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Appendix 1. Parameterization, description of methods and a sensitivity analysis of the results 

model to key parameters 
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1. Factors affecting mass-specific vitamin B1 levels 

We assume, that due to turnover rate of mitochondria and other cell structures, vitamin B1 is degraded 

with a rate equal to the metabolic rate i.e. MR=0.001 [h
-1

] where MR is the fraction of vitamin B1 in the 

cell degraded per hour. Bacteria and algae are assumed to synthesize and /or absorb dissolved vitamin 

B1 with a rate twice of the assumed metabolic rate, i.e. the net rate of vitamin B1 level increase is equal 

to the metabolic rate. Note that the predictions from our model do not change when the net rate of 

vitamin B1 level in cells of microbes is set to 50% or 200% of metabolic rate MR (Fig. S1). The 

simulations starts from picomolar concentrations of vitamin B1 in tissues of the modelled organisms 

but the predictions derived from our model also do not change when simulations start from maximal 

allowed levels of vitamin B1 (Fig. S2). Hence, the model is robust in terms of changes regarding the 

assumed rate of vitamin B1 synthesis/uptake as well as initial cellular concentrations of the vitamin 

(Fig. S1-2).We used the following empirical estimates to set the maximal mass-specific concentration 

of vitamin B1 [μmol·μmol
-1

 C]: bacteria 1.48e-7,  picoalgae 1.48e-7, nanoalgae 1.18e-7 and 

microalgae 1.18e-7, 1.28e-7 for mesozooplakton 
1,2

. Small planktivorous fish were allowed to contain 

at maximum 1.04e-10 [μmol· μmol
-1

 C] with average concentration of 6.41
-11

 [μmol·μmol C
-1

] 

according to the vitamin B1 content in clupeids of the Baltic Sea averaged data for sprat and herring 

reported by 
3
. To recalculate the concentrations of vitamin B1 in planktivorous fish we assumed carbon 

mass to constitute 12.5% of fresh body mass 
4
. Due to a lack of empirical data on vitamin B1 levels in 

protozoans, we set the maximal levels to 1.32e-7 [μmol·μmol
-1

 C] for nanoflagellates and 1.27e-7 

[μmol·μmol
-1

 C] for ciliates by fitting a linear regression to the log-transformed data on mass specific 

vitamin B1 content in other planktonic organisms. The assimilation rate in vitamin B1 consumers was 

dependent on prey and predator biomass [μmol C·l
-1

], the assumed vitamin B1 bioavailability (see 

below and in the main text) and the predators volume-specific clearance rates. The clearance rates 

were set to 1·10
-5

 [h
-1

] for protozoans and mesozooplankton while three times lower specific clearance 

rate was assumed for clupeid fish 
5,6

. 
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Figure S1. The results of sensitivity analyses of the model predictions where the assumed rate of 

vitamin B1 input was set to (a) 50% and (b) 200% of the metabolic rate MR. Note that all other 

parameters were set the same as in simulations presented in Fig. 2 in the main text. Spheres represent 

the percentage of days within the modelled time frame with vitamin B1 in planktivorous fish falling 

below the average levels found in empirical studies (see the main text). For clarity spheres indicate 

scenarios with vitamin B1 level in planktivorous fish lower than the average empirical estimate in 30% 

or more days.  
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Figure S2. Biomass and concentrations of vitamin B1 in exemplary scenarios. (a, c) Simulations start 

from picomolar concentrations of mass specific content of vitamin B1. (b, d) Simulations start from 

maximal allowed concentration of vitamin B1. Other parameters were set the same for pairs of panels 

a, b and c, d. 

 

2. Vitamin B1 bioavailability - sensitivity analysis of the model results 

The bioavailability of vitamin B1 determine the fraction of the compound loss during digestion process 

by consumers. Losses of water-soluble vitamin B1 in fish during digestion can be very high and reach 

up to 98% 
7
. In mammals bioavailability reaches up to 5% for water-soluble vitamin B1 hydrochloride 

and up to ca. 20% for other vitamin B1 analogues 
8,9

. However, no data exist on vitamin B1 

bioavailability in protozoans or zooplankton. In the main text we report results for vitamin B1 

bioavailability of 15% i.e. 75% of the consumed vitamin B1 is lost. In order to assess the effect of the 

assumed bioavailability levels on the model outcomes we run a sensitivity analysis. We ran 

calculations in the full space of model parameters i.e. abundance of planktivorous fish, nutrient input 
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and light attenuation coefficient caused by dissolved substances with vitamin B1 bioavailability 

ranging from 10 to 20% (Fig. S3). 

