMR (125MHz, DMSO- $d_6$ , 80 °C):  $\delta$  165.32, 156.76, 154.19, 137.67, 135.95, 135.34, 133.40, 131.96, 131.93, 130.26, 130.14, 129.07, 128.28, 126.89, 126.76, 125.15, 123.93, 120.58, 114.04, 80.98, 60.06, 56.26, 50.43, 40.71, 28.13, 16.24, 13.42. HRMS (ESI) m/z Calcd for [C<sub>29</sub>H<sub>35</sub>NNaO<sub>6</sub>S, M + Na]<sup>+</sup>: 548.2077; Found: 548.2075.

**Optical Rotation**:  $[\alpha]^{25}_{D} - 3.4$  (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>). 18% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 6.08$  min for minor isomer,  $t_{R} = 7.43$  min for major isomer).



Supplementary Figure 37. HPLC Trace of Product 4q.

## Derivatization to access more NOBINs analogs and application to ATH:



**Deallylation followed by kinetic resolution to access (S)-1b** 

The deallylaltion step followed a literature procedure.<sup>[6]</sup> To a solution of (*S*)-4b (0.10 mmol) and NiCl<sub>2</sub>(dppp) (5 mol %, 0.005 mmol) in toluene (1.0 mL) was added a 1M solution of diisobutylaluminum hydride in toluene (1.0 mL, 1.0 mmol) at 0 °C, and the reaction mixture was stirred for 3 h at 24 °C. The mixture was quenched with 1 M aqueous NaOH (1.0 mL), and the mixture was diluted with water (20 mL). The solution was extracted with ethyl acetate (3 × 15 mL). The combined extracts were dried over Na<sub>2</sub>SO<sub>4</sub>, and the resulting crude material was purified by thin layer chromatography on silica gel (hexane/ethyl acetate = 3/1 as eluent) to give (*S*)-1b (95% yield).

The following kinetic resolution followed our standard procedure using  $(DHQ)_2PHAL$  as the catalyst. The unreacted (S)-1b was recovered in 40% yield with 97% ee.

**Optical Rotation**:  $[\alpha]^{25}_{D} - 12.0$  (c = 0.5, CHCl<sub>3</sub>). 97% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 11.46$  min for minor isomer,  $t_{R} = 12.64$  min for major isomer).



#### Supplementary Figure 38. HPLC Trace of (S)-1b.

## General procedure for Pd-catalyzed Suzuki cross coupling:



The mixture of (*R*)-**1b** (45 mg, 0.1 mmol), phenyl boronic acid (15 mg, 0.2 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.02 mmol.), K<sub>3</sub>PO<sub>4</sub> (5.5 mg, 0.4 mmol) in toluene (0.6 mL), EtOH (0.2 mL) and H<sub>2</sub>O (0.3 mL) was heated at 95 °C for 12 h under N<sub>2</sub> atmosphere. After cooling to room temperature, the reaction was quenched by adding H<sub>2</sub>O. The crude mixture was extracted with EtOAc ( $3 \times 20$  mL) and the combined organic extracts were washed with brine, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc = 100:1 v/v) to give the desired product **5a** as a white solid (36 mg, 82% yield).

**MP:** 206 – 207 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.94 (s, 1H), 7.93 – 7.90 (m, 1H), 7.68 – 7.64 (m, 2H), 7.57 – 7.53 (m, 3H), 7.50 – 7.46 (m, 1H), 7.45 – 7.39 (m, 2H), 7.18 – 7.14 (m, 1H), 5.90 (s, 1H), 5.34 (s, 1H), 3.80 (s, 3H), 2.77 (s, 3H), 2.46 (s, 3H), 1.96 (s, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$  154.98, 148.32, 136.75, 132.94, 132.67, 132.07, 131.81, 131.07, 130.54, 129.41, 129.38, 128.98, 128.80, 128.23, 127.65, 124.60, 124.36, 123.18, 121.37, 114.95, 60.14, 39.52, 16.58, 13.42. **HRMS (ESI)** m/z Calcd for [C<sub>26</sub>H<sub>25</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 470.1396; Found: 470.1392.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 8.0 (c = 0.3, CHCl<sub>3</sub>). 98% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 92:8, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 15.13 min for major isomer,  $t_{R}$  = 17.36 min for minor isomer).



## Supplementary Figure 39. HPLC Trace of 5a.



The same procedure was followed to yield **5b** as an oil. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.97 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 9.0 Hz, 1H), 7.66 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.55 – 7.50 (m, 3H), 7.44 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 7.28 (d, *J* = 6.6 Hz, 1H), 5.85 (s, 1H), 5.15 (s, 1H), 3.81 (s, 3H), 2.75 (s, 3H), 2.46 (s, 3H), 1.96 (s, 3H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$  155.12, 151.35, 140.89, 140.66, 133.46, 132.98, 132.69, 132.10, 130.94, 129.32, 128.83, 128.58, 127.60, 127.45, 124.13, 123.31, 121.73, 120.95, 117.72, 114.36, 60.17, 39.70, 16.62, 13.40. **HRMS (ESI)** m/z Calcd for [C<sub>26</sub>H<sub>25</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 470.1396; Found: 470.1398.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 60.0 (c = 0.4, CHCl<sub>3</sub>). 97% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 10.05 min for major isomer,  $t_{R}$  = 19.54 min for minor isomer).

Supplementary Figure 40. HPLC Trace of 5b.



#### Access to free amino phenols and derivatization:



The synthesis of **6a** followed our previous procedure<sup>[2]</sup> and the cross coupling step used the procedure shown in 5.2.


**6a**: Brown solid. **MP:** 176 - 177 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>): δ 8.33 (s, 1H), 7.92 – 7.86 (m, 1H), 7.44 – 7.33 (m, 2H), 7.03 – 6.95 (m, 1H), 6.87 (s, 1H), 3.67 (s, 3H), 2.31 (s, 3H), 1.70 (s, 3H). <sup>13</sup>**C NMR** (125 MHz, DMSO-*d*<sub>6</sub>): δ 152.84, 149.32, 134.50, 132.62, 132.55, 131.80, 131.42, 129.68, 127.80, 127.54, 124.51, 124.08, 123.60, 119.46, 118.28, 114.55, 60.08, 16.46, 13.55. **HRMS (ESI)** m/z Calcd for [C<sub>19</sub>H<sub>18</sub>BrNNaO<sub>2</sub>, M + Na]<sup>+</sup>: 394.0413; Found: 394.0416.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 9.0 (c = 0.4, CHCl<sub>3</sub>). 99% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 8.57 min for minor isomer,  $t_{R}$  = 16.93 min for major isomer).

