Supplementary Materials

Contents

1 Supplementary Figures . . . . . . . . . . . ... 2

2 Supplementary Methods . . . . . . . . . . .. 18
2.1 Calculation of LECs . . . . . . . . . . . e 18
22 Precisionof LECs . . . . . . . o e 18
2.3 Coordinate ascent variational inference . . . . . . . . . .. ... L oL 18
24 FDRecalculation . . . . . . . . . . e e 20

3 Supplementary Information . . . . ... ... L 21
3.1 Identification of recovery interactions . . . . . . . . . . . . ... ... 21
3.2 Constructing true positive and true negative interactionsets . . . . . . . . . . . ... ... ... 21
3.3 Method comparison . . . . . . . ... e e e 22
3.4 Reagentvariability . . . . . . . L e e e e 22



1 Supplementary Figures

OVCARS Meljuso
1.04 [ ] o ©®
[ ] ' ‘
0.5 o
o
o
[T
-
0.0
-05
MCL1-CD81 BAX-MCL1 BAX-CD81 MCL1-CD81 BAX-MCL1 BAX-CD81
Meljuso treated by A-1331852 Meljuso treated by ABT-263
2]
24
0.
0 .a..
([ ]
o ) rJ
5 Y °
_oe®
—2J S
L
o
[ ] .. ®
-4 o'® °
MCL1-CD81 BAX-MCL1 BAX-CD81 MCL1-CD81 BAX-MCL1 BAX-CD81