 

Figure S3. Sensitivity of the model predictions to the assumed bioavailability of vitamin B1. Spheres 

represent the percentage of days within the modelled time frame with vitamin B1 in planktivorous fish 

falling below the average levels found in empirical studies (see the main text). For clarity spheres 
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indicate scenarios with vitamin B1 level in planktivorous fish lower than the average empirical 

estimate in 30% or more days. 

 

3. Nutrient uptake by primary producers 

The rate of nutrient uptake is a meaningful measure of competitive strength in marine and freshwater 

primary produces 
10,11

. In previous studies of aquatic productivity, nutrient transport was modelled as 

constrained by the rate of the diffusion only cf. 
5
. These studies assumed that algae cell is a perfect 

sink for nutrients and large cells are constrained by nutrient transport rate to a higher degree than small 

unicellular algae. In our model, consistent in approach with recent literature, nutrient affinity and 

nutrients-dependent growth rate scales with cell volume rather than its radius 
10,11

. We modelled the 

rate of nutrient transport as allometrically dependent on cell volume using formulas for dependence of 

nutrient affinity [l·day
-1

] on cell volume [μm
3
] reported by Edwards, et al. 

10
 and theoretically 

investigated by Lindemann, et al. 
12

, given by 5.1 2.25 110 24N NJ r C   and 

5.5 2.55 1 -110 24 μmol hP PJ r C      for nitrogen and phosphorous. 

 

4. Light attenuation and the effect of light on primary production 

Light intensity in the model fluctuates in the annual and day-night cycle determined by day of year d, 

hour h and latitude φ at the geographic location of Linnaeus Microbial Observatory (LMO) at 56.93°N 

and 17.06°E. The intensity of unidirectional light reaching water surface I0 [μmol quanta cm
–2

·h
–1

] is 

given by 

(1) 0 sinSI I    

where IS match the daytime photosynthetically active radiation, set to IS=100 [μmol quanta m
–2

·s
–1

] cf. 

5,13
 and α match the elevation angle. The elevation angle is given by 

(2)  arcsin sin sin cos cos cos        

with hour angle given by and  15 12h    and declination δ equal to  
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(3)  
360

23.45 sin 81
365

d   
  

 
 

Consequently, I0 was set to 0 in between after sunset and before sunrise hours.  

  The light availability is one of key determinants of the growth rate of primary producers (see 

below). The primary production in our model PP [μmol C·h
-1

] was dependent on absorption of light 

that attenuates while penetrating the 10m water layer. The way we model light attenuation follows the 

approach based on the Lambert-Beer’s law, adopted in several studies on algae primary production 

e.g. 
14,15,16

, and given by 

(4)  0( , ) expPPI W z I kz   

where I0 is the intensity of light reaching water surface, z is depth in meters and k match the light 

attenuation coefficient [m
-1

]. The light attenuates due to self-shading by algae and background sources. 

The total attenuation coefficient k given by  

(5) s PP bgk k W k   

is determined by background attenuation coefficient kbg [m
-1

], algal carbon biomass WPP [mg C·m
-3

], 

and carbon mass specific attenuation coefficient ks. We set a carbon mass specific attenuation 

coefficient ks to 3·10
-4

 [m
2
·mg C

-1
] which is consistent with values set in other studies on marine 

primary production cf. 
14,16

 and estimates for the Baltic Sea based on chlorophyll concentration cf. 
17,18

. 

We use background attenuation coefficient kbg to model scenarios with variable degree of light 

attenuation by organic and inorganic substances dissolved in the water (see below).  

  The carbon production by an algae cell in our model PP [μmol C·h
-1

] depends on total light 

penetrating a layer of surface waters with depth z=10 [m] and is given by 

(6)
2PP r I  

where πr
2
 is the light-exposed surface of the cell area [cm

2
], total light penetrating the water column I 

[μmol quanta cm
–2

·h
–1

] and Φ is the quantum yield of photosynthesis [mol C·mol quanta
–1

] 

parameterized to Φ=0.0286 [mol C·mol quanta
–1

] according to estimates of Φmax for the spring and 

summer bloom in the Baltic Sea data taken from 
19,20

. 
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5. Tested scenarios  

a.) Nutrient input  

The degree to which nutrient concentrations and nutrient ratios constrain the growth rate of primary 

producers depends not only on the nutrient concentration in the water but also on the optimal 

stoichiometric composition of cells. Marine primary producers are highly variable with respect to their 

stoichiometric composition, with C:N:P ratio distributed around the Redfield ratio i.e. 106:16:1 
21

. 

