Improved synthesis of icosahedral carboranes containing exopolyhedral B–C and C–C bonds

Kierstyn P. Anderson, Harrison A. Mills, Chantel Mao, Kent O. Kirlikovali, Jonathan C. Axtell, Arnold L. Rheingold, and Alexander M. Spokoyny*

^aDepartment of Chemistry & Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States

^bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States

^cCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States

*E-mail: spokoyny@chem.ucla.edu

Supporting Information (SI)

Contents

1. General Considerations	
2. Instrumentation	
3. Experimental	
1. Precursor Synthesis	
2. Kumada-type Cross-Coupling with Iodo-carboranes	
3. SNAr with Carborane and (Hetero)arenes	
4. Product Details	
4. References	
5. Crystal Structure Data	
6. Spectroscopic Data	

1. General Considerations

Meta-C₂B₁₀H₁₂ (Katchem), ortho-C₂B₁₀H₁₂ (Boron Specialties), were sublimed prior to use. XPhos (Sigma-Aldrich) and SPhos (Ark Pharm) were used as received. XPhos-Pd-G3 and SPhos-Pd-G3 were prepared according to literature procedures¹. Iodomethane (Sigma-Aldrich), Bromoethane (Sigma-Aldrich), Iodobenzene (Sigma-Aldrich), 2-Bromothiophene (Oakwood), and 4-Bromobenzotrifluoride (Oakwood) were stored over molecular sieves in ambient conditions and used as is. Iodotoluene (Sigma-Aldrich) was used as received. Grignard reagents were prepared by the dropwise addition of alkyl or aryl halides to an excess of Magnesium chips (Sigma-Aldrich) in anhydrous ether and left to stir overnight at room temperature (MeMgI and EtMgBr were instead stirred at reflux overnight) and filtered before use. The concentration of the Grignard reagents was determined by titration of iodine (~63.5 mg in 5 mL of anhydrous THF) with a 0.20 mL aliquot until the equivalence point was observed. Fluoronaphthalene (Oakwood Chemical) was stirred over CaH₂ then distilled under vacuum and stored in an N₂-filled glovebox. Isopropoxytrimethylsilane (Sigma-Aldrich) and solid KHMDS (Sigma-Aldrich) were stored in an N₂-filled glovebox and used as received. KHMDS solution (Sigma-Aldrich, anhydrous, 1M in THF) was used as received. 6-fluoroquinoline (Oakwood Chemical), 2-chloropyridine (Oakwood Chemical), 2fluoropyridine (Oakwood Chemical) and 2,6-difluoropyridine (Oakwood Chemical) were stored over 3 Å molecular sieves in ambient conditions. Perfluorobenzene (Oakwood Chemical) and 2,2'-bipyridine (Oakwood Chemical) were stored in ambient conditions and used as received. Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received. Glass-backed Silica Gel 60 GLA TLC plates were purchased from Fisher Scientific. Silica used for flash column chromatography was SiliaFlash® G60 60-200 µm (70-230 mesh) purchased from Silicycle.

All experiments were performed air and moisture free under an atmosphere of nitrogen using standard Schlenk techniques. Anhydrous dioxane (Sigma-Aldrich) was used as received. THF, diethyl ether, and methyl *tert*-butyl ether (MTBE) used for reactions were purified and dried using a Grubbs column. All post-Schlenk work-up and characterization was performed under ambient conditions. The "ambient conditions" for this manuscript refer to room temperature (20 - 25°C) and uncontrolled laboratory air. Thin layer chromatography (TLC) samples for carborane-containing compounds were stained with 1 wt. % PdCl₂ in 6M HCl and developed with heat.

2. Instrumentation

¹H, ¹³C{¹H}, ¹¹B, ¹¹B{¹H}, ¹⁹F, NMR spectra were recorded on either a Bruker DRX500, Bruker AV500 or Bruker AVIII 400 spectrometer in ambient conditions unless stated otherwise. MestreNova v6.0.2-5475 software was used to process the FID data and visualize the spectra. ¹H and ¹³C NMR spectra were referenced to residual solvent resonances in deuterated solvents (CDCl₃: ¹H, 7.26 ppm; ¹³C, 77.16 ppm. Acetone-d₆: ¹H, 2.05 ppm; ¹³C, 29.84 ppm. Note: due to high humidity H₂O resonances are often present). ¹¹B and ¹¹B{¹H} NMR spectra were referenced externally to Et₂O·BF₃ ($\delta = 0$ ppm). ¹⁹F NMR spectra were referenced externally to fluorobenzene ($\delta = -113.15$ ppm).

Gas Chromatography Mass Spectrometry (GC-MS) measurements were carried out using an Agilent Model 7693 Autosampler, 7890B Gas Chromatograph, and 7250 Q-TOF Mass Selective Detector in the Electron Ionization mode. Sample injection was carried out on an Agilent HP5-MS column with dimensions 30 m x 250 μ m x 0.25 μ m. Ultra High Purity Grade He (Airgas) was used as carrier gas. Data collection and analysis were performed using Mass Hunter Acquisition and Qualitative Analysis software (Agilent).

3. Experimental

1. Precursor Synthesis

9-I-1,2-dicarba-*closo*-dodecaborane (9-I-oCB)², 9-I-1,7-dicarba-*closo*-dodecaborane (9-I-mCB)², 9,12-I₂-1,2-dicarba-*closo*-doedecaborane (9,12-I₂-oCB)³, 9,12-Br₂-1,2-dicarba-*closo*-doedecaborane (9,12-Br₂-oCB)², and 9-Br, 10-I-1,7-dicarba-*closo*-dodecaborane (9-Br-10-I-mCB)² were synthesized according to or adapted from previously reported procedures. All characterization data are consistent with those previous reports.

2. Kumada-type Cross-Coupling with Iodo-carboranes

Optimization of Kumada Cross-Coupling Protocol

9,12-I₂-oCB (40 mg, 0.1 mmol) or 9,12-Br₂-oCB (30 mg, 0.1 mmol), catalyst (0.002 mmol, 2 mol%), phosphine ligand (0.002 mmol, 2 mol%), and additive (if applicable, 0.002 mmol, 2 mol%) were added to an oven-dried reaction tube with a PTFE septum cap. The reaction tube was evacuated and backfilled with N₂ three times before transferring into an N₂-filled glovebox. Under an inert atmosphere, anhydrous solvent (0.6 mL) was added before the dropwise addition of ethylmagnesium bromide in diethyl ether (~2 M, 4.2-5.0 eq.). The reaction mixture was heated and the reaction progress was monitored by GC-MS after 2.5 hours.

Table S1. Kum	ada coup	ling optir	nizations
---------------	----------	------------	-----------

Entry #	Substrate	Ligand	Grig. Eq.	Additive	Solvent	Temp.	% Conversion by GC-MS
1	I ₂ -oCB	XPhos	5.0 eq.	CuI	THF	75 °C	2

2	I2-0CB	XPhos	4.2 eq	 Dioxane	65 °C	30
3	I ₂ -oCB	XPhos	4.2 eq	 Dioxane	75 °C	89
4	I ₂ -oCB	SPhos	4.2 eq	 Dioxane	75 °C	90
5	Br ₂ -oCB	XPhos	4.2 eq	 Dioxane	75 °C	0

Note: Although most entries and products utilize XPhos-Pd-G3 and XPhos ligand catalytic system, Entry 4 as well as products $1A^{I}$ and $1D^{I}$ provide evidence to suggest that SPhos-Pd-G3 and SPhos ligand would be competent in these transformations. When using EtMgBr, only slight variations in isolated yields were observed and reaction times remained consistent between using XPhos or SPhos.