Supplementary Figure 41. HPLC Trace of 6a.





**6b**: Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.92 (s, 1H), 7.89 (dd, J = 6.2, 3.3 Hz, 1H), 7.77 – 7.73 (m, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.45 – 7.37 (m, 3H), 7.33 (dt, J = 6.1, 3.5 Hz, 1H), 6.63 (s, 1H), 3.75 (s, 3H), 2.37 (s, 3H), 1.93 (s, 3H). <sup>13</sup>**C** NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  150.13, 148.64, 141.64, 137.97, 132.55, 132.20, 132.11, 130.49, 130.09, 129.58, 129.38, 128.34, 128.27, 127.48, 126.87, 123.94, 123.90, 116.76, 116.42, 115.66, 60.26, 16.34, 13.15. HRMS (ESI) m/z Calcd for [C<sub>25</sub>H<sub>23</sub>NNaO<sub>2</sub>, M + Na]<sup>+</sup>: 392.1621; Found: 392.1624.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 40.0 (c = 0.2, CHCl<sub>3</sub>). 99% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 8.43 min for major isomer,  $t_{R}$  = 14.04 min for minor isomer).

#### Supplementary Figure 42. HPLC Trace of 6b.



Access to pyridine-containing amino alcohol 7 and application to ATH:



The synthesis of (R)-1-(6-amino-3-methoxy-2,4-dimethylphenyl)naphthalen-2-ol followed our previous procedure<sup>[2]</sup>

(R)-1-(6-amino-3-methoxy-2,4-dimethylphenyl)naphthalen-2-ol (60 mg, 0.2 mmol) was mixed with Pyridine-2-carboxaldehyde (24 mg, 0.22 mmol) in dry toluene (1mL). 140 mg 4Å molecular sieves were added, and the solution was warmed up to 70 °C and kept for one day at this temperature. The solution was filtered and the solvent was removed under reduced pressure. The resulting light yellow solid was dissolved in EtOH (2. mL) and cooled to 0 °C. NaBH<sub>4</sub> (0.8 mmol) was added to the reaction flask. The reaction mixture was then left to stir at 24°C for 4 h. The solvent was removed and the residue was treated with  $H_2O(5 \text{ mL})$  and extracted with ethyl acetate (10 mL x 3) and washed with brine (10 mL). The combined organic layers were dried with anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed under reduced pressure, The residue was further purified by flash column chromatography (hexane/ethyl acetate = 2:1) to give 7 (38 mg, 50% yield). <sup>1</sup>H NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  8.49 (d, J = 4.6 Hz, 1H), 7.96 - 7.87 (m, 2H), 7.80 - 7.71 (m, 1H), 7.43 - 7.36 (m, 3H), 7.36 - 7.28 (m, 2H), 7.29 -7.23 (m, 1H), 6.42 (s, 1H), 4.54 (d, J = 17.2 Hz, 1H), 4.38 (d, J = 17.2 Hz, 1H), 4.24 - 4.19 (m, 1H), 3.70 (s, 3H), 2.28 (s, 3H), 1.81 (s, 3H). <sup>13</sup>C NMR (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 158.59, 151.70, 149.44, 142.19, 133.36, 131.93, 131.78, 130.86, 129.82, 129.52, 128.16, 126.70, 124.08, 123.45, 122.31, 121.94, 118.66, 116.46, 111.30, 59.95, 48.18, 16.27, 12.91. HRMS (ESI) m/z Calcd for [C25H24N2NaO2, M + Na]<sup>+</sup>: 407.1730; Found: 407.1734.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 36.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 98% ee (HPLC condition: Chiralcel OD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 7.71$  min for major isomer,  $t_{R} = 11.85$  min for minor isomer).

#### Supplementary Figure 43. HPLC Trace of 7.





The ligand 7 (4.7 µmol) was dissolved in 2-propanol (5.2 mL) under N<sub>2</sub> and a solution of KO'Bu in 2-propanol (0.95 mL of 0.01 mol/L) was added. Ru(PPh<sub>3</sub>)<sub>3</sub>Cl<sub>2</sub> (4.1 mg 4.3 µmol) dissolved in 2-propanol (2.5 mL), was added. The solution was stirred at room temperature for 1.5 h to accomplish the formation of the catalyst. Then, the reaction vessel was thermostated to 30 °C. Addition of acetophenone (50 µL) afforded a substrate concentration of 0.05 mol/L. The reaction was started by adding another 0.43 mL of the 0.01 mol/L KO'Bu solution. After 15 h the reaction was stopped by addition of 0.1 mol/L solution of acetic acid in 2-propanol (0.15 mL). After removal the solvent, the crude residue was purified by column chromatography with hexanes/ethyl acetate (10:1 v/v) as eluent to afford the product **8**. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.35 (m, 4H), 7.33 – 7.29 (m, 1H), 4.92 (qd, *J* = 6.4, 3.1 Hz, 1H), 2.04 – 1.96 (m, 1H), 1.53 (d, *J* = 6.5 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  145.82, 128.50, 127.48, 125.39, 70.42, 25.16.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  36.0 (c = 1.0, CHCl<sub>3</sub>). The absolute configuration of **8** was assigned by comparing its specific rotation with that of the same compound reported in the literature.<sup>[7]</sup> 93% ee (HPLC condition: Chiralcel OD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 14.95$  min for major isomer,  $t_{R} = 19.16$  min for minor isomer).