Figure S1: Identification of recovery interactions in the Big Papi Apoptotic library. Boxplots indicating the
LFCs of guide pairs targeting MCLI-CD81, BAX-CD81, and BAX-MCLI. Each box shows the boundaries of the 25th
and 75th percentile values, and the center line indicates the median. The green horizontal line indicates GEMINI’s
inferred individual and combination gene effects. We use this convention for all boxplots shown in Supplementary
Figures. Here, CD81 is a cell surface marker with no known impact on cell viability, and therefore used as a negative
control. The top row shows the effects of BAX and MCLI knockout in the ovarian cell line OVCARS and the skin
melanoma cell line Meljuso. The bottom row shows the effects of BAX and MCLI knockout in Meljuso cells treated
with BH3-mimetics. In treated cells, we observe a higher sensitivity to MCLI knockout, and significant recovery with
the knockout of both genes.
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Figure S2: Individual gene effects are well correlated between GEMINI and CERES. GEMINI’s individual gene
effects (i.e. y, see Methods), inferred for the Big Papi dataset, are ploted against CERES gene essentiality scores
computed from the Avana library [1]. We note that the data used in Big Papi was derived from the Brunello library, an
improved version of Avana. Genes and cell lines are shown by different colors and symbols, respectively. On average,
across all cell lines, the Pearson correlation of gene scores between GEMINI and CERES is 0.8342, indicating that
GEMINT’s results are consistent with the analysis of single-knockout screens. Data for A375 (one of six cell lines
in Big Papi) are not shown since this cell line was not screened in the Avana library. In addition, inferred individual
effects from CDKO, Shen-Mali, and Zhao-Mali datasets show Pearson correlations of approximately 0.5 to CERES
gene effect scores, lower compared to Big Papi, likely due to significant differences in guide selection and library
design when compared to Avana.
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Figure S3: Normalized read counts for the top 20 interactions in A549 in Big Papi. We first normalized guide pair
counts with respect to the total count across all guide pairs for each cell line, which was then multiplied by a constant
(107) and averaged across all replicates. Here, we show the normalized counts of early versus late time point for guide
pairs corresponding to the top 20 interactions identified by GEMINI in A549 from Big Papi. Guide pairs targeting the
same gene pair are shown with the same color. We observe dropout in counts at late time point for almost all guide
pairs, suggesting that interactions identified by GEMINI in the Big Papi dataset are in agreement with the raw data.
Note that all guide pairs have at least 92 or more raw counts at early time point.
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Figure S4: Reagent variability in MAP2KI1-MAP2K2. Boxplots of LFCs corresponding to guide pairs that target
MAP2KI- CD81, MAP2K2-CDS81, and MAP2K1- MAP2K2 in A549 in Big Papi. We observe a large guide variability
in MAP2KI1-MAP2K2, ranging from 1 (cell growth) to —2 (cell depletion). This nearly bimodal distribution indicates
that half of the guide pairs targeting MAP2KI-MAP2K2 shows no significant lethality compared to the individual
knockout of MAP2K1 and MAP2K?2, while the other half suggests modest lethality. Additionally, the guides targeting
the individual genes also show high variability. Because of such extreme variability in the individual and combination
settings, GEMINI does not identify MAP2KI-MAP2K?2 as a strong interaction, although it does identify this as a
modest interaction (“strong” interaction score = 0.56, placing this gene pair in the top 17% of scores).
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Figure S5: Normalized read counts for the common interactions in Big Papi. Similar to Figure S3 in Additional
file 1, normalized counts were calculated for all cell lines screened in Big Papi. Common interactions found in 4
or more cell lines (Fig. 3a) are highlighted here, where colors indicate guide pairs targeting the same gene pair and
shapes indicate different cell lines. The majority of guide pairs are represented more highly at the early time point,
suggesting that common interactions show a dropout in counts across cell lines, consistent with GEMINI’s findings.
Note that all guide pairs have at least 169 or more raw counts at early time point.
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Figure S6: ROC curves for GEMINI, 7-score, GImap, and dLFC using Big Papi. To enable a fair ROC comparison
for these methods, we transformed GImap and GEMINI’s “sensitive” scores to z-scores (by default, m-score gener-
ates z-score; GImap scores approximately follow a normal distribution). Note that GImap and 7-score have negative
z-scores for lethal interactions, while positive z-scores are lethal in GEMINI. For GImap and 7-score, positive predic-
tions were set to gene pairs with z-scores less than an increasing cut-off, and for GEMINI, positive predictions were
set to gene pairs with the negative of the z-scores less than the increasing cut-off. For dLFC, gene pairs with FDRs
less than cut-offs from 0 to 1 were treated as positive predictions. Here, we only considered lethal interactions (i.e.
positive predictions) that were found in at least four cell lines of Big Papi dataset. ROC curves were then calculated
according to the positive predictions and the defined true postive and true negative sets (Supplementary Information
in Additional file 1), where GEMINI, 7-score, GImap, and dLFC achive an ROC-AUC of 0.7, 0.55, 0.53, and 0.48,
respectively.
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Figure S7: Comparison of GEMINI to 7-score, GImap, and dLFC for detection of lethal interactions across
varying numbers of cell lines. We applied all methods to the Big Papi dataset, and computed PR-AUC and ROC-AUC
when lethal interactions found in at least a specific number of cell lines were treated as the positive prediction. AUC
(y-axis) across different numbers of cell lines (x-axis) are shown for all methods. GEMINI consistently outperforms
other methods, suggesting that GEMINI better identifies common interactions among samples.
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Figure S8: GEMINI performance as a function of guide pairs per gene pair. We randomly down-sampled from
the Big Papi dataset, selecting a specific number of guide pairs per gene pair (from 2 to 18 pairs) that resulted in 340
datasets. We emphasize that i) the Big Papi dataset has 18 guide pairs for all gene pairs except for those including
negative controls, and ii) our random subsets have higher variation in gene pairs compared to the full symmetric data
set. GEMINI was applicable to all datasets (but did not achieve convergence in 20 iterations for %6 of datasets) while
m-score and GImap were not applicable to any generated dataset. We calculated GEMINI’s PR-AUC (red) and ROC-
AUC (blue) across all datasets for lethal interactions found in at least four cell lines. In both cases, AUC (y-axis)
improves as the number of guide pairs per gene pair increases (x-axis).
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Figure S9: Joint analysis of samples increases area under the precision-recall and receiver operator character-
istic curves. We applied GEMINI to each of Big Papi’s cell lines individually, and calculated PR and ROC curves
for lethal interactions found in at least four cell lines (blue). We similarly calculated these curves when GEMINI was
applied to all cell lines simultaneously (red). We observe that our joint analysis of cell lines improves PR-AUC by
0.07 and ROC-AUC by 0.10, noting that this integrative analysis is not incorporated in any existing methods.
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Figure S10: ROC and PR curves for GEMINI, GImap, and 7-score using CDKO. We applied GEMINI, GImap,
and m-score to the CDKO dataset. We could not run dLFC since its implementation is not available, and only its final
results are reported for Big Papi. ROC and PR were calculated for all methods using a set of true positive interactions
from SynLethDB and true negative interactions from half of the non-targeting negative control guides (named “safe”
guides in CDKO) paired with all other genes. The other half of the “safe” guides were used as negative controls for
all methods. The ROC and PR calculations were performed similarly to those in Fig. 3b and Figure S6 in Additional
file 1, but only in one cell line (K562). GEMINI consistently outperforms other methods in a large library of 490, 000
guide pairs. Specifically, GEMINI, GImap, and 7-score achieve ROC-AUCs of 0.79, 0.71, and 0.49, and PR-AUCs of
0.80, 0.68, and 0.32.
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Figure S11: CAVl initialization based on negative controls improves GEMINI performance. (a) GEMINI was run
on the Big Papi dataset without a specified negative control, and again when CD81 was specified as a negative control.
ROC and PR curves were calculated according to Fig. 3b and Figure S6 in Additional file 1. When a negative control
is utilized in the initialization process, GEMINI performance improves by 0.15 in ROC-AUC, and 0.1 in PR-AUC.
(b) GEMINI was run on the CDKO data set without a specified negative control, and again when half of the “safe”
guides were used as negative controls. ROC and PR curves were calculated according to Figure S10 in Additional
file 1. GEMINI performs robustly in both cases, but still shows an increase in performance when a negative control is