Procedure for Kumada Cross-Coupling with 9,12-I2-oCB

9,12-I₂-oCB (0.5-1 mmol), L-Pd-G3 (2 mol%), and L (2 mol%) were added to an oven-dried Schlenk flask and evacuated/backfilled with N₂ three times before leaving under an inert atmosphere. Using a syringe, anhydrous dioxane (6 mL) was added to dissolve all solids. Next the Grignard reagent (~2 M, 2.1-4.2 mmol, 4.2 eq.) was added dropwise to this stirring solution at room temperature. The reaction mixture was then stirred at 75 °C until the reaction was determined to be complete by GC-MS. The reaction mixture was then diluted with Et₂O (~20 mL) and the excess Grignard was quenched by the addition of H₂O. The solution was transferred to a separatory funnel and the aqueous layer was extracted with Et₂O (3 x 20 mL). During the extraction, brine (~5 mL) was added to improve separation between organic and aqueous layers. The organic fractions were combined and dried with MgSO₄, then filtered into a round-bottomed flask. The solvent was removed under reduced pressure to yield the crude product as a colored oil or solid. The crude product was dry loaded onto silica and purified using silica gel column chromatography to yield the desired product (see product details for exact purification conditions).

Procedure for Kumada Cross-Coupling with 9-I-oCB, 9-I-mCB, or 9-Br-10-I-mCB

Mono-iodinated carborane (9-I-oCB, 9-I-mCB, or 9-Br-10-I-mCB; 0.5-1 mmol), L-Pd-G3 (1-1.5 mol%), and L (1-1.5 mol%) were added to an oven-dried Schlenk flask and evacuated/backfilled with N₂ three times before leaving under an inert atmosphere. Using a syringe, anhydrous dioxane (6 mL) was added to dissolve all solids before the dropwise addition of the chosen Grignard reagent (~2 M, 3.2 mmol, 3.2 eq.) to the stirring solution at room temperature. The reaction mixture was then left to stir at 75 °C until the reaction was confirmed complete by GC-MS. Once the reaction was complete, the solution was diluted with Et₂O (~20 mL) and the excess Grignard was quenched by the addition of H₂O. The solution was transferred to a separatory funnel and the aqueous layer was extracted with Et₂O (3 x 20 mL). During the extraction, brine (~5 mL) was added to improve separation between organic and aqueous layers. The organic fractions were combined and dried with MgSO₄, the filtered into a round-bottomed flask. The solvent was removed under reduced pressure to yield the crude product as a colored oil or solid. The crude product was dry loaded onto silica and purified using silica gel flash column chromatography to yield the desired product (see product details for exact purification conditions).

Product	Iodocarborane	L-Pd-G3	L	Time
1A	9,12-I ₂ -oCB	XPhos-Pd-G3	XPhos	2.5 h
	(394 mg, 1.0 mmol)	(16.8 mg, 0.02 mmol)	(9.4 mg, 0.02 mmol)	
1A ^I	9,12-I ₂ -oCB	SPhos-Pd-G3	SPhos	2.5 h
	(197 mg, 0.5 mmol)	(7.8 mg, 0.01 mmol)	(4.1 mg, 0.01 mmol)	

Table S2. Masses and reaction times for the synthesis of products 1A-1J.

1B	9,12-I ₂ -oCB	XPhos-Pd-G3	XPhos	1.5 h
	(394 mg, 1.0 mmol)	(16.8 mg, 0.02 mmol)	(9.4 mg, 0.02 mmol)	
1C	9,12-I ₂ -oCB	XPhos-Pd-G3	XPhos	3.0 h
	(394 mg, 1.0 mmol)	(16.8 mg, 0.02 mmol)	(9.4 mg, 0.02 mmol)	
1D	9-I-oCB	XPhos-Pd-G3	XPhos	2.0 h
	(270 mg, 1.0 mmol)	(12.6 mg, 0.01 mmol)	(7.1 mg, 0.01 mmol)	
1D ¹	9-I-oCB	SPhos-Pd-G3	SPhos	2.0 h
	(135 mg, 0.5 mmol)	(5.9 mg, 0.005 mmol)	(3.2 mg, 0.005 mmol)	
1E	9-I-oCB	XPhos-Pd-G3	XPhos	0.75 h
	(270 mg, 1.0 mmol)	(8.4 mg, 0.01 mmol)	(4.7 mg, 0.01 mmol)	
1F	9-I-oCB	XPhos-Pd-G3	XPhos	2.0 h
	(270 mg, 1.0 mmol)	(8.4 mg, 0.01 mmol)	(4.7 mg, 0.01 mmol)	
1G	9-I-oCB	XPhos-Pd-G3	XPhos	4.0 h
	(270 mg, 1.0 mmol)	(8.4 mg, 0.01 mmol)	(4.7 mg, 0.01 mmol)	
1H	9-I-mCB	XPhos-Pd-G3	XPhos	1.0 h
	(270 mg, 1.0 mmol)	(8.4 mg, 0.01 mmol)	(4.7 mg, 0.01 mmol)	
11	9-Br-10-I-mCB	XPhos-Pd-G3	XPhos	1.0 h
	(350 mg, 1.0 mmol)	(8.4 mg, 0.01 mmol)	(4.7 mg, 0.01 mmol)	
1J	9-Br-10-I-mCB	XPhos-Pd-G3	XPhos	3.0 h
	(350 mg, 1.0 mmol)	(8.4 mg, 0.01 mmol)	(4.7 mg, 0.01 mmol)	

3. S_NAr Conditions with Carborane and (Hetero)arenes

Optimization of S_NAr Protocol

O-carborane (oCB) (29 mg, 0.2 mmol, 1 eq.) was added to an oven-dried reaction tube and sealed with a PTFE septum cap. The reaction tube was evacuated and backfilled with N_2 three times and transferred into an N_2 -filled glovebox. Under an inert atmosphere, base (0.2-0.6 mmol) and solvent (0.6 mL) were added, and the reaction tube was stirred at room temperature for 30 minutes. 2-chloropyridine (19 μ L, 0.2 mmol, 1 eq.) was added dropwise to this solution, and the reaction mixture was stirred at room temperature for 14 hours. Reaction progress was monitored by GC-MS.

Entry	Base	Base eq.	Solvent	Conc. (M)	% Conversion by GC-MS
1	"BuLi	2	THF	0.33	0
2	KHMDS	2	THF	0.33	92
3	KHMDS	1	THF	0.33	80
4	KHMDS	3	THF	0.33	99
5	LiHMDS	3	THF	0.33	45
6	NaHMDS	3	THF	0.33	90
7	KHMDS	3	MTBE	0.33	86
8	KHMDS	3	Ether	0.33	90
9	KHMDS	3	DME	0.33	98
10	KHMDS	3	THF	0.2	100

Table S3. Optimization table for S_NAr reactions with 2-chloropyridine.

	11	KHMDS	3	THF	0.4	100
--	----	-------	---	-----	-----	-----

General procedure for C-functionalized carboranes

To an oven-dried reaction vessel equipped with a stir bar and septum, carborane (oCB, mCB, **1E**, or **2A** = **CB**, 0.50-1.50 mmol, 1.0-2.0 eq.), solvent (~2 mL), and KHMDS (0.23-4.50 mmol, 1.0-6.0 eq.) were added. After stirring at room temperature for 30-60 minutes, the aryl halide (0.46-1.50 mmol, 1.0-2.0 eq.) was added to the $K_2[CB]$ solution. The vessel was sealed, and the reaction was stirred for 14 hours at 25-80°C. Reaction progress was monitored *via* GC-MS, and upon completion the reaction was quenched by the addition of sat. Et₃N·HCl or sat. NaHCO₃. The resulting biphasic mixture was transferred to a separatory funnel, and the organic and aqueous layers were separated. The aqueous phase was extracted with ethyl acetate (3 x 10 mL), and the organic phases were combined, dried over MgSO₄, and filtered. The solvent was removed under reduced pressure to yield the crude product, which was then purified using silica gel flash column chromatography to yield the desired product. Specific reaction conditions are listed in Table S4.

