Web-Based Supplementary Materials for Bias Induced by Ignoring Double Truncation Inherent in Autopsy-Confirmed Survival Studies of Neurodegenerative Diseases by Lior Rennert and Sharon X. Xie

August 16, 2018

Web Appendix A

Here we justify that the identifiability constraints given in Section 2, $a_{H_L} < a_F \leq a_{H_R}$ and $b_{H_L} \leq b_F < b_{H_R}$, hold in our data example. First we introduce some notation. Denote τ as the end of study date, τ_E as the study entry date, and τ_A as the date of symptom onset. Note that τ is the same for all subjects, while τ_E and τ_A can differ among subjects. The left truncation time is defined as $L = \tau_E - \tau_A$, and the right truncation time is defined as $R = \tau - \tau_A$.

Subjects can theoretically enter the center at the time of AD or FTLD symptom onset, but not before. Therefore the smallest possible left truncation time is L = 0, and thus $a_{H_L} = 0$. Since recruitment of subjects into the center stops one week prior to the end of the study, the smallest possible right truncation time is R = 1 week (or $R \approx 0.019$ years). Therefore $a_{H_R} \ge 0.019$. Since subjects can die from AD or FTLD within a week of symptom onset, and we assume that subjects cannot die on the day of symptom onset, $P(T \le t) > 0$ for some $t \in (0, 0.019)$, where t is measured in years. We therefore have that $0 < a_F < 0.019$, and thus the constraint $a_{H_L} < a_F \le a_{H_R}$ is satisfied.

Because subjects are not expected to enter the study more than 15 years after symptom onset,

the assumption $b_{H_L} \leq 15$ is reasonable in practice. Since subjects with AD or FTLD can live past 15 years after symptom onset, $P(T \geq 15) > 0$, and thus $b_F \geq 15$. Our study recruited subjects from 1995 to 2012, and subjects with AD or FTLD symptom onset before 1995 were included in the study. Since the study recruited subjects over a 17 year period, we have that $b_{H_R} = b_F + 17$ and thus $b_F < b_{H_R}$. To see why this is so, note that a subject with a survival time $T = b_F$ could have theoretically had symptom onset in the year 1995 - b_F . For example, if $b_F = 15$, a subject could have entered the study in 1980, in which case their right truncation time would be 32 years. Therefore it is reasonable to assume that the constraint $b_{H_L} \leq b_F < b_{H_R}$ is satisfied.

Notation for Web Tables 1,2,3, and 4

In the following tables, q_L , q_R , q are the proportion of observations missing due to left, right, and double (left and right) truncation, respectively, and n is the size of the observed sample. \hat{F}_{SP} denotes the SPMLE, \hat{F}_{NP} denotes the NPMLE, and \hat{F}_{emp} denotes the naïve empirical CDF which ignores double truncation. These estimators were all computed at $t_{0.1}, ..., t_{0.9}$, the 1st through 9th deciles of the true survival distribution F_0 . For a given estimator \hat{F} , $\text{Bias}(\hat{F})$ is the (absolute) difference between \hat{F} and F_0 , averaged across the 9 deciles. The standard deviation of \hat{F} across simulations is $\text{SD}(\hat{F})$ is, $\hat{\text{SE}}(\hat{F})$ is the estimated standard error of \hat{F} , $\text{MSE}(\hat{F})$ is the mean squared error of \hat{F} , and $\text{Cov}(\hat{F})$ is 95% coverage, all averaged across the 9 deciles. The estimated median value based on \hat{F} is $\hat{t}_{0.5}$. The true median value based on F_0 is $t_{0.5} = 9.7$, $\text{Bias}(\hat{t}_{0.5}) = \hat{t}_{0.5} - t_{0.5}$, and $\text{SD}(\hat{t}_{0.5})$ is the standard deviation of $\hat{t}_{0.5}$ across simulations.