### Supplementary Figure 44. HPLC Trace of 8.

|                                                                   |                                              | met                                                                                                                                                                   | 400<br>                        |
|-------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Peak RetTime Type<br># [min]<br>   <br>1 14.422 BB<br>2 18.530 BB | Width Area Height<br>[min] [mAU*s] [mAU]<br> | ea Peak RetTime Type Width Area Height   % # [min] [min] [mAU*s] [mAU]          8765 1 14.954 BB 0.5756 65.98298 1.80010   1235 2 19.169 MM 0.6535 2.41536 6.16019e-2 | Area<br>%<br>96.4687<br>3.5313 |

| M               | NHTs<br>e<br>H<br>Me<br>9b | BocO OEt                                                | 10 mol% catalyst<br>solvent T | Ts $MeMe$                                                 |
|-----------------|----------------------------|---------------------------------------------------------|-------------------------------|-----------------------------------------------------------|
| entry           | cat                        | solvent                                                 | T,(°C)                        | <b>10ba</b> , yield(%) <sup>b</sup> , ee (%) <sup>c</sup> |
| 1               | β-ICD                      | CH <sub>2</sub> Cl <sub>2</sub>                         | 24                            | 99, -41                                                   |
| 2               | (DHQD)₂AQN                 | CH <sub>2</sub> Cl <sub>2</sub>                         | 24                            | 90, -30                                                   |
| 3               | (DHQD)₂Pyr                 | $CH_2CI_2$                                              | 24                            | 86, -50                                                   |
| 4               | (DHQD)₂PHAL                | CH <sub>2</sub> Cl <sub>2</sub>                         | 24                            | 92, -67                                                   |
| 5               | (DHQ)₂AQN                  | CH <sub>2</sub> Cl <sub>2</sub>                         | 24                            | 91, 41                                                    |
| 6               | (DHQ)₂Pyr                  | $CH_2CI_2$                                              | 24                            | 86, 72                                                    |
| 7               | (DHQ) <sub>2</sub> PHAL    | CH <sub>2</sub> Cl <sub>2</sub>                         | 24                            | 96, 78                                                    |
| 8               | (DHQ) <sub>2</sub> PHAL    | THF                                                     | 24                            | 95, 72                                                    |
| 9               | (DHQ) <sub>2</sub> PHAL    | CH₃CN                                                   | 24                            | 95, 80                                                    |
| 10              | (DHQ)₂PHAL                 | EtOAc                                                   | 24                            | 92, 73                                                    |
| 11              | (DHQ) <sub>2</sub> PHAL    | CHCI <sub>3</sub>                                       | 24                            | 91, 74                                                    |
| 12              | (DHQ)₂PHAL                 | toluene                                                 | 24                            | 81, 51                                                    |
| 13 <sup>d</sup> | (DHQ)₂PHAL                 | CH₃CN                                                   | -20                           | 90, 87                                                    |
| 14 <sup>d</sup> | (DHQ) <sub>2</sub> PHAL    | 1:1 CH <sub>2</sub> Cl <sub>2</sub> /CH <sub>3</sub> CN | -20                           | 85, 92                                                    |
| 15 <sup>d</sup> | (DHQD)₂PHAL                | 1:1 CH <sub>2</sub> Cl <sub>2</sub> /CH <sub>3</sub> CN | -20                           | 86, -87                                                   |

## Supplementary Table 1. Optimization of the Reaction Conditions<sup>a</sup>

<sup>a</sup> Unless noted otherwise, the reactions were performed with **9b** (0.04 mmol, 1.0 equiv.), **2a** (1.5 equiv.), catalyst (10 mol%) in solvent (0.5 mL) at 24 °C for 18 h. <sup>b</sup> isolated yield. <sup>c</sup> Determined by chiral HPLC. <sup>d</sup> 96 h instead of 18 h.

### **Representative procedure for synthesis of 10:**



To a 4 mL vial containing **9** (0.04 mmol) and (DHQ)<sub>2</sub>PHAL (3.0 mg, 10 mol%) were added CH<sub>2</sub>Cl<sub>2</sub> (0.25 mL) and CH<sub>3</sub>CN (0.25 mL). The reaction mixture was allowed to stir for 10 minutes at -20 °C. Then MBH carbonate (12  $\mu$ L) was added. Once the starting material **9** consumed completely. The volatiles were removed *in vacuo* at 24 °C and the residue was purified by silica gel column chromatography with hexanes/ethyl acetate (10:1 v/v) as the eluent to afford the product **10**.

## **Characterization of compounds:**



**9aa.** Syrup. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 8.3 Hz, 2H), 7.48 (dd, J = 8.2, 1.6 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.16 (td, J = 8.0, 1.5 Hz, 1H), 6.88 (td, J = 8.0, 7.1, 1H), 6.39 (dd, J = 8.0, 1.5 Hz, 1H), 6.14 (d, J = 1.2 Hz, 1H), 5.45 (d, J = 1.1 Hz, 1H), 4.63 (dd, J = 13.6, 0.8 Hz, 1H), 4.03 (dd, J = 13.6, 0.7 Hz, 1H), 3.96 – 3.84 (m, 2H), 2.38 (s, 3H), 1.41 (s, 9H), 1.04 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.08, 150.73, 143.61, 136.64, 135.55, 135.17, 131.58, 130.80, 129.74, 129.33, 128.94, 128.32, 125.66, 61.01, 52.29, 36.91, 33.01, 21.58, 13.94. HRMS (ESI) m/z Calcd for [C<sub>23</sub>H<sub>29</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 438.1709; Found: 438.1706.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 20.0 (c = 1.0, CHCl<sub>3</sub>). 71% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 7.35$  min for minor isomer,  $t_{R} = 9.10$  min for major isomer).

Supplementary Figure 45. HPLC Trace of 9aa.





**9ba.** White solid. **MP:** 122-124 °C. <sup>1</sup>**H NMR** (500 MHz,  $CD_2Cl_2$ )  $\delta$  7.82 – 7.76 (m, 2H), 7.59 (d, J = 1.9 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.06 (d, J = 1.2 Hz, 1H), 6.31 (s, 1H), 5.82 (s, 1H), 4.61 (d, J = 14.3 Hz, 1H), 4.57 (d, J = 14.1 Hz, 1H), 4.13 – 3.95 (m, 2H), 2.49 (s, 3H), 2.30 (s, 3H), 2.18 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (125 MHz,  $CD_2Cl_2$ )  $\delta$  166.01 , 143.76 , 141.94 , 140.00 , 139.06 , 138.33 , 137.35 , 135.98 , 132.22 , 131.49 , 129.52 , 128.23 , 100.97 , 60.97 , 49.97 , 21.43 , 20.18 , 13.78 . **HRMS (ESI)** m/z Calcd for [C<sub>21</sub>H<sub>24</sub>INNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 536.0363; Found: 536.0367.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 30.0 (c = 1.0, CHCl<sub>3</sub>). 92% ee (HPLC condition: Chiralpak AD-H

column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_R$  = 10.96 min for minor isomer,  $t_R$  = 11.74 min for major isomer).



Supplementary Figure 46. HPLC Trace of 9ba.