provided.
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Figure S12: GEMINI convergence rate. The absolute difference between the observed and GEMINI’s predicted
LFCs were calculated for CDKO, Zhao-Mali, Shen-Mali, and Big Papi screens. The average of these values across all
guide pairs and cell lines (mean absolute error) is shown at each iteration. Stars specify the iteration at which changes
in the mean absolute error are less than 0.001 compared to the previous iteration (i.e. convergence achieved).
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Guide sequence targeting WEE1

TCATCAACAGAGCCCGCCAA
GGGTAGTTCTCTCTTCATGGA
GGGAGGAGGAGGGCTTCGGCT
CCATGAAGAGAGAACTACCC
CCAGGAGATGCGTCGCCGCG
ATGTAGTTCGATATTTCTCTG

Figure S13: Extreme variations in guide activity may cause an incorrect inference of individual gene effects.
LFCs of each guide targeting WEE] paired with guides targeting CDS81 (negative control) are depicted in the same
color across all cell lines in Big Papi, with corresponding sequences in the legend. Although the majority of guides
suggest no phenotype, at least one guide in each cell line displays a lethal phenotype that agrees with previously
conducted single-knockout CRISPR screens [1]. Note that individual gene effects inferred by GEMINI with default
priors (green lines) approximately follow the median LFC.
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Figure S14: Extreme variations in guide activity may cause an incorrect inference of combination gene effects.
Colors indicate unique guides targeting HCRTRI (similarly for IL12A on right), while shapes indicate unique guides
targeting DBH (similarly for SSTR5 on right) in the K562 cell line in CDKO. Guide pairs targeting both genes are
marked by the corresponding colors and shapes. Here, the negative control is denoted by “safe”, and guide pairs
including “safe” follow the same color structure as described in Figure S13 in Additional file 1. Left: any guide that is
paired with 191310.2_.mU6, 191310.2_hU6, or 5290.1_mU6 shows a notable lethal phenotype, while other guide pairs
on average show no phenotype. GEMINI, when applied to this bimodal data using default priors, results in the total
gene combination effect that is somewhat less than both individual gene effects (green lines). Consequently, a weak
“senstive” interaction score might be detected. If guide pairs with strong depletion exhibit the true signal, not only
would there be no detected interaction, but GEMINI’s individual and combination effects would also be incorrect.
Right: we again observe an extreme variability in guide activity, leading to uncertainty in GEMINI’s inferred values.
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Guide sequence targeting WEE1