Table 1: Simulation results under misspecification of the truncation distribution

Survival times simulated from a gamma (10,1) distribution. Left and right truncation times assumed to come from a $gamma(\alpha_1, \beta_1)$ and $gamma(\alpha_2, \beta_2)$ distribution, respectively. Model A.1 corresponds to misspecification of the right

truncation time by simulating it as Unif(0, 20), and the left truncation time as gamma(4.5, 1.5). Model A.2

corresponds to misspecification of the left truncation time by simulating it as Weibull(3,9), and the right truncation time as gamma(5,2). Model A.3 corresponds to misspecification both truncation times by simulating the left

truncation time as W eloui((3,9) and the right truncation time as $Unif(0,20)$.										
Model	q_L,q_R,q	n	Estimator	$\operatorname{Bias}(\hat{F})$	$\mathrm{SD}(\hat{F})$	$\widehat{\operatorname{SE}}(\widehat{F})$	$MSE(\hat{F})$	$\operatorname{Cov}(\hat{F})$	$\operatorname{Bias}(\hat{t}_{0.5})$	$\mathrm{SD}(\hat{t}_{0.5})$
			\hat{F}_{SP}	0.013	0.078	0.248	0.006	0.974	-0.060	0.729
A.1	0.22,0.50,0.64	50	\hat{F}_{NP}	0.025	0.080	0.073	0.007	0.872	-0.048	0.796
			\hat{F}_{emp}	0.037	0.056	0.053	0.005	0.484	-0.259	0.464
			\hat{F}_{SP}	0.013	0.034	0.083	0.001	0.997	-0.061	0.316
A.1	0.22,0.50,0.64	250	\hat{F}_{NP}	0.009	0.038	0.034	0.002	0.927	-0.050	0.442
			\hat{F}_{emp}	0.037	0.024	0.024	0.002	0.334	-0.225	0.205
			\hat{F}_{SP}	0.010	0.090	0.120	0.008	0.885	-0.008	0.990
A.2	0.33,0.52,0.74	50	\hat{F}_{NP}	0.023	0.098	0.086	0.010	0.863	0.018	1.079
			\hat{F}_{emp}	0.051	0.054	0.052	0.006	0.462	-0.292	0.424
			\hat{F}_{SP}	0.009	0.040	0.036	0.002	0.880	-0.056	0.342
A.2	0.33,0.52,0.74	250	\hat{F}_{NP}	0.006	0.042	0.041	0.002	0.928	-0.023	0.376
			\hat{F}_{emp}	0.051	0.025	0.023	0.004	0.328	-0.267	0.189
			\hat{F}_{SP}	0.010	0.087	0.317	0.008	0.967	-0.090	0.853
A.3	0.33,0.50,0.70	50	\hat{F}_{NP}	0.023	0.090	0.081	0.009	0.880	-0.057	0.936
			\hat{F}_{emp}	0.043	0.056	0.052	0.006	0.478	0.259	0.459
			\hat{F}_{SP}	0.012	0.037	0.098	0.002	0.995	-0.093	0.331
A.3	0.33,0.50,0.70	250	\hat{F}_{NP}	0.008	0.039	0.037	0.002	0.922	-0.037	0.341
			\hat{F}_{emp}	0.043	0.025	0.024	0.003	0.333	0.270	0.205

and the right truncation tim cation time as Weibull(3, 9), Unif(0, 20)

Table 2: Simulation results when $R = L + d_0$.

Here d_0 is constant. Survival times simulated from a gamma(10,1) distribution. Left truncation time assumed to come from a gamma(α_1, β_1) distribution. Model B.1 corresponds to correct specification of left truncation time by simulating $L \sim gamma(4.5, 1.5)$ and right truncation time $R \sim L + 6$. Model B.2 corresponds to misspecification of

the left truncation time by simulating it as Weibull(3,9), and $R \sim L + 6$. Model B.3 corresponds to correct specification of left truncation time by simulating $L \sim gamma(4.5, 1.5)$ and right truncation time $R \sim L + 8$. Model B.4 corresponds to misspecification of the left truncation time by simulating it as Weibull(3,9), and $R \sim L + 8$.