**9bb.** Syrup. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, J = 8.3 Hz, 2H), 7.42 (dt, J = 2.1, 0.7 Hz, 1H), 7.24 – 7.18 (m, 2H), 6.94 – 6.90 (m, 1H), 6.18 (d, J = 1.4 Hz, 1H), 5.73 (d, J = 1.4 Hz, 1H), 4.50 (dd, J = 14.2, 0.6 Hz, 1H), 4.40 (d, J = 14.3 Hz, 1H), 2.35 (s, 3H), 2.16 (s, 3H), 2.15 (s, 3H), 1.24 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.18 , 143.41 , 142.44 , 139.83 , 139.07 , 138.57 , 137.30 , 132.29 , 131.27 , 129.46 , 128.32 , 100.37 , 81.01 , 49.72 , 27.74 , 21.59 , 20.60 , 20.33 . **HRMS (ESI)** m/z Calcd for [C<sub>23</sub>H<sub>28</sub>INNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 564.0676; Found: 564.0679.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 30.0 (c = 1.0, CHCl<sub>3</sub>). 92% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 8.12$  min for major isomer,  $t_{R} = 9.50$  min for minor isomer).



Supplementary Figure 47. HPLC Trace of 9bb.

| Реак<br># | RetTime Type<br>[min] | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% | Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|-----------------------|----------------|-----------------|-----------------|-----------|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                       |                | -               |                 |           |           |                  |      |                |                 |                 |           |
| 1         | 8.262 BB              | 0.2232         | 309.25885       | 21.20106        | 50.4792   | 1         | 8.122            | VB   | 0.2235         | 3015.02222      | 206.32355       | 95.9936   |
| 2         | 9.648 BB              | 0.2500         | 303.38675       | 18.62873        | 49.5208   | 2         | 9.503            | BB   | 0.2434         | 125.83624       | 8.04706         | 4.0064    |



**9bc.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 2.0 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.01 (d, J = 2.0 Hz, 1H), 6.30 (d, J = 1.3 Hz, 1H), 5.79 (d, J = 1.2 Hz, 1H), 4.64 – 4.57 (m, 1H), 4.55 (d, J = 14.2 Hz, 1H), 3.59 (s, 3H), 2.45 (s, 3H), 2.25 (s, 3H), 2.20 (s, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.56, 143.53, 141.96, 139.85, 139.10, 138.30, 137.23, 135.53, 132.28, 131.92, 129.45, 128.38, 100.81, 51.94, 50.13, 21.60, 20.36, 20.31. **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>22</sub>INNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 522.0206; Found: 522.0202.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 30.0 (c = 1.0, CHCl<sub>3</sub>). 93% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 29.35 min for minor isomer,  $t_{R}$  = 34.78 min for major isomer).

Supplementary Figure 48. HPLC Trace of 9bc.





**9bd.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 2.0 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.01 (d, *J* = 2.0 Hz, 1H), 6.33 (d, *J* = 1.3 Hz, 1H), 5.87 (d, *J* = 1.3 Hz, 1H), 4.61 (d, *J* = 14.2 Hz, 1H), 4.54 (d, *J* = 14.3 Hz, 1H), 4.02 (dt, *J* = 10.7, 6.8 Hz, 1H), 3.94 (dt, *J* = 10.8, 6.6 Hz, 1H), 2.45 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 1.54 – 1.45 (m, 2H), 1.38 – 1.26 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H).

 $\label{eq:stars} \begin{array}{l} {}^{13}\text{C NMR} \ (125 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 166.20 \ , \ 143.49 \ , \ 142.08 \ , \ 139.81 \ , \ 139.10 \ , \ 138.39 \ , \ 137.35 \ , \ 135.97 \ , \\ 132.26 \ , \ 131.70 \ , \ 129.47 \ , \ 128.34 \ , \ 100.67 \ , \ 64.88 \ , \ 50.04 \ , \ 30.38 \ , \ 21.60 \ , \ 20.42 \ , \ 20.36 \ , \ 19.11 \ , \ 13.71 \ . \\ \textbf{HRMS} \ \textbf{(ESI)} \ \text{m/z} \ \textbf{Calcd} \ for \ [C_{23}\text{H}_{28}\text{INNaO}_4\text{S}, \ M + \ Na]^+: \ 564.0676; \ Found: \ 564.0673. \end{array}$ 

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 25.0 (c = 1.0, CHCl<sub>3</sub>). 93% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 99:1, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 15.72$  min for major isomer,  $t_{R} = 17.82$  min for minor isomer).



Supplementary Figure 49. HPLC Trace of 9bd.

**9be.** Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 – 7.74 (m, 2H), 7.48 (d, J = 2.0 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.31 – 7.26 (m, 4H), 6.96 (d, J = 1.9 Hz, 1H), 6.38 (d, J = 1.2 Hz, 1H), 5.88 (d, J = 1.1 Hz, 1H), 5.10 (d, J = 12.3 Hz, 1H), 5.00 (d, J = 12.4 Hz, 1H), 4.62 (d, J = 14.3 Hz, 1H), 4.57 (d, J = 14.3 Hz, 1H), 2.45 (s, 3H), 2.23 (s, 3H), 2.15 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.92 , 143.49 , 141.93 , 139.80 , 139.10 , 138.31 , 137.32 , 135.73 , 135.58 , 132.27 , 132.20 , 129.46 , 128.42 , 128.38 , 128.24 , 128.19 , 100.80 , 66.72 , 50.13 , 21.61 , 20.40 , 20.36 . HRMS (ESI) m/z Calcd for [C<sub>26</sub>H<sub>26</sub>INNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 598.0519; Found: 598.0514.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 35.0 (c = 1.0, CHCl<sub>3</sub>). 92% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 28.42$  min for minor isomer,  $t_{R} = 31.29$  min for major isomer).

Supplementary Figure 50. HPLC Trace of 9be.



**9ca.** White solid. **MP:** 132-134 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 2.5 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.24 – 7.18 (m, 1H), 6.35 (d, J = 1.2 Hz, 1H), 5.88 (d, J = 1.2 Hz, 1H), 4.60 (d, J = 14.2 Hz, 1H), 4.53 (d, J = 14.3 Hz, 1H), 4.09 (dq, J = 10.8, 7.1 Hz, 1H), 4.02 (dq, J = 10.8, 7.1 Hz, 1H), 2.46 (s, 3H), 2.24 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.00 , 143.88 , 143.85 , 138.99 , 138.10 , 137.77 , 135.72 , 134.36 , 132.00 , 131.23 , 129.61 , 128.31 , 100.98 , 61.10 , 50.02 , 21.62 , 20.55 , 13.94 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>21</sub> ClINNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 555.9816; Found: 555.9818.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 40.0 (c = 1.0, CHCl<sub>3</sub>). 91% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 7.48$  min for major isomer,  $t_{R} = 8.62$  min for minor isomer).



