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eFigure 1. Patient inclusion and exclusion criteria. 
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eFigure 2. Difference in risk prediction between the NCDR existing full model and the 
blended model. 
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eFigure 3. The quantity of bleeds correctly identified by the Blended model. (Quantity of 
bleeds identified by the Blended model when considering the (a) highest decile of risk as a 
decision threshold and (b) mean predicted risk of the highest decile as a decision 
threshold.) 

 

 

 

NCDR = National Cardiovascular Data Registry; PCI = percutaneous coronary 
intervention 
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eFigure 4. The quantity of non-bleeds correctly identified by the Blended model. 
(Quantity of bleeds identified by the Blended model when considering the (a) 
highest decile of risk as a decision threshold and (b) mean predicted risk of the 
highest decile as a decision threshold.) 

 

 

 

NCDR = National Cardiovascular Data Registry; PCI = percutaneous coronary 
intervention 
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eFigure 5. The false discovery rate and positive predictive value of the Blended 
model. (False discovery rates and positive predictive values of the Blended model 
when considering the (a) highest decile of risk as a decision threshold and (b) mean 
predicted risk of the highest decile as a decision threshold.) 

 

 

 

NCDR = National Cardiovascular Data Registry; PCI = percutaneous coronary 
intervention 
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eAppendix. Explaining Implementations of Boosted Decision Trees and Additional 
Variable Selection Validation Strategies 

I. Motivation 
We sought to improve prediction of bleeding using machine learning methods compared 

with an existing model that was derived from the same dataset. With the machine learning 
methods, we started with variables that had been selected or defined in the existing model, and 
then extended this set to any additional variables related to those variables selected or defined in 
the existing model (e.g., pre-procedure hemoglobin continuous value rather than 2 variables of 
pre-procedure hemoglobin ≤13 and >13 g/dL). We did conduct additional experiments to 
determine if any improved performance from the machine learning models was a result of new 
variable selection or the use of a different analytic approach. Finally, we conducted 
supplementary analyses to determine how effective the machine learning models would be if 
they selected a smaller set of the most predictive variables, so that this targeted set could be more 
acquired for incorporation into post-PCI clinical care and decision making.  

For this reason we evaluated two different methods. The first is a traditional statistical 
technique in logistic regression, but with lasso regularization, to understand if a difference in the 
method by which logistic regression selects the variables impacts performance. The second was 
gradient descent boosting, which is better equipped to develop models that have binary, 
categorical, and continuous data. We conducted analyses to determine if the variables provided 
the greatest impact, the methodology, or the combination of variables and methodology, while 
still using techniques that maintained a level of interpretability for clinical understanding. 

 
II. Inclusion Criteria and Outcomes Definitions 

Our initial sample used inclusion and exclusion criteria for the existing full NCDR 
bleeding-risk model,1 updated to include all index PCI procedures from July 2009 through April 
2015 (eFigure 1). Briefly, this study population excluded patients who had repeated PCI 
procedures per admission (197,412 cases), died in the hospital or had missing bleeding 
information (10,231 cases), or from sites with no bleeding events (1,165 PCI cases from 22 
sites).  We also excluded patients who underwent coronary artery bypass grafting (CABG) 
during the index admission, because the high risk of bleeding after CABG may obscure the 
bleeding risk attributable to PCI alone.2 We must note a limitation in our work regarding de-
identified procedure admission information. Namely, because our dataset is de-identified, we can 
only identify PCI procedures that are related if they occur in the same admission. Therefore, the 
distinct number of procedures we have isolated do not necessarily mean each is a new patient. 
This has the potential to introduce some bias through patients with repeated admissions and PCI, 
and is a limitation of our work. 