Model	d_0	q_L,q_R,q	n	Estimator	$\operatorname{Bias}(\hat{F})$	$\mathrm{SD}(\hat{F})$	$\widehat{\operatorname{SE}}(\hat{F})$	$\mathrm{MSE}(\hat{F})$	$\operatorname{Cov}(\hat{F})$	$\operatorname{Bias}(\hat{t}_{0.5})$	$SD(\hat{t}_{0.5})$
				\hat{F}_{SP}	0.008	0.105	0.070	0.011	0.787	0.069	1.167
B.1	6	0.22,0.26,0.48	50	\hat{F}_{NP}	0.026	0.106	0.093	0.012	0.824	0.070	1.158
				\hat{F}_{emp}	0.067	0.055	0.050	0.009	0.449	-0.498	0.408
				\hat{F}_{SP}	0.006	0.050	0.035	0.003	0.828	-0.016	0.479
B.1	6	0.22,0.26,0.48	250	\hat{F}_{NP}	0.008	0.051	0.050	0.003	0.918	-0.019	0.473
				\hat{F}_{emp}	0.067	0.024	0.023	0.007	0.297	-0.479	0.177
				\hat{F}_{SP}	0.009	0.098	0.069	0.010	0.789	0.000	0.920
B.2	6	0.33,0.17,0.50	50	\hat{F}_{NP}	0.025	0.105	0.099	0.012	0.868	-0.011	1.070
				\hat{F}_{emp}	0.055	0.053	0.051	0.007	0.456	0.331	0.418
				\hat{F}_{SP}	0.012	0.045	0.033	0.002	0.802	-0.046	0.387
B.2	6	0.33,0.17,0.50	250	\hat{F}_{NP}	0.006	0.050	0.049	0.003	0.931	-0.010	0.455
				\hat{F}_{emp}	0.056	0.024	0.023	0.005	0.327	0.351	0.192
				\hat{F}_{SP}	0.003	0.083	0.068	0.007	0.863	0.057	0.812
B.3	8	0.22,0.14,0.36	50	\hat{F}_{NP}	0.018	0.086	0.081	0.008	0.879	0.053	0.879
				\hat{F}_{emp}	0.040	0.054	0.051	0.005	0.471	0.005	0.427
				\hat{F}_{SP}	0.008	0.038	0.032	0.002	0.892	-0.048	0.331
B.3	8	0.22,0.14,0.36	250	\hat{F}_{NP}	0.009	0.038	0.040	0.002	0.928	-0.051	0.328
				\hat{F}_{emp}	0.042	0.024	0.023	0.003	0.333	0.009	0.189
				\hat{F}_{SP}	0.006	0.085	0.068	0.008	0.848	-0.039	0.790
B.4	8	0.33,0.08,0.41	50	\hat{F}_{NP}	0.023	0.087	0.085	0.008	0.901	-0.080	0.828
				\hat{F}_{emp}	0.077	0.053	0.050	0.011	0.460	0.705	0.453
				\hat{F}_{SP}	0.010	0.038	0.032	0.002	0.861	-0.056	0.323
B.4	8	0.33,0.08,0.41	250	\hat{F}_{NP}	0.009	0.040	0.040	0.002	0.936	-0.058	0.347
				\hat{F}_{emp}	0.075	0.024	0.023	0.008	0.304	0.701	0.200

Table 3: Simulation results under violation of the independence assumption

Survival and truncation times simulated from a normal copula with correlations ρ_{LT} , ρ_{LR} , and ρ_{TR} , where ρ_{XY} denotes the correlation between random variables X and Y. The marginal distributions for the survival, left, and right truncation times are set to gamma(10,1), gamma(4,1.5), and gamma(8,1.5) distributions, respectively. The average observed sample size is n = 250 for all models.