TCATCAACAGAGCCCGCCAA
GGGTAGTTCTCTCTTCATGGA
GGGAGGAGGAGGGCTTCGGCT
CCATGAAGAGAGAACTACCC
CCAGGAGATGCGTCGCCGCG
ATGTAGTTCGATATTTCTCTG

Figure S15: Incorporation of guide activity into GEMINI for a better estimation of individual gene essentiality.
Individual gene effect, inferred by GEMINI with modified priors, for WEE] across all cell lines in Big Papi is shown.
LFCs of guide pairs, guide sequences, and colors are consistent with Figure S13 in Additional file 1. Here, stronger
confidence (11, = 1, 0, = le — 3) was placed on guides exhibiting a strong lethal phenotype while weaker confidence
(ugy = 0.1, o, = le — 3) was placed on other guides. Consequently, GEMINI’s inferred values are more biased
towards guides with high confidence, and are consistent with what is observed in the single-gene knockout CRISPR

screens [1].
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Figure S16: Incorporation of guide activity into GEMINI for a better identification of true interactions. In-
dividual gene effects and total gene combination effect, inferred by GEMINI with default and modified priors, for
MAP2KI-MAP2K?2 in the A549 cell line of Big Papi are shown. Guides are colored similar to Figure S14 in Addi-
tional file 1. Left: GEMINI’s inference with default priors only captures a modest interaction. Right: GEMINI was run
with adjusted priors, where any guide pairs including TCGTGGGCACAAGGTCCTACA and CTGGAGATCAAAC-
CCGCAATC targeting MAP2K1 and GCAGGACCTGCAGCTCGCGGA targeting MAP2K?2 were assigned a higher
confidence (i, = 1, 0, = le — 3) while other guides were assigned a lower confidence (u, = 0.1, o, = le — 3).
Guides were assigned a high confidence based on their strong negative phenotypes when paired with the negative
control. With modified priors, GEMINI identifies the well-characterized MAP2KI1-MAP2K?2 as a strong interaction

[2].
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2 Supplementary Methods
2.1 Calculation of LFCs

Similar to the analysis of single knockout screens [3], we calculate the LFC of guide ¢ targeting gene g (i.e. g;) and
guide j targeting gene h (i.e. h;) in each sample. We first normalize the raw read counts for every replicate by its total
number of counts, called read counts hereafter. We then compute the LFC for (g;, h;) pair at sample [ according to

D ! Ngl C L NEP C
gishj,l = ﬁl gi hj,lr — N, iR .p,T
r=1 r=1

where N; is the number of replicates for sample I and N, is the number of replicates for pDNA (or early time
point). Let cg, n;1,» = logy (county, 5. 1, + constant) be the log-transformation of the read count of (g;, h;) pair
for the rth replicate in sample /. We introduce the constant value in the log-transformation (default is 32) to reduce
noises from low read counts. We define Cy, 1,1+ = cg, n,;1,» — median(c. . ,), with the median function obtained
across all guides and all genes. Similarly, we define Cgi,h]‘ v = Cgihjpr — median(cz7;7p77,) where Cgihjpr =
log, (county, 1, .~ + constant) and p represents pPDNA.