Supplementary Figure 51. HPLC Trace of 9ca.



**9da.** White solid. **MP:** 128-129 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 2.3 Hz, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 2.3 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 6.35 (d, J = 1.1 Hz, 1H), 5.88 (d, J = 1.1 Hz, 1H), 4.59 (d, J = 14.3 Hz, 1H), 4.52 (d, J = 14.3 Hz, 1H), 4.14 – 3.97 (m, 2H), 2.46 (s, 3H), 2.24 (s, 3H), 1.22 – 1.10 (m, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.99 , 144.33 , 143.86 , 140.47 , 139.49 , 138.08 , 135.70 , 134.20 , 132.01 , 129.61 , 128.31 , 122.58 , 101.41 , 61.11 , 49.97 , 21.62 , 20.46 , 13.94 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>21</sub>BrINNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 555.9816; Found: 555.9818.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 25.0 (c = 0.5, CHCl<sub>3</sub>). 91% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 10.13$  min for major isomer,  $t_{R} = 12.07$  min for minor isomer).







**9ea.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 2.0 Hz, 1H), 7.79 – 7.72 (m, 2H), 7.55 (d, J = 2.0 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 6.35 (d, J = 1.2 Hz, 1H), 5.87 (d, J = 1.1 Hz, 1H), 4.59 (d, J = 14.2 Hz, 1H), 4.52 (d, J = 14.3 Hz, 1H), 4.14 – 3.97 (m, 2H), 2.46 (s, 3H), 2.21 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.99 , 146.09 , 144.66 , 143.85 , 140.25 , 138.08 , 135.70 , 132.00 , 129.61 , 128.31 , 101.88 , 94.83 , 61.11 , 49.95 , 21.63 , 20.22 , 13.94 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>21</sub>I<sub>2</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 647.9173; Found: 647.9177.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 15.0 (c = 1.0, CHCl<sub>3</sub>). 89% ee (HPLC condition: Chiralpak AD-H

column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_R$  = 33.30 min for major isomer,  $t_R$  = 37.02 min for minor isomer).



Supplementary Figure 53. HPLC Trace of 9ea.



**9fa.** Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 2.1 Hz, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 2.1 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 6.35 (d, J = 1.1 Hz, 1H), 5.85 (d, J = 1.1 Hz, 1H), 4.57 (d, J = 14.3 Hz, 1H), 4.52 (d, J = 14.3 Hz, 1H), 4.14 – 3.96 (m, 2H), 2.65 (dq, J = 15.1, 7.5 Hz, 1H), 2.53 – 2.47 (m, 1H), 2.46 (s, 3H), 1.16 (t, J = 7.5 Hz, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.90, 150.25, 145.91, 143.81, 139.47, 138.34, 138.05, 135.53, 132.13, 129.56, 128.37, 101.81, 95.28, 61.09, 49.98, 25.19, 21.62, 14.27, 13.94. HRMS (ESI) m/z Calcd for [C<sub>21</sub>H<sub>23</sub>I<sub>2</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 661.9329; Found: 661.9324.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 20.0 (c = 1.0, CHCl<sub>3</sub>). 95% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 23.34$  min for major isomer,  $t_{R} = 27.21$  for minor isomer).



Supplementary Figure 54. HPLC Trace of 9fa.

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% | Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>[mAU*s] | Height<br>[mAU] | Area<br>% |
|-----------|------------------|------|----------------|-----------------|-----------------|-----------|-----------|------------------|------|----------------|-----------------|-----------------|-----------|
|           |                  |      |                |                 |                 |           |           |                  |      |                |                 |                 |           |
| 1         | 23.839           | BB   | 0.6063         | 400.01193       | 10.05135        | 50.0716   | 1         | 23.348           | BB   | 0.6071         | 583.21448       | 14.72318        | 97.2546   |
| 2         | 27.634           | BB   | 0.7050         | 398.86850       | 8.55420         | 49.9284   | 2         | 27.219           | MM   | 0.7520         | 16.46364        | 3.64873e-1      | 2.7454    |



**9ga.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 2.0 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 2.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 6.35 (d, J = 1.2 Hz, 1H), 5.84 (d, J = 1.3 Hz, 1H), 4.55 (s, 2H), 4.12 – 3.99 (m, 2H), 2.50 (ddd, J = 15.0, 11.7, 5.2 Hz, 1H), 2.46 (s, 3H), 2.36 (ddd, J = 15.0, 11.7, 5.1 Hz, 1H), 1.68 – 1.61 (m, 1H), 1.52 – 1.41 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.3 Hz, 4H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.91 , 148.86 , 145.94 , 143.81 , 139.51 , 138.67 , 138.06 , 135.49 , 132.12 , 129.55 , 128.37 , 102.32 , 95.20 , 61.09 , 50.03 , 34.24 , 23.43 , 21.60 , 14.16 , 13.96 . **HRMS** (**ESI**) m/z Calcd for [C<sub>22</sub>H<sub>25</sub>I<sub>2</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 675.9486; Found: 675.9488.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 15.0 (c = 1.0, CHCl<sub>3</sub>). 95% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 14.46$  min for major isomer,  $t_{R} = 15.78$  for minor isomer).



Supplementary Figure 55. HPLC Trace of 9ga.



**9ha.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>) δ 8.02 (d, *J* = 2.0 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 2H), 7.60 (d, *J* = 2.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.38 (d, *J* = 1.2 Hz, 1H), 5.81 (s, 1H), 4.63 (d, *J* = 14.3 Hz, 1H), 4.48 (d, *J* = 14.4 Hz, 1H), 4.07 (p, *J* = 7.2 Hz, 2H), 3.18 (p, *J* = 6.8 Hz, 1H), 2.45 (s, 3H), 1.26 (d, *J* = 6.6

Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.11 (d, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.83 , 155.28 , 145.94 , 143.84 , 138.49 , 137.96 , 137.09 , 135.33 , 132.50 , 129.48 , 128.68 , 101.94 , 95.62 , 61.09 , 49.78 , 29.98 , 24.92 , 24.38 , 21.63 , 13.98 . **HRMS (ESI)** m/z Calcd for [C<sub>22</sub>H<sub>25</sub>I<sub>2</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 675.9486; Found: 675.9482.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  + 15.0 (c = 1.0, CHCl<sub>3</sub>). 92% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 16.18$  min for major isomer,  $t_{R} = 21.63$  for minor isomer).