Model	$\rho_{LT}, \rho_{LR}, \rho_{RT}$	q_L,q_R,q	Estimator	$\operatorname{Bias}(\hat{F})$	$\mathrm{SD}(\hat{F})$	$\widehat{\operatorname{SE}}(\hat{F})$	$\mathrm{MSE}(\hat{F})$	$\operatorname{Cov}(\hat{F})$	$\operatorname{Bias}(\hat{t}_{0.5})$	$SD(\hat{t}_{0.5})$
C.1	0.5,0.1,0.1	0.00,0.53,0.0.53	\hat{F}_{SP}	0.031	0.042	0.039	0.003	0.865	0.373	0.422
			\hat{F}_{NP}	0.027	0.043	0.040	0.003	0.883	0.347	0.454
			\hat{F}_{emp}	0.142	0.025	0.019	0.023	0.331	-1.294	0.202
C.2	-0.5,0.1,-0.1	0.04,0.52,0.56	\hat{F}_{SP}	0.028	0.038	0.038	0.003	0.847	-0.236	0.311
			\hat{F}_{NP}	0.028	0.039	0.037	0.003	0.832	-0.211	0.319
			\hat{F}_{emp}	0.146	0.024	0.019	0.025	0.331	-1.295	0.182
C.3			\hat{F}_{SP}	0.173	0.028	0.034	0.034	0.048	-1.436	0.199
	-0.1,0.1,-0.5	0.02, 0.52, 0.54	\hat{F}_{NP}	0.174	0.028	0.027	0.035	0.021	-1.437	0.204
			\hat{F}_{emp}	0.218	0.021	0.016	0.054	0.235	-1.786	0.163
C.4			\hat{F}_{SP}	0.157	0.027	0.035	0.030	0.134	-1.301	0.185
	-0.5,0.1,-0.5	0.04,0.52,0.56	\hat{F}_{NP}	0.157	0.027	0.027	0.029	0.089	-1.289	0.190
			\hat{F}_{emp}	0.204	0.020	0.017	0.050	0.246	-1.663	0.147

Table 4: Simulation results when $R = L + d_0$ under violation of the independence assumption. Survival and left truncation times simulated from a normal copula with correlation ρ_{LT} . The marginal distributions for the survival times and left truncation times are set to gamma(10,1) and gamma(4.5,1.5), respectively. In all models, we simulate $R = L + d_0$, where d_0 is constant. The average observed sample size is n = 250 for all models.

Model	d_0	ρ_{LT}	q_L, q_R, q	Estimator	$\operatorname{Bias}(\hat{F})$	$\mathrm{SD}(\hat{F})$	$\widehat{\operatorname{SE}}(\widehat{F})$	$MSE(\hat{F})$	$\operatorname{Cov}(\hat{F})$	$\operatorname{Bias}(\hat{t}_{0.5})$	$SD(\hat{t}_{0.5})$
D.1	6	-0.5	0.26,0.31,0.57	\hat{F}_{SP}	0.060	0.035	0.029	0.006	0.442	-0.168	0.234
				\hat{F}_{NP}	0.061	0.036	0.035	0.006	0.525	-0.160	0.242
				\hat{F}_{emp}	0.098	0.020	0.020	0.013	0.245	-0.326	0.139
D.2		0.5	0.14,0.18,0.33	\hat{F}_{SP}	0.041	0.060	0.038	0.006	0.724	0.416	0.791
	6			\hat{F}_{NP}	0.035	0.060	0.059	0.005	0.933	0.346	0.724
				\hat{F}_{emp}	0.058	0.026	0.024	0.005	0.353	-0.530	0.215
D.3			0.26,0.19,0.45	\hat{F}_{SP}	0.055	0.030	0.027	0.004	0.444	0.142	0.214
	8	-0.5		\hat{F}_{NP}	0.054	0.031	0.030	0.004	0.487	0.154	0.224
				\hat{F}_{emp}	0.081	0.021	0.021	0.008	0.327	0.164	0.157
D.4			0.5 0.14,0.06,0.21	\hat{F}_{SP}	0.047	0.042	0.034	0.005	0.639	-0.432	0.422
	8	0.5		\hat{F}_{NP}	0.048	0.043	0.044	0.005	0.739	-0.449	0.428
				\hat{F}_{emp}	0.017	0.026	0.025	0.001	0.336	-0.092	0.224