The primary outcome, as in the existing NCDR bleeding model, was major post-PCI 
bleeding. The outcomes definitions are identical to those in work by Rao et al.3 Major bleeds are: 
1) Major bleeding occurring within 72 hours after the PCI or before discharge is said to have 
occurred if there is a site-reported bleed (external or hematoma >10 cm, >5 cm, and >2 cm for 
femoral, brachial, and radial access, respectively); 2) Bleeds reflecting a post-PCI hemoglobin 
decrease of 3 g/dL in patients with a pre-PCI level of at least 16 g/dL; 3) Any non-surgery blood 
transfusion for pre-procedure hemoglobin levels of at least 8 g/dL; 4) intracranial hemorrhage, 
cardiac tamponade, and gastrointestinal or retroperitoneal bleeding.3 
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III. Extreme Gradient Boosting (xgboost) 
Gradient descent boosting was selected as the primary machine learning technique used 

for this analysis for several reasons. First, decision tree-based methods are inherently more 
interpretable than popular deep learning techniques. By seeing how often variables are selected 
across a variety of the decision trees made, we are able to interpret how important each variable 
is. Second, decision tree-based methods are able to make use of multimodal data seamlessly. In 
other words, they are able develop models that have binary variables, categorical variables, and 
continuous variables alike. Finally, with regards to the variety of decision tree-based methods 
that exist, we chose xgboost because of the advantages this technique provides. This method 
develops one decision tree at a time that has limited depth. This requires this tree to find 
variables that best split the population, in the hopes of having leaf nodes at the bottom of the tree 
that best split bleeding cases versus. non-bleeding cases. After this tree is developed, through a 
series of tests that identify the best variable for this split (accounting for potential outliers in the 
data), the model determines how much of the training set variation can be explained by this tree. 
Based upon this it develops the next tree with the inherent goal of better explaining the variation 
in the proportion of the training set not explained by the first decision tree. This procedure 
continues until a group of trees helps develop a robust predictive model. For more details we 
encourage readers to understand why this technique is potentially preferable to other decision 
tree techniques such as random forest, as explained by the authors of the technique.4 

When the trees are finished training, our predictive model has several interpretable factors. The 
top variables selected across each of the trees indicates important variables in understanding low 
versus high risk procedure cases. Second, the higher a variable is on the tree the more important 
it was deemed to be in understanding bleeding cases versus non-bleeding cases. Finally, we can 
understand risk for each individual patient by understanding the paths in each tree that predicted 
that patient’s risk. 

IV. Cross-Validation and Model Hyper Parameters 
The cross-validation process described in the main text for the new models was also 

repeated for the 2 existing NCDR bleeding-risk models to detect any differences in 
discrimination that might arise from using a cross-validation approach rather than the single-
derivation/validation cohort split used in prior work.1 This allowed us to directly compare 
performance of the existing technique in this stratified cross-validation approach to the new 
methods and variables considered. 

All analyses were conducted in R, with the base GLM function used for logistic 
regression with the pre-selected variables to recreate the existing models, the GLMNET package 
used for the logistic regression with lasso regularization,5 XGBOOST for the gradient descent 
boosting,4 and pROC for the ROC and c-statistic calculations.6 We used mgcv and sandwich for 
the continuous smoothing functions for calibration curves.7,8  

For the GLMNET package in R, the hyper parameters for the model were set by using the 
default values in the cv.glmnet function with a 10-fold internal cross-validation. This is pre-built 
in the package glmnet (cv.glment). This method creates, from the training set, an internal 10-fold 
training and testing set. It iterates through and compares different tuning parameters and selects 
the lambda that provides the highest AUROC within the training. This lambda is learned from 
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the training set (along with the other parameters) and is used as the default for prediction in the 
testing set. 

For xgboost, we set the number of trees to 1000, with an eta of 0.1 and a maximum depth 
of each tree of 6. We used the default learning rate and depth of tree, and preset the number of 
trees for computational efficiency but to provide a sufficient number of trees since boosting 
learns slowly. This limitation should be addressed in future work to grid search a wider number 
of trees (100 to 10000) with varying depth (from 1 to 10). 