Because our understanding of the adaptive component of this variability is poor 
22,23

 and to keep our 

model simple we assumed that primary producers are equally constrained by nitrogen and 

phosphorous availability. Hence, we assumed in our model that N:P ratio of algae cells and dissolved 

nutrients follows the Redfield ratio cf. 
5
 but we manipulated the level of nutrients available in the 

water at the beginning of simulation. We parameterized concentration of nitrate NO3
-
 and ammonium 

NH4
+
 using data obtained at the Linnaeus Microbial Observatory (LMO) sampling site 

24
 and data 

extracted from HELCOM database representing early spring nutrient concentration in the southern 

part of the Baltic Sea (years 1998-2016). We consider a set of five scenarios varying with nitrogen 

input from a very low to a very high nitrogen concentration (2.01 μmol/l of NO3
-
, 0.93 μmol/l of NH4

+
 

and 30 μmol/l of NO3
-
, 7 μmol/l of NH4

+
) with levels of phosphorous input set relatively to nitrogen 

levels according to the Redfield ratio i.e. 16:1. Consequently, in the model we consider the following 

scenarios of the starting concentration of nitrogen and phosphorous: very low (2.01 μmol/l of NO3
-
, 

0.93 μmol/l of NH4
+
, 0.18 PO4

2-
), low (2.92 μmol/l of NO3

-
, 2.05 μmol/l of NH4

+
, 0.31 PO4

2-
), average 

(3.82 μmol/l of NO3
-
, 3.17 μmol/l of NH4

+
, 0.44 PO4

2-
), high (16.91 μmol/l of NO3

-
, 5.09 μmol/l of 

NH4
+
, 1.37 PO4

2-
), very high (30.00 μmol/l of NO3

-
, 7.00 μmol/l of NH4

+
, 2.31 PO4

2-
). We also 

rounded the precision of the nutrient concentration to two decimal places so it can be easily compared 

with levels measured in natural environments. 

 

b.) Planktivorous fish abundance 

We modelled population of planktivorous fish with body mass 4 g carbon body weight equivalent to 

ca. 32 g of fresh weight and ca. 15cm body length cf. 
4
, which is an intermediate body size between 
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those for adult Baltic herring (Clupea harengus membras) and European sprat (Sprattus sprattus) see. 

25,26
. We used the data on abundance of central Baltic population of herring and sprat in age 1+ in 

years 1991-2016 ICES subdivisions 25-28 see 
27

 to parameterize tested scenarios with respect to the 

abundance of planktivorous fish. The averaged population densities of herring and sprat in the Baltic 

Sea subdivisions 25-28 varied between 0.004 and c.a. 0.05 [ind·m
-3

] 
27,

Data from the Baltic 

International Acoustic Survey, BIAS: 
28

. The density distribution of sprat and herring cumulative 

abundance of from subdivisions 25-28 in years 1991-2016 was characterized by quartiles Q25%=0.008 

and Q75%=0.02 [ind·km
-3

] (Fig. S4). Our model assumes fish predate on mesozooplankton 

continuously and we did not model diel vertical migrations in zooplankton and associated with this 

day-night cycle in fish feeding intensity. Hence, the abundance of planktivorous fish in the model was 

proportional to the empirical estimate of clupeids abundance (Fig. S4) by dividing real abundances by 

half. This transformation of empirically estimated abundances into modelled abundances represent the 

fact that in natural environments predation intensity fluctuates in day-night cycle, which is not the case 

in our model. Consequently, we tested our model with scenarios varying in planktivorous fish 

population density from low (0.004 [ind·m
-3

]) to high (0.01 [ind·m
-3

]) abundance (see the main text). 
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Figure S4. Frequency distribution of the two key clupeid species abundance in the Baltic Sea. Bars 

represent averaged population density for Baltic herring (Clupea harengus membras) and European 

sprat (Sprattus sprattus) in age 1+ in the Baltic Sea (subdivisions 25-28) between 1991 and 2016y. 

Red dashed lines represent quartiles Q25% and Q75%. 

 

c. Degree of light attenuation 

The light attenuation in our model has a biotic component due to self-shading and an abiotic 

component set by the background light attenuation kbg see eq. (5). Whereas light attenuation due to 

primary production is determined by the biomass of algae see eq. (5) the background attenuation 

coefficient kbg describes light attenuation by dissolved inorganic and organic substances. The 

background attenuation coefficient kbg for marine systems reported by Urtizberea, et al. 
29

 served as an 

empirical estimate for the scenarios tested in our work. We tested a range of scenarios varying in kbg 

coefficient from 0.04 [m
-1

] to 0.24 [m
-1

]. 
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