Product	Aryl Halide	СВ	KHMDS	Solvent	Temp.
	lI		L/		('U)
2A	2-chloropyridine	oCB	449 mg, 2.25 mmol	THF	25
	(70.9 µL, 0.75 mmol)	(108 mg, 0.75 mmol)			
2B	6-chloro-2,2'-bipyridine	oCB	449 mg, 2.25 mmol	THF	25
	(142 mg, 0.75 mmol)	(108 mg, 0.75 mmol)	 		
2C*	6,6'-dichloro-2,2'-bipyridine	oCB	898 mg, 4.50 mmol	MTBE	25
	(169 mg, 0.75 mmol)	(216 mg, 1.5 mmol)	<u> </u>		
2D	fluoronaphthalene	oCB	449 mg, 2.25 mmol	THF	80
	(96.8 mg, 0.75 mmol)	(108 mg, 0.75 mmol)			
2E*	6-fluoroquinoline	oCB	449 mg, 2.25 mmol	THF	80
	(91.3 μL, 0.75 mmol)	(108 mg, 0.75 mmol)			
2 F	2,6-difluoropyridine	oCB	898 mg, 4.50 mmol	Et ₂ O	25
	(68.1 µL, 0.75 mmol)	(216 mg, 1.5 mmol)			I
2G	2-fluoropyridine	mCB	449 mg, 2.25 mmol	Et ₂ O	25
	(130 µL, 1.5 mmol)	(108 mg, 0.75 mmol)			I
2H*	hexafluorobenzene	2A	45.9 mg, 0.23 mmol	DME	25
	(53.1 µL, 0.46 mmol)	(50.8 mg, 0.23 mmol)			
2I	2-fluoropyridine	1E	209 mg, 1.05 mmol	Et ₂ O	25
	(129 µL, 1.5 mmol)	(79.1 mg, 0.50 mmol)			

Table S4.	Reaction	conditions	for	S _N Ar	products	2A-2I.
-----------	----------	------------	-----	-------------------	----------	--------

* = See product details for changes that were made to the General Procedure.

4. Product Details

9,12-(CH₂CH₃)₂-1,2-dicarba-*closo*-dodecaborane (1A and 1A¹)

Purification: Hexanes (\mathbf{R}_{f} : 0.31), 144 mg (72%, average of isolated yields obtained for 1A and 1A^I), clear liquid

¹H NMR (400 MHz, CDCl₃): δ 3.38 (s, 2H, C_{carborane}-H), 2.97 – 1.28 (m, 8H, B_{carborane}-H), 0.87 (m, br, 6H, Et-CH₃), 0.69 (s, br, 4H, Et-CH₂-B). ¹¹B NMR (128 MHz, CDCl₃): δ 9.14 (s, 2B), -8.97 (d, 2B, ¹J_{BH} = 148 Hz), -14.86 (d, 4B, ¹J_{BH} = 166 Hz), -16.84 (d, 2B, ¹J_{BH} = 200 Hz). ¹³C NMR (126 MHz, CDCl₃): δ 47.52, 13.38, 8.94 (br). GC-MS *m/z*: 200.2560 (calc. 200.2568)

9,12-(CH₃)₂-1,2-dicarba-*closo*-dodecaborane (1B)

Purification: Hexanes ($\mathbf{R}_{\mathbf{f}}$: 0.45), 114 mg (66%), white solid

¹**H NMR (400 MHz, CDCl₃):** δ 3.34 (s, 2H, C_{carborane}-H), 2.96 – 1.24 (m, 8H, B_{carborane}-H), 0.20 (s, br, 6H, B-CH₃). ¹¹**B NMR (128 MHz, CDCl₃):** δ 7.13 (s, 2B), -7.66 (d, 2B, ¹J_{BH} = 148 Hz), -14.14 (d, 4B, ¹J_{BH} = 148 Hz), -16.64 (d, 2B, ¹J_{BH} = 181 Hz). ¹³C NMR (126 MHz, CDCl₃): δ 47.38 B-CH₃ not observed due to B-C coupling. **GC-MS** *m/z*: 172.2252 (calc. 172.2255)

9,12-(C₆H₅)-1,2-dicarba-*closo*-dodecaborane (1C)

Purification: 3:7 CH₂Cl₂:Hexanes + 1% TFA ($\mathbf{R}_{\mathbf{f}}$: 0.35), 170 mg (57%), white solid

¹H NMR (400 MHz, (CD₃)₂CO): δ 7.17 (m, 4H), 7.04 (m, 6H), 4.64 (s, 2H, C_{carborane}-H), 3.32 – 1.42 (m, 8H, B_{carborane}-H). ¹¹B NMR (128 MHz, (CD₃)₂CO): δ 7.02 (s, 2B), -9.93 (d, 2B, ¹J_{BH} = 152 Hz), -14.16 (d, 4B, ¹J_{BH} = 166 Hz), -16.42 (d, 2B, ¹J_{BH} = 180 Hz). ¹³C NMR (126 MHz, CDCl₃): δ 132.75, 127.01, 126.76, 50.88. GC-MS *m*/*z*: 296.2563 (calc. 296.2568)

9-CH₂CH₃-1,2-dicarba-*closo*-dodecaborane (1D and 1D^I)

Purification: 2:8 CH₂Cl₂:Hexanes (\mathbf{R}_{f} : 0.57), 126 mg (78%, average of isolated yields obtained for 1D and 1D^I), clear liquid

¹H NMR (400 MHz, CDCl₃): δ 3.48 (s, 1H, C_{carborane}-H), 3.41 (s, 1H, C_{carborane}-H), 3.02 – 1.34 (m, 9H, B_{carborane}-H), 0.86 (s, br, 3H, Et-CH₃), 0.72 (s, br, 2H, Et-CH₂-B). ¹¹B NMR (128 MHz, CDCl₃): δ 9.39 (s, 1B), -2.42 (d, 1B, ${}^{1}J_{BH} = 163$ Hz), -9.24 (d, 2B, ${}^{1}J_{BH} = 148$ Hz), -14.10 – -15.82 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 53.11, 47.80, 13.45, 10.00 (q, br, ${}^{1}J_{CB} = 60.00$ Hz). GC-MS *m/z*: 172.2241 (calc. 172.2252)

9-CH₃-1,2-dicarba-*closo*-dodecaborane (1E)

Purification: 2:8 CH₂Cl₂:Hexanes (**R**_f: 0.50), 134 mg (86%), white solid

¹H NMR (400 MHz, CDCl₃): δ 3.49 (s, 1H, C_{carborane}-H), 3.37 (s, 1H, C_{carborane}-H), 3.00 – 1.34 (m, 9H, B_{carborane}-H), 0.24 (s, br, 3H, B-CH₃). ¹¹B NMR (128 MHz, CDCl₃): δ 7.25 (s, 1B), -1.78 (d, 1B, ¹J_{BH} = 148 Hz), -8.57 (d, 2B, ¹J_{BH} = 148 Hz), -13.59 (d, 2B, ¹J_{BH} = 148 Hz), -14.59 (d, 2B, ¹J_{BH} = 132 Hz), -15.72 (d, 2B, ¹J_{BH} = 181 Hz). ¹³C NMR (126 MHz, CDCl₃): δ 53.45, 47.21, B-CH₃ not observed due to B-C coupling. GC-MS *m*/*z*: 158.2094 (calc. 158.2099)