Supplementary Figure 56. HPLC Trace of 9ha.





**9ia.** Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 2.3 Hz, 1H), 7.79 – 7.75 (m, 2H), 7.43 (d, J = 2.3 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 6.36 (d, J = 1.2 Hz, 1H), 5.85 (d, J = 1.0 Hz, 1H), 4.56 (s, 1H), 4.53 (d, J = 14.3 Hz, 1H), 4.14 – 3.96 (m, 2H), 2.68 (dq, J = 15.1, 7.5 Hz, 1H), 2.52 (dq, J = 15.2, 7.6 Hz, 1H), 2.46 (s, 3H), 1.17 (td, J = 7.4, 3.5 Hz, 7H). <sup>13</sup>**C** NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.89 , 149.94 , 143.82 , 140.30 , 138.74 , 138.06 , 135.55 , 132.23 , 132.13 , 129.57 , 128.37 , 123.04 , 101.34 , 61.08 , 50.00 , 25.40 , 21.62 , 14.22 , 13.94 . HRMS (ESI) m/z Calcd for [C<sub>21</sub>H<sub>23</sub>BrINNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 613.9468; Found: 613.9464.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 15.0 (c = 1.0, CHCl<sub>3</sub>). 95% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 21.47$  min for major isomer,  $t_{R} = 23.61$  for minor isomer).

Supplementary Figure 57. HPLC Trace of 9ia.





**9ja.** Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 2.0 Hz, 1H), 7.03 – 6.96 (m, 1H), 6.29 (t, J = 0.9 Hz, 1H), 5.80 (d, J = 1.1 Hz, 1H), 4.64 (d, J = 14.1 Hz, 1H), 4.47 (d, J = 14.1 Hz, 1H), 4.18 – 3.95 (m, 2H), 2.45 (s, 3H), 2.28 (s, 4H), 2.27 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.05, 143.41, 142.82, 139.67, 137.96, 135.93, 133.84, 132.10, 131.30, 131.29, 129.38, 128.14, 124.59, 60.96, 49.73, 21.58, 20.65, 20.00, 13.91. HRMS (ESI) m/z Calcd for [C<sub>21</sub>H<sub>24</sub>BrNNaO4S, M + Na]<sup>+</sup>: 488.0501; Found: 488.0505.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  +20.0 (c = 1.0, CHCl<sub>3</sub>). 93% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 9.72$  min for major isomer,  $t_{R} = 10.86$  for minor isomer).

Supplementary Figure 58. HPLC Trace of 9ja.





**9ka.** Syrup. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 6.98 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.27 (d, J = 1.2 Hz, 1H), 5.77 (d, J = 1.1 Hz, 1H), 4.66 (dd, J = 14.1, 0.8 Hz, 1H), 4.39 (d, J = 14.1 Hz, 1H), 4.16 – 3.98 (m, 2H), 2.45 (s, 3H), 2.28 (s, 3H), 2.28 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H). <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.99 , 143.38 , 142.65 , 139.40 , 137.72 , 135.92 , 134.29 , 132.31 , 131.01 , 130.63 , 129.37 , 128.64 , 127.99 , 60.95 , 49.72 , 21.57 , 20.78 , 19.65 , 13.92 . **HRMS (ESI)** m/z Calcd for [C<sub>21</sub>H<sub>24</sub>ClNNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 444.1007; Found: 444.1004.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  +35.0 (c = 1.0, CHCl<sub>3</sub>). 87% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 14.42 min for major isomer,  $t_{R}$  = 15.92 for minor isomer).



Supplementary Figure 59. HPLC Trace of 9ka.



**9la.** Syrup. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.16 (d, J = 1.1 Hz, 1H), 5.38 (d, J = 1.1 Hz, 1H), 4.64 (d, J = 14.1 Hz, 1H), 4.19 – 4.05 (m, 3H), 3.33 (s, 3H), 2.31 (s, 3H), 2.17 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.28 , 140.94 , 140.13 , 138.62 , 137.23 , 135.17 , 132.60 , 131.79 , 103.07 , 61.27 , 50.46 , 42.85 , 20.38 , 20.14 , 14.14 . **HRMS** (**ESI**) m/z Calcd for [C<sub>15</sub>H<sub>20</sub>INNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 460.0050; Found: 460.0054.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 40.0 (c = 1.0, CHCl<sub>3</sub>). 91% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 11.16$  min for major isomer,  $t_{R} = 13.97$  min for minor isomer).

#### Supplementary Figure 60. HPLC Trace of 91a.



**9ma.** Syrup. <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (dd, J = 8.3, 1.4 Hz, 2H), 7.63 – 7.58 (m, 1H), 7.55 – 7.50 (m, 3H), 7.02 (d, J = 2.0 Hz, 1H), 6.33 (d, J = 1.2 Hz, 1H), 5.84 (d, J = 1.1 Hz, 1H), 4.65 (d, J = 14.2 Hz, 1H), 4.57 (d, J = 14.1 Hz, 1H), 4.09 (dq, J = 10.7, 7.2 Hz, 1H), 4.01 (dq, J = 10.7, 7.0 Hz, 1H), 2.26 (s, 3H), 2.21 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.09 , 142.15 , 141.26 , 139.93 , 139.14 , 137.10 , 135.84 , 132.77 , 132.29 , 131.84 , 128.91 , 128.28 , 100.44 , 61.00 , 50.08 , 20.37 , 20.35 , 13.93 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>22</sub>INNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 522.0206; Found: 522.0202.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 40.0 (c = 1.0, CHCl<sub>3</sub>). 90% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 16.48$  min for major isomer,  $t_{R} = 18.65$  for minor isomer).



Supplementary Figure 61. HPLC Trace of 9ma.