 
V. Implementation 

In order to implement these methods the data must be taken through several pre-
processing steps. First, the cohort must be extracted, as in II above. Then the data must be split 
for internal validation. In our case we take the process of randomly separating 80 % of the data 
for training, and holding out 20% for validation, while keeping the event rate consistent in that. 
At this point we run imputation techniques based on the 80% training data. We then feed this 
training data and the training labels to the machine learning methods. In the case of xgboost we 
discuss the parameters used to tune the model in the prior section (IV). Finally, we then generate 
a prediction on the final 20%. We repeat this process five times, with a new 20% of the data 
serving as the test case every iteration. In R, this amounts to three lines of code. The first train 
the xgboost model with the data matrix where each procedure is a row and each column is a 
variable, we then generate a prediction using the model and the test data, we finally compare that 
prediction with the ground truth for the test set in pROC to plot the ROC curve. Source code is 
available at https://github.com/bobakm/NCDR_CathPCI_MajorBleed_Public. 

 
VI. Using the final model 

In order to recreate these models for use, we have made our source code available to 
extract the same patient cohort if one has access to the CathPCI registry data. The specific 
variables and hyperparameters are provided to the training of the xgboost model. For using the 
model, new test cases will have missing data imputed based upon the training set, and as 
described in the body of the paper. This model will produce a probability associated with the risk 
of major bleeding post-PCI. 

VII. Additional Dataset Comparisons 
We sought to better understand the updated samples. Specifically, we split analyses by 

year, for cases considered in the existing NCDR bleeding-risk models and newly collected cases, 
to confirm that changes in bleeding rates did not affect model discrimination (they did not) and 
that we are recreating the performance of the existing technique. Additionally, we provided 
supplementary analyses to ensure our top features selection technique was a fair selector of 
variables.  

The datasets used added variables in specific orders to determine the impact of variables 
versus methods. The blended variables set had 28 additional variables that primarily included 
continuous-variable versions of variables that the existing model had converted to dichotomous 
variables; continuous variables such as pre-procedural hemoglobin, previously used as 2 
dichotomous variables of pre-procedural hemoglobin (≤13 and >13 g/dL), were also added to the 
dataset. This variable set will provide the best performing model. Methods will be compared in 
this set to understand the model improvement resulting from method as well as resulting from 
the additional 28 variables. The post-PCI variable set was used to provide a direct comparison to 
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the existing technique to evaluate improvements as a result of machine learning techniques 
specifically. The pre-PCI variable set was created to evaluate impact of the risk score, which 
uses different decision thresholds than the post-PCI model, the continuous version of these 
variables was used for this dataset. This variable set provided a direct comparison to the existing 
risk score technique to evaluate improvements as a result of machine learning techniques 
specifically for data-driven decision thresholds. 

To verify that the additional samples did not affect discrimination, we compared data 
available to us from July 2009 to April 2011, similar to the data range of the existing NCDR 
bleeding model, which had an event rate of 4.6%, and from all the subsequent additional 
observations (May 2011 to April 2015) that had an event rate of 4.9%. The c-statistic for the 
additional samples, using the existing NCDR bleeding model in a 5-fold cross-validation, was 
0.78 (0.77-0.78). This c-statistic was similar to the existing NCDR bleeding model on the 
original sample. 

Additionally, we compared the final blended model to that of the blended model, using 
only 10 variables for a variety of reasons. First, the pre-PCI model also had 10 variables. These 
variables could be used to replace the pre-PCI case. Second, the eleventh variable (cardiogenic 
shock within 24 hours) is co-linear to the ninth variable (cardiogenic shock within 24 hours or at 
the start of PCI).  

 
VIII. Feature Selection and Ranking 

The feature selection and ranking techniques for xgboost are detailed in the manuscript. 
The full xgboost ranking of selected features can be found in eTable 2, which includes not only 
the ranked features from the entire dataset but also those features not selected by the model. 
However, as mentioned in the main manuscript, the ranking of the top 10 variables, and their 
contribution to the forward selected c-statistic, could be considered an unfair comparison. In 
particular, the dataset is trained on the entire data, and we can assume the model is a good fit by 
the 5-fold cross-validation. However, the c-statistic calculated by the forward selection is a result 
of using training data and testing data together, which is not ideal. We wanted to develop a 
technique that identifies the top contributors. To show that the results are a fair indicator of the 
results, we ran several other feature-ranking techniques.  