9-(4-CH₃-C₆H₄)-1,2-dicarba-closo-dodecaborane (1F)

Purification: 1:9 CH₂Cl₂:Hexanes (\mathbf{R}_{f} : 0.25), 157 mg (67%), white solid

¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, 2H, ¹J_{HH} = 7.72 Hz), 7.06 (d, 2H, ¹J_{HH} = 7.35 Hz), 3.58 (s, 1H, C_{carborane}-H), 3.48 (s, 1H, C_{carborane}-H), 3.25 – 1.60 (m, 9H, B_{carborane}-H), 2.30 (s, 3H). ¹¹B NMR (128 MHz, CDCl₃): δ 7.50 (s, 1B), -2.41 (d, 1B, ¹J_{BH} = 163 Hz), -8.95 (d, 2B, ¹J_{BH} = 150 Hz), -14.08 – -15.68 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 136.91, 132.37, 128.27, 53.09, 48.64, 21.20. GC-MS *m*/*z*: 234.2406 (calc. 234.2412)

9-(2-C₄H₃S)-1,2-dicarba-*closo*-dodecaborane (1G)

Purification: 2:8 CH₂Cl₂:Hexanes (R_f: 0.34), 183 mg (77%, average of two independent runs), white solid

¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, 1H, ${}^{1}J_{HH} = 4.61$ Hz, ${}^{2}J_{HH} = 0.80$ Hz), 7.01 (m, 2H), 3.60 (s, 1H, C_{carborane}-H), 3.49 (s, 1H, C_{carborane}-H), 3.20 – 1.50 (m, 9H, B_{carborane}-H). ¹¹B NMR (128 MHz, CDCl₃): δ 4.49 (s, 1B), -2.22 (d, 1B, ${}^{1}J_{BH} = 149$ Hz), -8.82 (d, 2B, ${}^{1}J_{BH} = 155$ Hz), -13.97 – -15.75 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 130.75, 127.91, 127.80, 53.00, 48.87. GC-MS *m/z*: 226.1815 (calc. 226.1819)

9-CH₃-1,7-dicarba-*closo*-dodecaborane (1H)

Purification: Hexanes ($\mathbf{R}_{\mathbf{f}}$: 0.71), 54 mg (34%), white solid

¹H NMR (400 MHz, CDCl₃): δ 3.33 – 1.57 (m, 9H, B_{carborane}-*H*), 2.86 (s, 2H, C_{carborane}-H), 0.36 (s, 3H). ¹¹B NMR (128 MHz, CDCl₃): δ -0.69 (s, 1B), -6.35 (d, 2B, ¹J_{BH} = 160 Hz), -9.72 (d, 1B, ¹J_{BH} = 148 Hz), -13.10 (d, 2B, ¹J_{BH} = 160 Hz), -14.32 (d, 2B, ¹J_{BH} = 160 Hz), -17.98 (d, 1B, ¹J_{BH} = 184 Hz), -21.23 (d, 1B, ¹J_{BH} = 180 Hz). ¹³C NMR (126 MHz, CDCl₃): δ 54.34, B-CH₃ not observed due to B-C coupling. GC-MS *m*/*z*: 158.2092 (calc. 158.2099)

9-Br-10-(CH₃)-1,7-dicarba-closo-dodecaborane (1I)

Purification: 1:9 CH₂Cl₂:Hexanes (\mathbf{R}_{f} : 0.52), 192 mg (81%), white solid

¹H NMR (400 MHz, CDCl₃): δ 3.49 – 1.70 (m, 8H, B_{carborane}-H), 2.91 (s, 2H, C_{carborane}-H), 0.46 (s, 3H). ¹¹B NMR (128 MHz, CDCl₃): δ -1.05 (s, 1B), -5.89 (d, 2B), -5.89 (s, 1B), -13.84 (d, 4B, ¹J_{BH} = 158 Hz), -21.80 (d, 2B, ${}^{1}J_{BH}$ = 182 Hz). 13 C NMR (126 MHz, CDCl₃): δ 52.61, B-CH₃ not observed due to B-C coupling. GC-MS *m/z*: 237.1175 (calc. 237.1167)

9-Br-10-(4-CF₃-C₆H₄)-1,7-dicarba-*closo*-dodecaborane (1J)

Purification: 1:9 CH₂Cl₂:Hexanes (R_f: 0.38), 272 mg (75%), light yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, br, 2H, ${}^{1}J_{HH} = 7.77$ Hz), 7.57 (d, br, 2H, ${}^{1}J_{HH} = 7.94$ Hz), 3.71 – 1.64 (m, 8H, B_{carborane}-H), 3.07 (s, 2H, C_{carborane}-H). ¹¹B NMR (128 MHz, CDCl₃): δ -1.18 (s, 1B), -6.03 (s, 1B), -6.44 (d, 2B), -13.15 (d, 2B), -13.90 (d, 2B), -20.31 (d, 1B), -21.27 (d, 1B). ¹³C NMR (100 MHz, (CD₃)₂CO): δ 133.81, 129.35 (q), 126.02, 124.16 (d, br), 123.33, 53.42. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.59 (s, 3F). GC-MS *m/z*: 367.1208 (calc. 367.1198)

1-(2)-pyridine-1,2-dicarba-*closo*-dodecaborane (2A)

Purification: Acetone/hexanes gradient (10%-50% acetone; \mathbf{R}_{f} : 0.40 in 25% acetone in hexanes), 129 mg (78%), white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.41 (m, 1H), 7.70 (m, 1H), 7.53 (d, 1H, ${}^{1}J_{HH} = 7.89$ Hz), 7.31 (m, 1H), 4.99 (s, 1H, C_{carborane}-*H*), 3.00-1.68 (m, 10H, B_{carborane}-*H*). ¹¹B NMR (160 MHz, CDCl₃): δ -1.97- -4.81(m, 2B), -8.21 (d, 2B, ${}^{1}J_{BH} = 150$ Hz), -9.23- -14.19 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 56.95, δ 75.37, δ 121.65, δ 124.42, δ 137.47, δ 148.86, δ 151.14. GC-MS *m/z*: 221.2165 (calc. 221.2208)

1-(6)-2,2'-bipyridine-1,2-dicarba-*closo*-dodecaborane (2B)

The 6-chloro-2,2'-bipyridine substrate was synthesized through the adaptation of a previously reported procedure.⁴

Purification: Hexanes ($\mathbf{R}_{\mathbf{f}}$: 0.30), 96 mg (43%), white solid. Single crystals for X-ray diffraction analysis were grown by dissolving product hot hexanes and acetone and cooling to room temperature.

¹H NMR (400 MHz, CDCl₃): δ 8.68 (dq, 1H, ¹*J*_{HH} = 4.8, ²*J*_{HH} = 0.8 Hz), 8.45 (dd, 1H, ¹*J*_{HH} = 7.9, ²*J*_{HH} = 0.8 Hz), 8.25 (dd, 1H, ¹*J*_{HH} = 7.9, ²*J*_{HH} = 1.0 Hz), 7.84 (t, 2H, ¹*J*_{HH} = 7.9 Hz), 7.56 (dd, 1H, ¹*J*_{HH} = 7.9, ²*J*_{HH} = 0.8 Hz), 7.35 (m, 1H), 5.03 (s, 1H, C_{carborane}-*H*), 3.08-1.70 (m, 10H, B_{carborane}-*H*). ¹¹B NMR (160 MHz, CDCl₃): δ -0.61- -5.17 (m, 2B), -8.22 (d, 2B, ¹*J*_{BH} = 150 Hz), -9.38- -15.58 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 56.94, 75.49, 121.23, 121.60, 121.77, 124.54, 137.15, 138.58, 149.54, 150.34, 154.83, 155.46. GC-MS *m/z*: 298.2426 (calc. 298.2473)

1-(6,6')-2,2'-bipyridine-di-1,2-dicarba-*closo*-dodecaborane (2C)

The 6-chloro-2,2'-bipyridine substrate was synthesized through the adaptation of a previously reported procedure.⁴

*This reaction was done in 8 mL solvent and dried with Na₂SO₄.