2.2 Precision of LFCs

The precision of Dy, j,,; is modeled by 74, 1, ;. We compute the prior parameters for 7y, p, 1 as
O‘gi,hj,l =K
Bginj1 = H(Ug hyp T 037, ilj,z),

where x determines the skewness of the prlor (default is 0.5); o2 is the empirical variance of (g;, h;) pair,

gihj.p
calculated using pDNA’s repllcates and a 9yl is the empirical variance of (g;, h;) pair, calculated using sample [’s

replicates. The prior meanis 1/ (o2 Ooihypt ‘737:, hy, 1)» and represents the expected precision of Dy, 4, ;.
As defaults, GEMINI uses the above empirical estimates for 7. If the smoothed emrical estimates are required by
users, GEMINI applies the same approach in [3] by treating guide pairs as individual guides.

2.3 Coordinate ascent variational inference

We focus on a family of distributions where the latent variables are mutually independent, named the mean-field
varitional family. Specifically, the posterior distribution of x, y, s, and 7 is approximated by

q(z,y,s,7) Hq (zg,) H q(@g;.n Hq (Yg,1) H q(sg,n,1) H q(Tgi hs1)-
9,403 ghl 9y5,h,5,0
In variational inference setup, the optimal ¢ minimizes the Kullback-Leibler (KL) divergence of ¢ from the true
posterior distribution. The optimal g for each latent variable, for instance x,, is proportional to

Efmgi [ln f(Dv r,y,s, T)]a

which is the expectation of log of the joint distribution over all variables except for x4,. We calculate the closed-form
expressions of these expectations, and use them as coordinate updates in the coordinate ascent variational inference
(CAVI) algorithm to acheive the optimal g. See [4, 5] for more details. The closed-form updates are

o q(zg,) ~ N(ps,, 0%, ) where
Zi&é * Zh’j’l ElygEl7g. 1, 1] (®(h)(Dg“hi’l = Elan, |E[yn,] — Elzg, n,]E[sg.nal) + ]l(h)Dgz:,hj,l)

Mz, = ,
Zg; Uiﬁ + Zh,jJ E[yzl]E[Tgi,hjal}

g.. '
T ot Do Bl BT n, ]
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Here, O(h) is one if h does not belong to the set of negative control genes, zero otherwise. The indicator function
1(h) is one if h belongs to the set of negative control genes, zero otherwise.

. Q(xguhj) ~ N(ngi,hj ) Uggivhj) where

*“+zlbWA[mmMmmmM—EwMEMA—Emmmmﬂ)

o2

Hag, 1, =
ot 02 +Zl [ghl] [Tghhj,l} ’

2 1
Tracts T TS B  Elrgn )
o2 l g,h,l girhj,l

* q(Yg1) ~ N(py,, 0, ) where

Y + Zh i,j [xgi] [Tgi,h]‘,l] ((H)(h)(Dgi,hj,l - E[xhj]E[yh,l] - E[xgi,hj]E[Sgﬁ,lD —+ ]]-(h)DQi,hj,O

0-2
M Y — Y
. & + Ly B0 JElrg, ;] ’
0'2 = 1 1
v T Y B JE g,

® q(sg,n1) ~ N (s, 1,03, , ) where

B + %, ; Eltg, El7g0n,.] (Dgsny ¢ — Elwg, JElyga] — Elan, JElyn))

2
T

M ) . =
Sg,h,l 0%3 + Zi,j E[xii»hj]E[Tgi’hj’l]

)

1
g = .
Sg.hl Gig +Zi,j E[m§i7hj]E[Tgi,hj,l}

L4 Q(ng‘,h]‘,l) ~ F(aTgi,hj,l’/BTgi‘hj,l) where

a‘rgi‘hj,l, = agi,h]»,l + 05,
Broviys = Byt + 0.5(0(a)0(R) A + 1(9)0(R)B + 0(9)LK)C + La)L(W)D, ).
OéTg1 hj,l