Using the blended dataset, we ensured that the top-10 comparisons were fair by 
validating them in several different tests. First, in a 5-fold cross-validation using the training data 
as the testing data, we ensured that the model is not extremely overfitting. Second, we ensured 
that the top-10 variables are stable across each fold and that each top-10 variable was in the final 
top 10 of multiple folds, and ensured the consistency from each fold to the total dataset by 
showing the average ranking of each feature and its standard deviation across the 5 folds. Third, 
we ensured that the stepwise feature selection was fair by showing a stepwise selection with a 
90/10 training/testing split that had similar incremental gains.  

By running the 5-fold cross-validation on the blended dataset again, we can check off the 
first 2 tests together. First, the mean c-statistic (and 95% confidence interval) for using the 
training data as testing data in each fold was 0.838 (0.838-0.839), higher than the 0.82 achieved 
when using the testing set. This upper bound on the c-statistic is similar to the 0.82 achieved with 
a test set. This means using the entire training set to determine feature importance cannot alter 
the stepwise results by a large margin. eTable 3 uses the variables (in rank order from the main 
manuscript) to show their average feature rank and number of times they appear in the top 10 in 
each fold in the 5-fold cross-validation. The average ranking and low standard deviation show 
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the stability of the selection of the top 10 variables. Finally, eTable 4 shows the forward 
stepwise c-statistic calculation for the top-10 variables ranked in a more traditional fashion: 
showing the variables selected in a 90% training dataset and then tested in a forward stepwise 
fashion on the remaining 10% testing data. The values show incremental improvements very 
similar to those listed in the manuscript.  

 
IX. Additional Results on Decision Thresholds 
The evaluation of the decision threshold and the model calibration give an evaluation of the 

model’s performance when used prospectively to decide whether a patient should receive 
bleeding-avoidance therapies, and to evaluate our performance via the f-score, positive 
predictive value, and false discovery rate (ratio of false positives to all positive predictions). 
eTable 1 shows the f-score for the best model in each variable set. The existing pre-PCI NCDR 
bleeding risk model achieved a mean f-score of 0.25 (0.25-0.26) and the best model in each 
variable set of post-PCI NCDR model. The existing post-PCI NCDR bleeding-risk model 
achieved a mean f-score of 0.26 (0.26-0.26), which did not change when switching between 
modeling methods. 

 
X. Additional Evaluations of Risk 

We intended to show that risk is somewhat dynamic, and understand the difference 
between the bedside risk score and the full risk model. eFigure 2 takes each patient’s risk, as 
calculated by the best performing model using the 10 variables from the pre-PCI model, and the 
risk calculated by the best performing full post-PCI model, and takes the difference. The 
clustering of bleeds towards the positive nature shows that the full post-PCI model raises the risk 
score of a lot of patients, most of whom have a bleeding outcome. This visually demonstrates an 
improvement in the c-statistic, as well as indicate more evidence that a specific threshold can 
separate bleeds and non-bleeds. eFigure 2 shows the risk difference when calculating the 
bleeding risk from the blended variable set and from the existing post-PCI NCDR bleeding-risk 
model. Overall, the model trained on the blended variable set more accurately identified post-
procedural bleeding risk over the model trained on the existing NCDR bleeding-risk variable set, 
evidenced by the higher concentration of bleeds in the region of largest difference in risk 
between the blended model and the existing post-PCI NCDR bleeding-risk model (right side, 
eFigure 3).  
 Additionally, we evaluated the performance of our models with a variety of decision 
thresholds. Specifically, in order to develop an ROC curve, a decision threshold is varied 
between a probability of 0 and a probability of 1. At each of these evaluation points, it is possible 
to calculate decision threshold-specific metrics. We ultimately present the threshold-specific 
metrics based upon the threshold that results in the highest f-score. The balance used in this 
study assumes an equal cost between false positives and false negatives. However, this may not 
be the case. Certain institutions may wish to use bleeding avoidance medications on patients with 
minimal risk, while others may wish to treat different risk thresholds with different strategies. In 
order to evaluate this performance, we also compared the positive predictive value and false 
discovery rates of the methods by using the highest decile of risk, rather than the data driven 
threshold, to show that the performance gains still exist. eFigures 3 and 4 show the quantity of 
bleeds and non-bleeds identified when selecting a threshold at the decile boundary and at the 
mean rate of the decile. Quantities, however, might be misleading due to the number of people at 
or above the mean rate of the decile versus in the decile entirely, so we show the rates in eFigure 
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5. We see the false discovery rate drops when using the full post-PCI model trained by xgboost, 
and that the parsimonious model using the top predictors performs similarly well.  