*Purification: silica gel column chromatography with boiling 1,2-dichloroethane ($\mathbf{R}_{\mathbf{f}}$: 0.95), then dissolved in CH₂Cl₂ and stirred with activated carbon at room temperature for 6 hours. Product was filtered through a pad of Celite, then concentrated *in vacuo*. 240 mg (73%), white solid. Single crystals suitable for X-ray diffraction studies were obtained *via* slow evaporation of a hot, concentrated solution of 1,2-dichloroethane.

¹H NMR (400 MHz, (CD₃)₂CO): δ 8.67 (2H, dd, ¹J_{HH} = 7.9 Hz, ²J_{HH} = 0.8 Hz), 8.07 (2H, t, ¹J_{HH} = 7.9 Hz), 7.80 (2H, dd, ¹J_{HH} = 7.9 Hz, ²J_{HH} = 0.8 Hz), 5.74 (2H, br s, C_{carborane}-H), 3.31 – 1.59 (20H, br m, B_{carborane}-H). ¹¹B NMR (160 MHz): δ -2.65 – -5.60 (4B, m), -8.00 – -16.40 (6B, m). ¹³C NMR (126 MHz, (CD₃)₂CO): δ 59.32, 123.18, 123.28, 140.34, 151.08, 154.84

1-(1)-napththalene-1,2-dicarba-*closo*-dodecaborane (2D)

Purification: Hexanes ($\mathbf{R}_{\mathbf{f}}$: 0.33), 132 mg (65%), white powder.

¹H NMR (400 MHz, CDCl₃): δ 8.71 (d, 1H, ¹*J*_{HH} = 8.96 Hz), 7.90 (d, 1H, ¹*J*_{HH} = 7.98 Hz), 7.80 (d, 1H, ¹*J*_{HH} = 8.20 Hz), 7.60 (m, 1H), 7.53 (m, 1H), 7.41 (t, 1H, ¹*J*_{HH} = 7.98 Hz), 4.64 (s, 1H, C_{carborane}-*H*), 3.76-1.58 (m, 10H, B_{carborane}-*H*). ¹¹B NMR (160 MHz, CDCl₃): δ -2.79 (d, 2B, ¹*J*_{BH} = 148 Hz), -7.94--11.43 (m, 6B), -13.40 (d, 2B, ¹*J*_{BH} = 164 Hz).¹³C NMR (126 MHz, CDCl₃): δ 61.28, 124.52, 124.65, 126.25, 127.34, 128.34, 128.82, 129.93, 130.02, 131.88, 134.91. GC-MS *m/z*: 270.2393 (calc. 270.2412)

1-(6)-quinoline-1,2-dicarba-*closo*-dodecaborane (2E)

*Isopropoxytrimethylsilane (1 eq.) was added to 6-fluoroquinoline. This mixture was then added to the solution of $K_2[oCB]$.

*Purification: Acetone/hexanes gradient (10%-90% acetone; \mathbf{R}_{f} : 0.40 in 25% acetone in hexanes). The crude product was stirred with activated charcoal in 1,2-dichlorethane at 40°C, then filtered through a pad of Celite and concentrated *in vacuo*. 96 mg (47%), white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.97 (m, 1H), 8.18 (m, 1H), 8.09 (d, 1H), 7.99 (d, 1H), 7.67 (m, 2H), 4.10 (s, 1H, C_{carborane}-*H*), 3.38-1.68 (m, 10H, B_{carborane}-*H*). ¹¹B NMR (160 MHz, CDCl₃): δ -1.53 (d, 1B, ${}^{1}J_{BH} = 150$ Hz), -3.72 (s, 1B, ${}^{1}J_{BH} = 142$ Hz), -8.44 (d, 2B, ${}^{1}J_{BH} = 74$ Hz), -9.38- -13.35 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 60.44, 76.05, 122.25, 127.60, 127.80, 128.01, 130.48, 131.62, 136.63, 148.20, 152.30. GC-MS *m/z*: 271.2364 (calc. 271.2364)

1-(2,6)-pyridine-di-1,2-dicarba-*closo*-dodecaborane (2F)

Purification: Hexanes ($\mathbf{R}_{\mathbf{f}}$: 0.27), 204 mg (75%), white solid. Single crystals suitable for X-ray diffraction studies were obtained by dissolving product in hot hexanes and cooling to room temperature.

¹H NMR (400 MHz, CDCl₃): δ 7.78 (m, 1H), 7.61 (d, 2H, ¹J_{HH} = 7.91 Hz), 4.48 (s, 2H, C_{carborane}-H), 3.19-1.61 (m, 10H, B_{carborane}-H), ¹¹B NMR (160 MHz, CDCl₃): δ -1.37- -4.26 (m, 2B), -8.07 (d, 2B, ¹J_{BH})

= 151 Hz), 9.23- -15.79 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 56.73, 74.13, 122.91, 139.36, 150.62. GC-MS *m/z*: 363.3980 (calc. 363.3993)

1,7-(2,2)-dipyridine-di-1,7-dicarba-closo-dodecaborane (2G)

Purification: Hexanes ($\mathbf{R}_{\mathbf{f}}$: 0.80), 156 mg (70%), white solid. Single crystals suitable for X-ray diffraction studies were obtained *via* slow evaporation dichloromethane.

¹H NMR (400 MHz, CDCl₃): $\delta 8.51$ (dq, 2H, ${}^{1}J_{HH} = 4.81$ Hz, ${}^{2}J_{HH} = 1.93$ Hz, ${}^{3}J_{HH} = 0.93$ Hz), 7.78 (td, 2H, ${}^{1}J_{HH} = 7.79$ Hz, ${}^{2}J_{HH} = 1.88$ Hz), 7.47 (dt, 2H, ${}^{1}J_{HH} = 8.05$ Hz, ${}^{2}J_{HH} = 1.00$ Hz), 7.24-7.25 (m, 2H), 4.32-1.67 (m, 10H, B_{carborane}-H). ¹¹B NMR (160 MHz, CDCl₃): δ -5.38 (d, 2B, ${}^{1}J_{BH} = 159$ Hz), -10.33 (d, 6B, ${}^{1}J_{BH} = 158$ Hz), -12.78 (d, 2B, ${}^{1}J_{BH} = 183$ Hz). ¹³C NMR (126 MHz, CDCl₃): δ 78.86, 122.13, 123.67, 136.94, 149.02, 152.89. GC-MS *m/z*: 298.2460 (calc. 298.2473)

1,4-((1)-[(2)-pyridine]-1,2-dicarba-closo-dodecaborane)-2,3,5,6-tetrafluorobenzene (2H)

Purification: 9:1 hexanes acetone (\mathbf{R}_{f} : 0.25) Yield 74%. Single crystals suitable for X-ray diffraction studies were obtained by dissolving product in hot hexanes and cooling to room temperature.