E(Tg’L)h_])l) B .
Tgi, hj,l
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The prior parameters o, 5,1 and 3y, ;1 are empirically determined (see the previous subsection), and

A=E[Dgy, ;1 — Tg,Yg1 — Th,Yn,i — Ig,;,hjsg,h,l]Q
=Dg. ;0 = 2Dg.n, 0 (E[mgi]E[yg,z} + Bz, [Elyn] + E[ﬂ?gqv,hj]]E[Sg,h,l]) + B2y, [Elyg +
2E (o, JElyg,] (Elon, JElyn] + Elwg,n,[Elsynal ) + Elaf B2 ] + Ela2, 5 JE[s2, ]+
2E [z, |E[yn |E[zg, n;]E[sg,n.],

B =E[Dy, n;1 — xhjyh,l]2
:Ds,;,hj,l - 2Dg7‘,7hj~,lE[xhj]E[yh,l} + ]E[‘T%LJ]E[y%L,l]a

2
C =E[Dy, ;1 — ®g,Yg.1]
2 2 2
=Dy, ;1 — 2Dg; n; 1Bz g, [Eyg 1] + Elzg, [Elyg |-
In the above updates, we assume that x, is one if g is a negative control; x,,,,; is one if g or h is a negative control;

Ygq,1 18 zero if g is a negative control; and s, j, ; is zero if g or h is a negative control.
We essentially implement the CAVI algorithm as follows.

1. Initialize the latent variables according to

E[xqb] ]E[xfh] =1, E[xguhj] =1, E[xzi,hﬂ =1,
Elyg:] = medlan(Dw n;,1) across all i and h; with 1(h) = 1, E[y;l} = E[yg,l]z,
E[sg,n,1] = median(Dy, ;1) — Elyg,i] — E[yn,] where the mdian function is computed across all 7 and j,
il
Elsg 1) = Elsgnil®, E(rg,n,0) = Souhyl
Bgl hij,l

2. Update each latent variable using the closed-from equations, while holding the other variables fixed.

3. Calculate the following mean absolute error (MAE) after updating all variables (i.e. one iteration). Convergence
is achieved if the change in MAE is less than .001 compared to the previous iteration.

MAE = mean(‘Dghh_j,l —Elzg, |E[yg,] — Elzn, | Elyn] — Elzg, n,/Elsg,n.] D across all g;, h; and [.

We emphasize that CAVI only guarantees convergence to a local optimum, and several random initializations are often
needed to obtain a solution close to the true posterior. However, it can be computationally expensive to repeat CAVI
with different initializations, especially for high-dimensional datasets. We instead utilize negative control genes to
initialize variables, which resulted in the highest PR-AUC and ROC-AUC (shown in Fig. 3b and Figures S6 and S10
in Additional file 1) compared to random initializations.

2.4 FDR calculation

Given a set of known non-interacting gene pairs, we fit a mixture of normal distributions to GEMINI scores of the
non-interacting set (i.e. null distribution). We apply the expectation—maximization algorithm to estimate the mixture
distribution (“mixtools” package in R). Next, for each gene pair in the combinatorial screen, we calculate the right
tail probability that the null distribution generates a GEMINI score greater than the GEMINI score of that gene pair
(p-values). We also adjust these p-values using Benjamini-Hochberg’s method [6].

For the Big Papi dataset, we used gene pairs that include one of the negative controls, HPRT intron or 67T, as the
non-interacting set, while using the remaining negative control, CD8I, to initialize gene and combination effects in

20



GEMINTI’s CAVI algorithm. This non-interacting set might result in an overestimation of the number of significant hits
due to the construction of null distribution solely based on negative controls. However, GEMINI still outputs scores
that capture the relative strengths of interactions in each sample. For other screens, we had an insufficient number of
non-interacting pairs to define a reliable null distribution for the calculation of FDR, but GEMINI scores are reported
in Table S1 in Additional file 2. We emphasize that in the method comparison section, we did not use FDRs because
the true negative set was identical to the non-interacting set. Instead, we transformed GEMINI scores to z-scores to
enable a fair comparison.