Since the calibration plot identifies the largest difference in the highest decile, we further 
analyzed the predictive nature of the model in this decile. eFigure 4 shows the correctly 
identified bleeds when using the decile threshold and mean decile rate, respectively. The highest 
decile of risk is any predicted risk ≥9.5% for the existing NCDR post-PCI bleeding-risk model, 
10.9% for the blended post-PCI model, and 10.8% for the blended post-PCI bleeding model 
using only the top-10 predictive variables. The mean predicted rate for the highest decile of risk 
was 18.2% for the existing NCDR post-PCI bleeding risk model, 22.0% for the blended post-PCI 
model, and 21.5% for the blended post-PCI model with 10 variables. eFigure 4 shows the 
incorrectly treated non-bleeds. While the FPs drop greatly when viewing the highest decile of 
risk and using the blended model, the quantity of FPs increases when using the mean predicted 
risk as a decision threshold. Note that the optimally selected thresholds in Table 4 are between 
these 2 rates. However, fewer cases are at a level of risk at or above the mean in the existing 
NCDR post-PCI bleeding-risk model. eFigure 5 plots the false-discovery rates and positive 
predictive values for each model at the respective thresholds, showing an improvement in both 
scenarios.  

 
XI. Limitations in Implementation 
Implementing these models for clinical use has been shown to be practical in a number of 

settings. For example, Huang et al. discussed implementation details of their prediction of acute 
kidney injury, citing that such implementations were possible if the appropriate fields were 
extracted from the electronic health record, and gave an example of a real-time risk calculator 
being implemented in the Cleveland Clinic.9 However, extraction of such variables may be a 
limitation and require advanced techniques such as natural language processing to properly 
extract the needed variables. Even with this limitation, the curated data and model presented in 
this work can still be used for retrospective benchmarking of quality of care, and enhance 
understanding of when to employ bleeding avoidance strategies in case reviews.  

XII. Additional Discussion and Future Directions 
A machine learning model’s strong discriminatory abilities, present even with incremental 

improvements using only the top-10 predictors, allow for confident selection of a subset of 
clinically useful predictive variables. If the collection of extraneous and collinear variables is not 
desirable, the blended top-10 variable model with a c-statistic of 0.81 performs well. Selecting a 
small, parsimonious set of predictors selected by the modeling technique could facilitate 
development of bedside tools that gather pertinent variables from the electronic medical record, 
calculate relevant scores, and characterize patients’ risk profiles in a variety of ways that 
clinicians could use to better care for patients. 

A third enhancement of this work (in addition to the two presented in the main text) is the 
prospective prediction as demonstrated in the top-predictors method. By selecting risk thresholds 
and evaluating treatment vs. non-treatment cases, it is possible to compare risk models with how 
they would be used clinically. For example, comparing the false discovery rates and quantities of 
predicted bleeds of the blended model and the blended model using only 10 variables versus the 
existing NCDR bleeding risk model shows specific improvements with each added layer of 
complexity. This improvement occurred because gradient descent boosting extracted the full 
continuous ranges of variables that had previously been used only as dichotomous variables. 
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Dichotomous versions of continuous variables were rarely selected by the model, illustrating the 
power of gradient descent boosting in selecting its own decision cut-points for continuous 
variables.  