**9na.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 – 7.80 (m, 2H), 7.53 (d, J = 2.0 Hz, 1H), 7.05 – 7.01 (m, 1H), 6.98 (d, J = 8.9 Hz, 2H), 6.31 (d, J = 1.2 Hz, 1H), 5.82 (d, J = 1.1 Hz, 1H), 4.60 (d, J = 14.3 Hz, 1H), 4.54 (d, J = 14.2 Hz, 1H), 4.13 – 4.06 (m, 1H), 4.06 – 3.98 (m, 1H), 3.89 (s, 3H), 2.25 (s, 3H), 2.23 (s, 3H), 1.16 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.15, 163.07, 142.13, 139.82, 139.08, 137.40, 135.98, 133.22, 132.28, 131.60, 130.42, 113.96, 100.54, 60.97, 55.61, 49.99, 20.42, 20.35, 13.92. **HRMS (ESI)** m/z Calcd for [C<sub>21</sub>H<sub>24</sub>INNaO<sub>5</sub>S, M + Na]<sup>+</sup>: 552.0312; Found: 552.0316.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 28.0 (c = 1.0, CHCl<sub>3</sub>). 93% ee (HPLC condition: Chiralpak IC column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 16.48$  min for major isomer,  $t_{R} = 18.65$  for minor isomer).



Supplementary Figure 62. HPLC Trace of 9na.



**90a.** Syrup. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 – 7.81 (m, 2H), 7.53 (t, J = 1.4 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.04 – 7.02 (m, 1H), 6.32 (d, J = 1.1 Hz, 1H), 5.80 (s, 1H), 4.63 (d, J = 14.2 Hz, 1H), 4.55 (d, J = 14.2 Hz, 1H), 4.14 – 4.07 (m, 1H), 4.06 – 3.97 (m, 1H), 2.26 (s, 3H), 2.24 (s, 3H), 1.17 (t, J = 7.1, 3H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.01 , 142.25 , 140.13 , 139.78 , 139.24 , 139.17 , 136.82 , 135.68 , 132.36 , 131.92 , 129.79 , 129.13 , 100.22 , 61.07 , 50.20 , 20.43 , 20.36 , 13.93 . **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>21</sub>ClINNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 555.9816; Found: 555.9818.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 22.0 (c = 1.0, CHCl<sub>3</sub>). 91% ee (HPLC condition: Chiralpak AD-H

column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_R$  = 25.17 min for minor isomer,  $t_R$  = 27.32 min for major isomer).



Supplementary Figure 63. HPLC Trace of 90a.



**9pa.** White solid. **MP:** 135-137 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.37 (d, J = 8.8 Hz, 2H), 8.08 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 1.9 Hz, 1H), 7.06 (d, J = 1.9 Hz, 1H), 6.33 (d, J = 1.2 Hz, 1H), 5.78 (d, J = 1.1 Hz, 1H), 4.68 (d, J = 14.0 Hz, 1H), 4.60 (d, J = 14.0 Hz, 1H), 4.11 (dq, J = 10.9, 7.2 Hz, 1H), 4.04 (dq, J = 10.9, 7.1 Hz, 1H), 2.27 (s, 3H), 2.26 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H). <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.87, 150.15, 146.73, 142.35, 140.53, 139.25, 136.20, 135.34, 132.53, 132.28, 129.64, 124.12, 99.91, 61.17, 50.54, 20.44, 20.39, 13.96. **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>21</sub>IN<sub>2</sub>NaO<sub>6</sub>S, M + Na]<sup>+</sup>: 567.0057; Found: 567.0054.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 17.0 (c = 1.0, CHCl<sub>3</sub>). 91% ee (HPLC condition: Chiralpak IC column, *n*-Hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 26.38$  min for major isomer,  $t_{R} = 44.70$  for minor isomer).

Supplementary Figure 64. HPLC Trace of 9pa.





**9qa.** White solid. **MP:** 142-144 °C. <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.74 (t, J = 2.0 Hz, 1H), 8.46 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 8.21 (dt, J = 7.8, 1.4 Hz, 1H), 7.75 (t, J = 8.0 Hz, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.07 (d, J = 2.1 Hz, 1H), 6.34 (d, J = 1.1 Hz, 1H), 5.79 (d, J = 1.0 Hz, 1H), 4.67 (d, J = 14.1 Hz, 1H), 4.59 (d, J = 14.1 Hz, 1H), 4.11 (dt, J = 10.8, 7.1 Hz, 1H), 4.02 (dq, J = 10.8, 7.1 Hz, 1H), 2.29 (s, 3H), 2.27 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>)  $\delta$  165.86, 148.20, 143.15, 142.33, 140.56, 139.26, 136.33, 135.35, 133.95, 132.57, 132.25, 130.15, 127.21, 123.70, 99.72, 61.15, 50.56, 20.46, 20.40, 13.94. **HRMS (ESI)** m/z Calcd for [C<sub>20</sub>H<sub>21</sub>IN<sub>2</sub>NaO<sub>6</sub>S, M + Na]<sup>+</sup>: 567.0057; Found: 567.0060.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 65.0 (c = 1.0, CHCl<sub>3</sub>). 93% ee (HPLC condition: Chiralpak IC column, *n*-Hexane/*i*-PrOH = 90:10, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 54.67$  min for major isomer,  $t_{R} = 58.46$  for minor isomer).





### The procedure for the synthesis of 11, 12 and 13:



To a dry Schlenk tube equipped with a magnetic stir bar, was added **10ba** (0.1 mmol),  $Pd(OAc)_2$  (0.005 mmol),  $PPh_3$  (0.01 mmol). The tube was closed with a septum, evacuated, and refilled with argon. Dry DMF (0.5 mL) was added and the reaction mixture was then stirred at 25 °C for 10 minutes. After that, HCOOH (0.2 mmol) and Et<sub>3</sub>N (0.25 mmol) were added and the mixture was stirred at 60 °C for 10 hours. Upon the reaction completed, the mixture was purified via column chromatography on silica gel to afford the desired product **11**.

Syrup, <sup>1</sup>**H** NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  7.58 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 1.7 Hz, 1H), 6.98 (d, *J* = 1.7 Hz, 1H), 4.66 (d, *J* = 12.8 Hz, 1H), 4.01 (qq, *J* = 7.2, 3.7 Hz, 2H), 3.87 (d, *J* = 12.8 Hz, 1H), 2.44 (s, 6H), 2.36 (s, 3H), 1.30 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  173.45 , 143.90 , 138.64 , 138.38 , 136.11 , 135.95 , 132.13 , 129.78 , 129.44 , 127.48 , 122.80 , 61.32 , 61.06 , 51.43 , 25.38 , 21.30 , 20.81 , 20.23 , 13.79 . **HRMS (ESI)** m/z Calcd for [C<sub>21</sub>H<sub>25</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 410.1396; Found: 410.1392.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 12.0 (c = 1.0, CHCl<sub>3</sub>). 83% ee (HPLC condition: Chiralpak OD-H column, *n*-Hexane/*i*-PrOH = 98:2, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 13.42$  min for minor isomer,  $t_{R} = 15.83$  min for major isomer).