¹H NMR (400 MHz, CDCl₃): δ 7.78 (dd, 1H), 7.49 (m, 1H), 7.21 (m, 1H), 3.52-2.22 (m, 20H, B_{carborane}-H). ¹¹B NMR (160 MHz, CDCl₃): δ -0.40 (d, 1B, ¹J_{BH} = 126 Hz), -2.80 (d, 1B, ¹J_{BH} = 144Hz), -8.77 (m, 6B). ¹³C NMR (126 MHz, CDCl₃): δ 31.09, 71.95, 83.77, 124.05, 124.51, 137.44, 148.39, 150.08. ¹⁹F NMR (376 MHz, CDCl₃): δ -130.13 (s, 4F). This product was not detected by GC-MS.

1,2-(2,2)-dipyridine-9-methyl-1,2-dicarba-closo-dodecaborane (2I)

Purification: 10% acetone in hexanes gradient (\mathbf{R}_{f} : 0.35) 60 mg (38%), white solid. Single crystals for X-ray diffraction analysis were grown by dissolving product in hot hexanes and cooling to room temperature.

¹H NMR (400 MHz, CDCl₃): δ 8.22 (dq, 2H, ¹*J*_{HH} = 4.8, ²*J*_{HH} = 0.9 Hz), 7.65 (m, 2H), 7.54 (tt, 2H, ¹*J*_{HH} = 7.8, ²*J*_{HH} = 1.7 Hz), 7.11 (m, 2H, ¹*J*_{HH} = 4.8, ²*J*_{HH} = 0.8 Hz), 4.50-1.69 (m, 9H, B_{carborane}-*H*), 0.35 (s, 3H). ¹¹B NMR (160 MHz, CDCl₃): δ 7.60 (s, 1B), -1.50 (d, 1B, ¹*J*_{BH} = 144 Hz), -7.06- -11.85 (m, 8B). ¹³C NMR (126 MHz, CDCl₃): δ 76.22, 82.45, 124.12, 124.15, 125.30, 125.58, 136.58, 148.55, 148.58, 149.14, 149.38. GC-MS *m/z*: 312.2616 (calc. 312.2630).

4. References

- 1. Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916-920.
- Dziedzic, R. M.; Saleh, L. M. A.; Axtell, J. C.; Martin, J. L.; Stevens, S. L.; Royappa, A. T.; Rheingold, A. L.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 9081-9084.
- 3. Kirlikovali, K. O.; Axtell, J. C., Gonzalez, A.; Phung, A. C.; Khan, S. I.; Spokoyny, A. M. *Chem. Sci.* **2016**, *7*, 5132-5138.
- 4. Jung, J.-C.; Jung, Y.-J.; Park, O.-S., PREPARATION OF 2-CHLOROPYRIDINE. Synthetic Communications 2001, 31 (16), 2507-2511.

5. Crystal Structure Data

Figure S1. Single crystal X-ray structure of 2B. H-atoms are omitted for clarity.

Table S4. Crystal data and structure refinement for 2B.

Compound	2B	
Empirical formula	C12 H18 B10 N2	
Formula weight	298.38	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 25.1102(12) Å	α= 90°.
	b = 7.1488(4) Å	$\beta = 122.287(2)^{\circ}$.
	c = 20.7681(9) Å	$\gamma = 90^{\circ}$.
Volume	3151.6(3) Å ³	•
Ζ	8	
Density (calculated)	1.258 Mg/m ³	
Absorption coefficient	0.470 mm ⁻¹	
F(000)	1232	
Crystal size	0.29 x 0.28 x 0.26 mm ³	
Theta range for data collection	4.165 to 68.312°.	
Index ranges	-29<=h<=30, -8<=k<=8, -23<=	l<=25
Reflections collected	10354	
Independent reflections	2846 [R(int) = 0.0300]	
Completeness to theta = 67.679°	98.6 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.7531 and 0.7008	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2846 / 0 / 261	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0423, wR2 = 0.1165	
R indices (all data)	R1 = 0.0464, wR2 = 0.1200	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.266 and -0.263 e.Å ⁻³	

	Х	у	Z	U(eq)
N(2)	8440(1)	5658(2)	5967(1)	20(1)
N(1)	7252(1)	4803(2)	3995(1)	16(1)
C(10)	6634(1)	4524(2)	3558(1)	16(1)
C(6)	7507(1)	4986(2)	4750(1)	16(1)
C(11)	6369(1)	4351(2)	2716(1)	16(1)
C(9)	6237(1)	4383(2)	3832(1)	19(1)
C(2)	9474(1)	5697(2)	6160(1)	22(1)
C(5)	8203(1)	5255(2)	5232(1)	17(1)
C(1)	9066(1)	5878(2)	6411(1)	21(1)
C(12)	6864(1)	4553(2)	2439(1)	16(1)
C(4)	8578(1)	5056(2)	4926(1)	19(1)
C(8)	6505(1)	4572(2)	4609(1)	21(1)
C(3)	9224(1)	5275(2)	5400(1)	22(1)
C(7)	7145(1)	4898(2)	5075(1)	20(1)
B(5)	5390(1)	3798(2)	1231(1)	17(1)
B(7)	6538(1)	5610(2)	1576(1)	18(1)
B(3)	5789(1)	2785(2)	2154(1)	17(1)
B(8)	6678(1)	3149(2)	1689(1)	19(1)
B(6)	5742(1)	6025(2)	1290(1)	18(1)
B(10)	5938(1)	4020(2)	942(1)	17(1)
B(9)	5970(1)	2015(2)	1477(1)	18(1)
B(4)	6584(1)	2355(2)	2436(1)	18(1)
B(2)	5651(1)	5240(2)	2041(1)	17(1)
B(1)	6355(1)	6386(2)	2249(1)	17(1)

Table S5. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for spok106_0m_a (**2B**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S2. Single crystal X-ray structure of 2C. H-atoms are omitted for clarity.

Table S6. Crystal data and structure refinement for	2C.	
Compound	2C	
Empirical formula	C14 H28 B20 N2	
Formula weight	440.58	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.5443(8) Å	$\alpha = 98.131(8)^{\circ}$.
	b = 7.6742(10) Å	$\beta = 99.051(7)^{\circ}$.
	c = 21.996(3) Å	$\gamma = 90.522(7)^{\circ}$.
Volume	1244.3(3) Å ³	(.)
Z	2	
Density (calculated)	1.176 Mg/m^3	
Absorption coefficient	0.394 mm ⁻¹	
F(000)	452	
Crystal size	0.28 x 0.25 x 0.05 mm ³	
Theta range for data collection	2.055 to 65.982°.	
Index ranges	-8<=h<=8, -7<=k<=8, -26<=l<	=26
Reflections collected	14151	
Independent reflections	4012 [R(int) = 0.0663]	
Completeness to theta = 65.982°	97.6 %	
Absorption correction	Semi-empirical from equivalen	its
Max. and min. transmission	0.7531 and 0.6341	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4012 / 0 / 326	
Goodness-of-fit on F ²	1.549	
Final R indices [I>2sigma(I)]	R1 = 0.1231, $wR2 = 0.3291$	
R indices (all data)	R1 = 0.1309, wR2 = 0.3435	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.349 and -0.405 e.Å ⁻³	
Twinned	pseudomerohedral	