A fourth enhancement is the evaluation of the predictive method in a prospective manner. 
While the thresholds should vary based upon the use case and costs in each setting the models 
would be used in, the choice of the data-driven thresholds selected here can greatly reduce the 
false-discovery rate, which helps reduce treatment by bleeding avoidance therapies by focusing 
on those at greatest risk, and also reduces the costs associated with mistreatment.  The f-score 
approach is an enhancement beyond the c-statistic discrimination and calibration plots; 
specifically, if the model is used prospectively, it better pinpoints when to expect a bleeding 
event and its consequences.  

These enhancements allow for the opportunity to extend this work in several areas. The 
first is to explore enhancements to the bleeding model by considering the further array of 
available data in the CathPCI registry. Other laboratory values, prior history variables, and 
values that were not found to be statistically significant in the prior work1 should be re-evaluated 
with these machine learning modeling techniques. The second is to explore the dynamic nature 
of the bleeding risk throughout the patient encounter. Two models were developed in this work, 
one as a pre-PCI model and one as a post-PCI model before treatment with bleeding avoidance 
therapies. The data within the CathPCI registry can be split into a variety of key decision points, 
including choice of access site, choice of bleeding avoidance therapies, and even choice of 
closure method for femoral PCIs, allowing for multiple models that will show the varying risks 
before and immediately following key treatment decisions. The third is to extend beyond the 
bleeding model, applying the techniques presented here to a variety of the models available in 
NCDR across the registries collected by the American College of Cardiology, evaluating 
discrimination improvements, identifying predictive factors, and evaluating risk threshold and 
prospective prediction performance measures. 

It will be essential to use electronic medical records to implement machine learning 
methods if we wish to verify their successes and potential shortcomings in future prospective 
studies. Registry data are highly curated, and it is unlikely that all potentially pertinent variables 
for an entire span of a patient’s admission would be available for immediate use from the 
electronic medical record. Two considerations are essential: first, it is important to recognize that 
electronic medical records have only so many variables readily available, so models built will 
need to be adjusted to maximize the variables. Second, it may be that certain variables in the 
registry matter greatly and are not available within the electronic medical record, and should be 
identified specifically.  
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eTable 1. Model Results for Patient Cohortsa  

 

Timing Variable Set 
Logistic 
Regression Xgboost Best f-score 

Pre-PCI Existing NCDR 0.77 (0.77-0.77) 0.81 (0.81-0.82) 0.30 (0.30-0.30) 

Post-PCI 
Existing NCDR  0.78 (0.78-0.78) 0.78 (0.78-0.78) 0.26 (0.26-0.26) 
Blended NCDR   0.78 (0.78-0.78) 0.82 (0.82-0.82) 0.31 (0.31-0.31) 

aBest f-score comes from best model (logistic regression or xgboost by mean c-statistic). 
NCDR = National Cardiovascular Data Registry 
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eTable 2. Blended Xgboost Model Incremental Variable Importance 

 

Rank Feature Forward, Stepwise C-statistic 
1 Pre-procedure hemoglobin 0.635 
2 PCI status and cardiac shock composite 0.754 
3 Coronary artery disease presentation 0.765 
4 Glomerular filtration rate 0.792 
5 Female 0.801 
6 Body mass index 0.804 
7 Age 0.806 
8 Cardiogenic shock within last 24 hours or 

at start of PCI 
0.806 

9 Cardiac arrest within 24 hours 0.808 
10 New York Heart Association composite 0.809 
11 Cardiogenic shock within last 24 hours 0.809 
12 SCAI lesion class composite 0.812 