Supplementary Figure 66. HPLC Trace of 11.



To an oven-dried Schlenk tube equipped with a magnetic stir bar was added the **11** (0.05 mmol) and Mg-powder (18.0 mg, 15 equiv.) under Ar atmosphere. Absolute MeOH (1.4 mL) was added and the reaction was capped with a septum, then sonicated at room temperature until full consumption of starting material as monitored by TLC (around 30 min). After cooling to 0 °C, the reaction mixture was slowly quenched with saturated NH<sub>4</sub>Cl. The aqueous phases were extracted with DCM ( $3 \times 10$  mL). The combined organic phase was washed with saturated brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexanes/ethyl acetate = 12:1) to afford **12** (81% yield).

Syrup, <sup>1</sup>**H** NMR (500 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  6.93 (s, 1H), 6.78 (s, 1H), 4.18 (q, J = 7.0, 2H), 4.13 (d, J = 10.0 Hz, 1H), 3.36 (d, J = 10.0 Hz, 1H), 2.26 (s, 3H), 2.13 (s, 3H), 1.54 (s, 3H), 1.29 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  174.67, 146.79, 131.78, 129.87, 128.35, 121.89, 119.42, 60.97, 57.28, 52.60, 24.34, 20.48, 16.38, 13.92. **HRMS (ESI)** m/z Calcd for [C<sub>14</sub>H<sub>19</sub>NNaO<sub>2</sub>, M + Na]<sup>+</sup>: 256.1308; Found: 256.1304.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  - 18.0 (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>). 83% ee (HPLC condition: Chiralpak AD-H column, *n*-Hexane/*i*-PrOH = 95:5, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R} = 7.89$  min for major isomer,  $t_{R} = 13.39$  min for minor isomer).

Supplementary Figure 67. HPLC Trace of 12.





To a solution of **11** (78 mg, 0.2 mmol) in THF (0.5 mL) were added water (0.5 mL) and LiOH (15 mg, 0.6 mmol). The mixture was allowed to stir at 80 °C overnight. After completion of the reaction (monitored by TLC), the volatiles were evaporated under reduced pressure. The residual aqueous solution was acidified with 3.0 N aqueous HCl solutions (PH < 1.0), and extracted with ethyl acetate. The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under

reduced pressure. After recrystallization using diethyl ehter, pure acid 13 was obtained as a white solid.

MP: 188-189 °C. <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 6.89 (s, 1H), 6.87 (s, 1H), 4.57 (d, J = 12.9 Hz, 1H), 3.77 (d, J = 13.0 Hz, 1H), 2.37 (s, 3H), 2.24 (s, 3H), 2.23 (s, 3H), 1.23 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  179.50, 143.91, 138.41, 137.66, 136.11, 135.58, 132.66, 130.25, 129.43, 127.74, 122.78, 60.78, 51.29, 25.61, 21.47, 21.05, 20.42. HRMS (ESI) m/z Calcd for [C<sub>19</sub>H<sub>21</sub>NNaO<sub>4</sub>S, M + Na]<sup>+</sup>: 382.1083; Found: 382.1081.

**Optical Rotation**:  $[\alpha]^{25}_{D}$  **6.0** (*c* = **0.31**, CHCl<sub>3</sub>). 96% ee (HPLC condition: Chiralpak AS-H column, *n*-Hexane/*i*-PrOH = 80:20, flow rate = 1.0 mL/min, wavelength = 254 nm,  $t_{R}$  = 9.14 min for minor isomer,  $t_{R}$  = 16.41 min for major isomer).





## NMR spectra















# Supplementary Figure 73. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1e.



## Supplementary Figure 74. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1f.





## Supplementary Figure 77. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1i.



# Supplementary Figure 78. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1j.





# Supplementary Figure 79. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1k.



# Supplementary Figure 80. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 11.






# Supplementary Figure 82. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1n.



# Supplementary Figure 83. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 10.





# Supplementary Figure 85. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 1q.



### Supplementary Figure 86. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 3a.





#### Supplementary Figure 88. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4b.



#### Supplementary Figure 89. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4c.

#### Supplementary Figure 90. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4d.





#### Supplementary Figure 91. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4e.

#### Supplementary Figure 92. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4f.





Supplementary Figure 93. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4g.



### Supplementary Figure 94. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4h.



#### Supplementary Figure 95. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4i.

# Supplementary Figure 96. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4j.



# Supplementary Figure 97. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4k.



# Supplementary Figure 98. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 41.





#### Supplementary Figure 99. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4m.









# Supplementary Figure 102. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4p.





# Supplementary Figure 103. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4q.

# Supplementary Figure 104. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 5a.

7.1939 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.1920 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.19200 7.



# Supplementary Figure 105. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 5b.



# Supplementary Figure 106. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 6a.









#### Supplementary Figure 108. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 7.



# Supplementary Figure 109. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 8.



#### Supplementary Figure 110. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 9aa.



#### $1 \ 0 \ 2$







#### $1 \ 0 \ 5$







1 0 8






Supplementary Figure 120. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 9ga.













## $1 \ 1 \ 7$





1 1 9









## Supplementary Figure 131. <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 11.









## **Supplementary References**

- [1] J. Chen, Y. Huang, Org. Lett. 2017, 19, 5609-5612.
- [2] H. Gao, Q.-L. Xu, C. Keene, M. Yousufuddin, D. H. Ess, L. Kürti, Angew. Chem. Int. Ed. 2016, 55, 566-571.
- [3] H. Gao, D. H. Ess, M. Yousufuddin, L. Kürti, J. Am. Chem. Soc. 2013, 135, 7086–7089.
- [4] R. A. Singer, J. R. Brock, E. M. Carreira, Helv. Chim. Acta. 2003, 86, 1040–1044.
- [5] H. Forkosh, V. Vershinin, H. Reiss, D. Pappo, Org. Lett., 2018, 20, 2459-2463.
- [6] S. Shirakawa, X. Wu, K. Maruoka, Angew. Chem. Int. Ed. 2013, 52, 14200-14203
- [7] H. Liu, S. Liu, H. Zhou, Q. Liu, C. Wang, RSC Adv., 2018, 8, 14829-14832.