	Х	у	Z	U(eq)
N(2)	8502(6)	6109(6)	478(2)	18(1)
N(1)	10621(6)	1531(6)	4521(2)	19(1)
C(9)	6704(7)	7438(7)	1217(2)	17(1)
C(13)	10447(8)	3732(7)	688(3)	23(1)
C(12)	9894(8)	3733(8)	1259(3)	26(1)
C(3)	10066(7)	2080(8)	3971(3)	22(1)
C(14)	9703(7)	4954(7)	306(3)	21(1)
C(2)	11215(8)	3452(7)	3782(2)	21(1)
C(7)	9657(7)	298(8)	4687(3)	24(1)
C(5)	7495(10)	157(11)	3766(4)	46(2)
C(10)	7994(7)	6096(7)	1036(3)	21(1)
B(14)	7478(8)	9592(8)	1277(3)	21(1)
B(7)	10381(12)	4974(10)	3331(3)	35(2)
C(6)	8070(9)	-413(10)	4336(4)	38(2)
C(1)	12920(10)	4269(9)	4298(3)	32(2)
B(18)	6268(9)	10798(9)	1814(3)	25(1)
C(11)	8654(8)	4933(8)	1447(3)	22(1)
B(6)	11727(8)	3264(8)	3041(3)	20(1)
B(12)	5175(9)	7108(9)	1694(3)	24(1)
B(9)	14041(14)	6314(13)	3497(4)	49(2)
B(10)	12166(10)	5441(9)	2943(3)	27(2)
C(4)	8486(8)	1451(8)	3586(3)	29(1)
B(19)	5549(9)	10726(9)	1000(3)	25(1)
B(4)	13351(9)	2777(11)	3683(3)	31(2)
B(17)	4801(9)	9262(10)	2076(3)	28(2)
B(11)	4468(8)	7067(10)	877(3)	26(1)
B(15)	3681(9)	9181(10)	747(3)	26(1)
B(1)	11134(14)	5586(11)	4151(4)	42(2)
B(3)	14725(12)	4659(12)	3965(4)	44(2)
C(8)	5854(7)	8626(8)	691(3)	23(1)
B(13)	7012(8)	8665(8)	1946(3)	22(1)

Table S7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for spok119_0m (**2C**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

B(16)	3238(9)	8294(10)	1419(3)	27(2)
B(20)	3926(9)	10555(10)	1493(3)	29(2)
B(8)	11787(15)	6880(9)	3613(3)	45(2)
B(5)	14019(10)	4067(12)	3148(3)	36(2)
B(2)	13430(16)	6367(11)	4252(3)	48(3)

Figure S3. Single crystal X-ray structure of 2F. H-atoms omitted for clarity.

Table S8. Crystal data and structure refinement for	2F.	
Compound	2F	
Empirical formula	C9 H25 B20 N	
Formula weight	363.50	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Tetragonal	
Space group	I-42d	
Unit cell dimensions	a = 14.9695(6) Å	α= 90°.
	b = 14.9695(6) Å	β= 90°.
	c = 19.0130(10) Å	$\gamma = 90^{\circ}$.
Volume	4260.5(4) Å ³	
Z	8	
Density (calculated)	1.133 Mg/m ³	
Absorption coefficient	0.051 mm ⁻¹	
F(000)	1488	
Crystal size	0.33 x 0.3 x 0.28 mm ³	
Theta range for data collection	1.731 to 27.458°.	
Index ranges	-14<=h<=18, -19<=k<=14, -24	<=l<=19
Reflections collected	11221	
Independent reflections	2441 [R(int) = 0.0667]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalent	ts
Max. and min. transmission	0.4915 and 0.4383	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2441 / 0 / 137	
Goodness-of-fit on F ²	1.073	
Final R indices [I>2sigma(I)]	R1 = 0.0474, wR2 = 0.1236	
R indices (all data)	R1 = 0.0525, wR2 = 0.1292	
Absolute structure parameter	-0.3(10)	

Extinction coefficientn/aLargest diff. peak and hole0.250 and -0.261 e.Å⁻³

	X	у	Z	U(eq)
N(1)	1870(2)	7500	6250	12(1)
C(1)	1940(1)	5894(1)	6173(1)	12(1)
C(2)	3025(1)	5981(2)	6233(1)	16(1)
C(3)	1405(1)	6738(1)	6218(1)	12(1)
C(4)	475(1)	6700(2)	6216(1)	14(1)
C(5)	11(2)	7500	6250	16(1)
B(1)	2575(2)	5764(2)	5418(1)	18(1)
B(2)	3569(2)	5230(2)	5718(2)	20(1)
B(3)	3493(2)	5093(2)	6648(2)	21(1)
B(4)	2460(2)	5543(2)	6942(1)	18(1)
B(5)	1659(2)	5051(2)	5611(1)	18(1)
B(6)	2694(2)	4595(2)	5321(1)	19(1)
B(7)	3267(2)	4176(2)	6080(1)	18(1)
B(8)	2579(2)	4374(2)	6836(1)	19(1)
B(9)	1588(2)	4914(2)	6540(1)	17(1)
B(10)	2088(2)	4066(2)	6016(2)	19(1)

Table S9. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for spok75_0m_a (**2F**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S4. Single crystal X-ray structure of 2G. H-atoms omitted for clarity.

Table S10. Crystal data and structure refinement for 2G.

Compound	2G	
Empirical formula	C12 H18 B10 N2	
Formula weight	298.38	
Temperature	100.15 K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 10.6774(4) Å	α= 90°.
	b = 7.4665(3) Å	$\beta = 104.1230(10)^{\circ}$.
	c = 20.6215(8) Å	$\gamma = 90^{\circ}$.
Volume	1594.31(11) Å ³	
Ζ	4	
Density (calculated)	1.243 Mg/m ³	
Absorption coefficient	0.465 mm ⁻¹	
F(000)	616	
Crystal size	0.28 x 0.26 x 0.23 mm ³	
Theta range for data collection	4.302 to 68.354°.	
Index ranges	-12<=h<=12, -8<=k<=7, -24<=	=l<=24
Reflections collected	11345	
Independent reflections	2906 [R(int) = 0.0376]	
Completeness to theta = 67.679°	99.6 %	
Absorption correction	Semi-empirical from equivalen	ts
Max. and min. transmission	0.5210 and 0.4338	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2906 / 343 / 254	
Goodness-of-fit on F ²	1.035	
Final R indices [I>2sigma(I)]	R1 = 0.0442, $wR2 = 0.1180$	
R indices (all data)	R1 = 0.0472, $wR2 = 0.1217$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.248 and -0.324 e.Å ⁻³	

	X	У	Z	U(eq)
 N(1)	6616(1)	9187(2)	4954(1)	26(1)
N(2')	3332(13)	5530(20)	2560(6)	24(2)
C(3)	7608(1)	8219(2)	4859(1)	20(1)
C(9)	3049(10)	4610(20)	3624(6)	23(1)
C(8)	3853(1)	5133(2)	3187(1)	20(1)
C(1)	7255(1)	6836(2)	4308(1)	19(1)
C(2)	5305(1)	5252(2)	3450(1)	19(1)
C(6)	8078(1)	10709(2)	5852(1)	29(1)
C(12)	2108(10)	5440(30)	2301(6)	28(2)
C(4)	8862(1)	8426(2)	5241(1)	29(1)
C(11)	1243(1)	5036(2)	2724(1)	28(1)
C(7)	6860(1)	10408(2)	5444(1)	28(1)
C(12')	1724(9)	4650(30)	3364(7)	27(1)
C(5)	9091(1)	9697(2)	5748(1)	34(1)
B(10)	5862(1)	5690(2)	4283(1)	20(1)
B(8)	7531(1)	7252(2)	3529(1)	23(1)
B(2)	6232(1)	6187(2)	2956(1)	23(1)
B(1)	5954(1)	7325(2)	3661(1)	19(1)
B(7)	6069(1)	3543(2)	3961(1)	24(1)
B(4)	7375(1)	4600(2)	4533(1)	24(1)
B(9)	8406(1)	5560(2)	4065(1)	26(1)
B(6)	7749(1)	5089(2)	3204(1)	28(1)
B(5)	6303(1)	3851(2)	3139(1)	25(1)
B(3)	7652(1)	3453(2)	3824(1)	29(1)
N(2)	3222(11)	4740(30)	3615(7)	27(2)
C(10)	1929(13)	4560(40)	3402(9)	29(2)
C(10')	1936(11)	5520(30)	2327(8)	26(2)
C(9')	3360(20)	5520(30)	2501(9)	24(2)

Table S11. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for spok71_0m_a (**2G**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S5. Single crystal X-ray structure of 2H. H-atoms omitted for clarity.