3 Supplementary Information

3.1 Identification of recovery interactions

We define recovery interactions where a single gene perturbation results in a loss of viability, and the perturbation of
a second gene partially or completely rescues the loss of viability [7]. This differs from the definition of a buffering
interaction [8], where the perturbation of two genes simultaneously results in a total effect that is less than the addition
of effects from perturbing each gene. Using our definition, we applied GEMINI to all publicly available combinatorial
CRISPR knockout screens and identified interactions with patterns of recovery (Table S1 in Additional file 2).

A systematic assessment of all recovery interactions is not possible, as these interactions have not yet been well-
characterized. However, the Big Papi Apoptotic library presents a unique case for evaluating our approach. This
library includes all BCL2-family proteins involved in anti-apoptotic and pro-apoptotic function, in an all-by-all format,
as well as the same controls used in the Big Papi SynLet library. Cells screened with the Apoptotic library were also
subjected to different drug treatments, enabling the discovery of context-specific interactions. From these screens, we
identified BAX-MCLI as a strong recovery interaction (Figure S1 in Additional file 1). MCLI is reported to prevent
BAX and BAK oligomerization [9], thereby preventing mitochondrial outer membrane permeabilization (MOMP) and
cytochrome c release, thus negatively regulating apoptotic cell death. In the context of commonly used BH3-mimetics,
such as ABT-263 and A-1331852, other functionally redundant members of the anti-apoptotic family are inhibited such
as BCL2, BCL2L1, and BCL2L2, while MCL1 is not completely inhibited from its anti-apoptotic function [10, 2].
Here, the knockout of MCLI results in a significant drop in viability as cells treated with BH3-mimetics are particularly
sensitive to the anti-apoptotic activity of MCLI. Knockout of BAX prevents MOMP-mediated apoptosis, and thus
simultaneous knockout of MCLI and BAX rescues cell viability. This example demonstrates GEMINI’s ability to
characterize biologically relevant recovery interactions in combinatorial screens that were not otherwise detectable by
existing methods.

3.2 Constructing true positive and true negative interaction sets

We used data presented by Srivas et al. [11] to construct a validation set for Big Papi. This data was generated
from a screen to assess synthetic lethality in humans. Genetic interactions were assessed in HeLa cells by pairing
drugs and shRNAs targeting yeast orthologs that were found to interact in S. cerevisiae. Because the screen was
performed using RNA interference, a system with reportedly high off-target activity [12], we recognize that the genetic
interactions identified by Srivas ef al. may not reflect the absolute truth. However, in the absence of systematic arrayed
validation, we used the strongest conserved interactions identified by Srivas et al. (p-value < 0.001) to construct our
true positive set. Overall, we found 20 interactions that were also assessed in the Big Papi screen. In addition,
similar to the approach taken in Najm et al. [13], we used gene family labels to classify 46 in-group interactions as
true positives. Note that 10 interactions were in common between the in-group interactions and interactions from
Srivas et al., resulting in a total of 56 true positive interactions. Also note that the interactions unique to Srivas et al.
represent out-of-group relationships that were considered to be negative by Najm et al., which may have resulted in
an underestimation of the true positive set. For our true negative set, we relied on pairs involving a negative control
(HPRT intron or 6T) that should not display any genetic interaction, leading to a set of 51 true negatives. The true
positive and negative sets used for CDKO are described in the Results section in the manuscript.
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3.3 Method comparison

We acquired implementations for GImap from https://github.com/mhorlbeck/GImap_tools and -
score from https://github.com/ucsd-ccbb/mali-dual-crispr-pipeline. To obtain gene-level
results for 7-score, we ran m-score for each sample using early and late time point. The obtained z-scores were
averaged for each gene pair (given genes A and B, A-B and B-A were averaged to a single value). For GImap, given
that doubling time for all cell lines was set to 10, gene-level interaction scores were calculated by averaging all guide-
level GImap scores, and then again averaged across replicates to obtain a sample-level gene interaction score. GImap
scores were also summarized such that any interaction scores corresponding to the same gene pair were averaged
(given genes A and B, A-B and B-A were averaged to a single value). For dLFC, we used the results provided in Najm
et al.. However, we could not run dLFC on CDKO since its implementation is not available.