13 
Pre-PCI left ventricular ejection fraction 
% 

0.813 

14 PCI status composite 0.813 
15 Pre-procedure creatinine 0.813 
16 PCI lesion composite 0.814 
17 Vessel disease composite 0.815 
18 Previous PCI 0.815 
19 Stenosis prior to treatment 0.815 
20 Pre-procedure TIMI flow 0.815 
21 Chronic lung disease 0.816 
22 Pre-procedure TIMI, no 0.816 
23 Peripheral vascular disease 0.816 
24 Cerebrovascular disease 0.817 
25 Diabetes: treatment composite  0.817 
26 Lesion complexity 0.817 
27 Diabetes 0.817 
28 PCI status and shock composite 5 - Urgent 0.817 

29 
PCI status and shock composite 4 - 
Emergent 

0.817 

30 Cardiogenic shock at start of PCI 0.817 
31 Currently on dialysis 0.817 
32 Lytics before PCI for STEMI 0.817 
33 Subacute stent thrombosis 0.817 
34 Cardiogenic shock composite 0.817 
35 Diabetes with non-insulin treatment 0.817 
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36 Left main PCI 0.817 
37 NYHA Class is I, II, or III 0.817 

Rank Feature Forward, Stepwise C-statistic 
38 PCI status and shock composite 3 – Shock 

within 24 hours or at start of PCI 
0.817 

39 Mild chronic kidney disease 0.817 
40 Moderate chronic kidney disease 0.817 
41 PCI status and shock composite 2 – 

Salvage or shock 
0.817 

42 Chronic kidney disease composite 0.817 
 

Not selected: STEMI, age ≤70, age >70, BMI ≤30, insulin requiring diabetes, no chronic kidney 
disease 1, severe chronic kidney disease, PCI and shock composite 1, PCI and shock composite 
6, SCAI lesion class II or III, SCAI lesion class IV, proximal LAD PCI, NYHA is class IV, 2- or 
3-vessel disease, pre-procedure hemoglobin ≤13 g/dL, pre-procedure hemoglobin >13, 
cardiogenic shock within 24 hours and at start of PCI 

CAD, coronary artery disease; GFR, glomerular filtration rate; LAD, left anterior descending; 
NYHA, New York Heart Association; PCI, percutaneous coronary intervention; SCAI, Society 
for Cardiovascular Angiography and Interventions; STEMI, ST-segment elevation myocardial 
infarction; TIMI, thrombolysis in myocardial infarction 
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eTable 3. Blended Model Dataset Features; Average Rank in 5-fold cross-Validation and 
Times in Top 10 

Rank Feature 
Average Rank 

(SD) 
% in Top 

10 
1.  Pre-procedure hemoglobin 1 (0) 5 
2.  PCI status and cardiac shock composite 2 (0) 5 
3.  Coronary artery disease presentation 3 (0) 5 
4.  Glomerular filtration rate 4 (0) 5 
5.  Female 5 (0) 5 
6.  Body mass index 6 (0) 5 
7.  Age 7 (0) 5 
8.  Cardiogenic shock within last 24 hours or at start of 