Table S12. Crystal data and structure refinement for 2H.Compound2H

Compound	2H	
Empirical formula	C20 H28 B20 F4 N2	
Formula weight	588.64	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 7.2661(12) Å	$\alpha = 90^{\circ}$.
	b = 15.0779(18) Å	$\beta = 90.604(5)^{\circ}$.
	c = 13.2917(16) Å	$\gamma = 90^{\circ}$.
Volume	$1456.1(3) Å^3$	
Z	2	
Density (calculated)	1.343 Mg/m^3	
Absorption coefficient	0.086 mm ⁻¹	
F(000)	596	
Crystal size	0.32 x 0.29 x 0.25 mm ³	
Crystal color, habit	Colorless block	
Theta range for data collection	2.702 to 28.296°.	
Index ranges	-9<=h<=8, -19<=k<=19, -	17<=l<=17
Reflections collected	13668	
Independent reflections	3596 [R(int) = 0.0356]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.3343 and 0.2814	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	3596 / 0 / 208	
Goodness-of-fit on F ²	1.076	
Final R indices [I>2sigma(I)]	R1 = 0.0489, WR2 = 0.121	1
R indices (all data)	R1 = 0.0605, wR2 = 0.127	'4
Extinction coefficient	n/a	
Largest diff. peak and hole	0.368 and -0.261 e.Å ⁻³	

	Х	У	Z	U(eq)
F(2)	3265(1)	3442(1)	5279(1)	16(1)
F(1)	1817(1)	4550(1)	4076(1)	16(1)
N(1)	4107(2)	4811(1)	7532(1)	18(1)
C(9)	4179(2)	4208(1)	5177(1)	11(1)
C(8)	5795(2)	4375(1)	5716(1)	11(1)
C(10)	3402(2)	4807(1)	4508(1)	12(1)
C(1)	6704(2)	3706(1)	6403(1)	11(1)
C(2)	6212(2)	3575(1)	7656(1)	12(1)
C(6)	2146(2)	5245(1)	8885(1)	19(1)
C(7)	2804(2)	5337(1)	7915(1)	21(1)
C(3)	4768(2)	4167(1)	8116(1)	13(1)
C(4)	4205(2)	4022(1)	9097(1)	19(1)
C(5)	2863(2)	4580(1)	9483(1)	22(1)
B(9)	9938(2)	3234(1)	7420(1)	15(1)
B(4)	5494(2)	2768(1)	6821(1)	14(1)
B(6)	7176(3)	1923(1)	6913(1)	16(1)
B(10)	8837(3)	2243(1)	7843(1)	17(1)
B(5)	9338(3)	2377(1)	6546(1)	17(1)
B(8)	8158(2)	3294(1)	8322(1)	15(1)
B(1)	8247(2)	4078(1)	7327(1)	13(1)
B(3)	7275(2)	2700(1)	5908(1)	14(1)
B(2)	8990(2)	3506(1)	6220(1)	14(1)
B(7)	6462(3)	2490(1)	8013(1)	16(1)

Table S13. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for spok41_a (**2H**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S6. Single crystal X-ray structure of 2I. H-atoms omitted for clarity.

Table S14. Crystal data and structure refinement for	r 2I .	
Compound	21	
Empirical formula	C13 H20 B10 N2	
Formula weight	312.41	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 12.747(3) Å	α= 90°.
	b = 14.141(4) Å	β= 90°.
	c = 18.749(5) Å	$\gamma = 90^{\circ}$.
Volume	3379.4(15) Å ³	•
Ζ	8	
Density (calculated)	1.228 Mg/m^3	
Absorption coefficient	0.063 mm ⁻¹	
F(000)	1296	
Crystal size	0.27 x 0.25 x 0.22 mm ³	
Theta range for data collection	2.410 to 30.311°.	
Index ranges	-16<=h<=18, -15<=k<=16, -17<	<=l<=24
Reflections collected	16565	
Independent reflections	3733 [R(int) = 0.0416]	
Completeness to theta = 25.242°	99.1 %	
Absorption correction	Semi-empirical from equivalent	S
Max. and min. transmission	0.7455 and 0.6984	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3733 / 0 / 227	
Goodness-of-fit on F ²	1.078	
Final R indices [I>2sigma(I)]	R1 = 0.0523, $wR2 = 0.1442$	
R indices (all data)	R1 = 0.0648, wR2 = 0.1559	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.783 and -0.390 e.Å ⁻³	

	X	У	Z	U(eq)
N(1)	5344(1)	8076(1)	4433(1)	20(1)
N(2)	3205(1)	6177(1)	4603(1)	19(1)
C(13)	3681(1)	6055(1)	3990(1)	14(1)
C(4)	4423(1)	8317(1)	4385(1)	14(1)
C(12)	4230(1)	5177(1)	3841(1)	17(1)
C(2)	3575(1)	6922(1)	3446(1)	14(1)
C(1)	3977(1)	8125(1)	3666(1)	13(1)
C(11)	4272(1)	4383(1)	4346(1)	19(1)
C(10)	3783(1)	4496(1)	4978(1)	19(1)
C(5)	3917(1)	8774(1)	4935(1)	21(1)
C(9)	3268(1)	5409(1)	5084(1)	21(1)
C(8)	5779(1)	8300(1)	5051(1)	23(1)
C(7)	5330(1)	8750(1)	5629(1)	24(1)
C(6)	4382(1)	8995(1)	5569(1)	24(1)
C(3)	2499(1)	7382(1)	1367(1)	25(1)
B(4)	2770(1)	7907(1)	3633(1)	14(1)
B(3)	4602(1)	7379(1)	3053(1)	16(1)
B(5)	3722(1)	6702(1)	2555(1)	16(1)
B(8)	2412(1)	8387(1)	2790(1)	17(1)
B(9)	2596(1)	7024(1)	2912(1)	16(1)
B(2)	4414(1)	8748(1)	2932(1)	17(1)
B(6)	4242(1)	7865(1)	2213(1)	17(1)
B(7)	3428(1)	8913(1)	2350(1)	18(1)
B(10)	2993(1)	7639(1)	2108(1)	17(1)
B(1)	3283(1)	9066(1)	3287(1)	16(1)

Table S15. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for spok121_a (**2I**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Onumber of Managers to Ohner Acquired Time

10/6/2018 11:35:20 AM (UTC-07:00)

Counts vs. Mass-to-Charge (m/z)

9/14/2018 7:02:35 PM (UTC-07:00)

Jul10-2018-spokoyny Account No. AAS153 KA-I-130 purified CDCl3 1H	 8.72 8.70 8.70 7.91 7.81 7.81<th>- 4.64</th><th></th>	- 4.64	

Counts vs. Mass-to-Charge (m/z)

$\begin{array}{c} 149.38 \\ 149.14 \\ 148.55 \\ 1148.55 \\ 136.59 \\ 124.15 \\ 124.12 \\ 124.12 \end{array}$	
N	ł
2I CH ₃	

		1 1	1 1	1 1	1 1	1 1	1	· 1	· 1	· 1		1 1	1 1	1 1	I
160	150	140	130	120	110	100	90 f1 (80 ppm)	70	60	50	40	30	20	10