To compare the performance of GEMINI and other methods, we first standardized the outputs of each method
that show the strength of lethal interactions. As m-score already provides a z-score and GImap’s results are roughly
normally distributed, we computed z-scores for GImap. We also transformed GEMINI scores to a z-score, noting
that GEMINI scores follow a mixture of distributions, which is not accurately reflected by z-score. Thus, z-score
cutoffs were better suited for GImap and 7-score, while GEMINI may have under-performed with z-score thresholds.
Because the results from Najm er al. were reported as FDRs, z-scores were not computed, and instead FDR was used
directly for dLFC.

The strongest lethal interaction has the lowest z-score for GImap and m-score, the highest z-score for GEMINI,
and the smallest FDR for dLFC. To compare how well these methods identify lethal interaction, we used their scores
and the true positive and true negative interaction sets to calculate PR and ROC curves. See Fig. 3b, Figures S6 and
S10 in Additional file 1, and the manuscript for detailed results.

3.4 Reagent variability

Extreme reagent variability might result in inaccurate estimates of individual gene effects. For instance, in Big Papi,
only two out of six guides that target WEE] show significant lethal phenotypes (LFC < —1) across all cell lines (Figure
S13 in Additional file 1). Noting that WEE] was characterized as an essential gene [1], this clear bi-modality could be
an indication of active or inactive guides. On the other hand, the majority of guides suggest no phenotype, and thus it
is difficult for any unbiased algorithm to decide which mode would represent the true signal.

Explaining extreme reagent variability becomes more complex when inferring combination effects. To clarify this
difficulty, consider the case where two essential genes are each targeted by 3 guides, and only one guide per gene shows
a notable lethal phenotype. Assume that 1) this gene pair does not synergize, and ii) the majority of single guides and
guide pairs reflect the individual and combination effects, respectively. Consequently, single guides suggest no essen-
tiality for individual genes, while guide pairs can suggest a lethal phenotype since “lethal” + “not lethal” are likely to
result in “lethal”. Hence, we mistakenly estimate a large combination effect compared to individual genes and predict
a lethal interaction (Figure S14 in Additional file 1). This motivates a need for better understanding of variability in
guide activity which could be subsequently incorporated in computational analysis to improve performance.

To account for this variation in GEMINI, inactive guides should be characterized prior to the analysis of a com-
binatorial screen. This information is then used as a prior in GEMINI to downweight guides with low activity or
upweight guides with high activity. For example, imposing a stronger confidence on the two guides of WEE] that
exhibit the highest activity, GEMINI estimates a notable lethal phenotype for this gene (Figure S15 in Additional file
1). If similar consideration is applied to guides targeting MAP2KI1-MAP2K2 in Big Papi, GEMINI also identifies this
pair as a strong lethal interaction in RAS/RAF mutated lines (Figure S16 in Additional file 1), as was found in Najm e?
al..

While an adjustment of the priors can improve GEMINI’s inference, we emphasize that a comprehensive analysis
of reagent variability is required to arrive at appropriate prior beliefs. Existing methods to create consistent on-
target guides with minimal off-target effects have reduced variability in single-gene knockout screens [14, 15, 16],
and primarily focused on sequence-related features, such as the biochemical properties of guide sequences and the
existence of specific nucleotide subsequences. However, combinatorial guide design remains an area of open research,
and other features may play a role in combination screens, including recombination rate, proximity of targeted loci,
and the downstream functional impact in the protein coding sequence.
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