PCI 9.4 (2.07) 
4 

9.  Cardiac arrest within 24 hours 8.4 (0.55) 5 
10.  NYHA composite 10.6 (1.14) 2 
11.  Cardiogenic shock within the last 24 hours 11.2 (2.17) 3 
12.  SCAI lesion class composite 12.2 (0.45) 0 
13.  Pre-PCI LVEF % 11.6 (1.34) 1 
14.  PCI status composite 14.6 (0.55) 0 
15.  Pre-procedure creatinine 14 (0.71) 0 
16.  PCI lesion composite 16 (0) 0 
17.  Vessel disease composite 17 (0) 0 
18.  Previous PCI 19.2 (0.84) 0 
19.  Stenosis prior to treatment 18.4 (0.55) 0 
20.  Pre-procedure TIMI flow 19.6 (1.14) 0 
21.  Chronic lung disease 20.8 (0.45) 0 
22.  Pre-procedure TIMI, no 23.6 (1.82) 0 
23.  Peripheral vascular disease 22.6 (0.89) 0 
24.  Cerebrovascular disease 23.4 (0.55) 0 
25.  Diabetes: treatment composite 24.8 (0.84) 0 
26.  Lesion complexity 25.6 (0.55) 0 
27.  Diabetes 27 (0) 0 
28.  PCI status and shock composite 5 - Urgent 28.2 (0.45) 0 
29.  PCI status and shock composite 4 - Emergent 29.2 (0.84) 0 
30.  Cardiogenic shock at start of PCI 30.4 (1.67) 0 
31.  Currently on dialysis 32.2 (1.30) 0 
32.  Lytics before PCI for STEMI 33.6 (0.55) 0 
33.  Subacute stent thrombosis 32.6 (0.89) 0 
34.  Cardiogenic shock composite 30.8 (0.84) 0 
35.  Diabetes with non-insulin treatment 35.4 (0.55) 0 
36.  Left main PCI 35.6 (0.55) 0 
37.  NYHA class is I, II, or III 37 (0) 0 
38.  PCI status and shock composite 4 - Shock 38.2 (0.45) 0 
39.  Mild chronic kidney disease 40.4 (0.89) 0 
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40.  Moderate chronic kidney disease 39 (0.71) 0 
41.  PCI status and shock composite 2 – Salvage or shock 40.4 (0.55) 0 
42.  Chronic kidney disease composite 42 (0) 0 
LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; PCI, percutaneous 
coronary intervention; SCAI, Society for Cardiovascular Angiography and Interventions; SD, 
standard deviation; STEMI, ST-segment elevation myocardial infarction; TIMI, thrombolysis in 
myocardial infarction 
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eTable 4. Blended Model Dataset Features; Stepwise Forward Selection C-statistic in 90/10 
Training/testing Split. 

Rank Feature Forward, Stepwise C-statistic 
  1. Pre-procedure hemoglobin 0.634 
  2. PCI status and cardiac shock composite 0.753 
  3. Coronary artery disease presentation 0.763 
  4. Glomerular filtration rate 0.790 
  5. Female 0.800 
  6. Body mass index 0.804 
  7. Age 0.805 

  8. 
Cardiogenic shock within last 24 hours or at start of 
PCI 0.805 

  9. Cardiac arrest within 24 hours 0.807 
10. NYHA composite 0.808 
11. Cardiogenic shock within the last 24 hours 0.808 
12. SCAI lesion class composite 0.811 
13. Pre-PCI LVEF % 0.812 
14. PCI status composite 0.812 
15. Pre-procedure creatinine 0.812 
16. PCI lesion composite 0.813 
17. Vessel disease composite 0.814 
18. Previous PCI 0.814 
19. Stenosis prior to treatment 0.814 
20. Pre-procedure TIMI flow 0.815 
21. Chronic lung disease 0.815 
22. Pre-procedure TIMI, no 0.815 
23. Peripheral vascular disease 0.815 
24. Cerebrovascular disease 0.816 
25. Diabetes: treatment composite 0.816 
26. Lesion complexity 0.816 
27. Diabetes 0.816 
28. PCI status and shock composite 5 - Urgent 0.816 
29. PCI status and shock composite 4 - Emergent 0.816 
30. Cardiogenic shock at start of PCI 0.816 
31. Currently on dialysis 0.816 
32. Lytics before PCI for STEMI 0.816 
33. Subacute stent thrombosis 0.816 
34. Cardiogenic shock composite 0.817 
35. Diabetes with non-insulin treatment 0.817 
36. Left main PCI 0.817 
37. NYHA class is I, II, or III 0.817 
38. PCI status and shock composite 4 - Shock 0.816 
39. Mild chronic kidney disease 0.816 
40. Moderate chronic kidney disease 0.816 
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41. PCI status and shock composite 2 – Salvage or shock 0.816 
42. Chronic kidney disease composite 0.816 
LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; PCI, 
percutaneous coronary intervention; SCAI, Society for Cardiovascular Angiography and 
Interventions; SD, standard deviation; STEMI, ST-segment elevation myocardial infarction; 
TIMI, thrombolysis in myocardial infarction 


