Supplemental Table 1. Antibody list.

		Dilution	Dilution	
Primary antibody	Brand	(IF)	(WB)	Size (kDa)
chicken anti-VIM	Millipore	1:1,000	1:1,000	54
mouse anti-FBLN5	Abcam	1:100	1:1,000	50
mouse anti-ABCA1	Abcam		1:200	254
mouse anti-β-actin	Sigma		1:50,000	42
Secondary antibody				
donkey anti-chicken Alexafluor 488	Jackson ImmunoResearch	1:1,000		
goat anti-mouse Alexafluor 594	Jackson ImmunoResearch	1:1,000		
donkey anti-chicken HRP conjugate	Jackson ImmunoResearch		1:5,000	
goat anti-mouse HRP conjugate	Jackson ImmunoResearch		1:5,000	

IF: immunofluorescence, WB: western blotting.

Supplemental Table 2. Primer list.

Gene	Primer	Length (bp)	
hABCA1 - Forward	TTCGCCCGTTCACTG	06	
hABCA1 - Reverse	TGCCATCCATCCCAC	90	
mABCA1 - Forward	CCACCCTACGAACAACA	102	
mABCA1 - Reverse	TGAGAACAGGCGAGACA	185	
ov/bABCA1 - Forward	GCCTTCAATGAGACTAACCG	05	
ov/bABCA1 - Reverse	AGAACCTCTGTCGCTACTGG	95	
pABCA1 - Forward	TCCCAGCGAGACGAAACA	1.4.1	
<i>pABCA1</i> - Reverse	CCTTGCCGTCCATACCG	141	
CREB1 - Forward	ACTCAGCCAGGCACTACCA	170	
CREB1 - Reverse	GAAGACGCCATAACAACCC	1/0	
CYP11A1 - Forward	ACCCATCGGAGTCCTGTTTAA	0.4	
CYP11A1 - Reverse	GCCTCTGGAGCCATCACCT	- 84	
HSD3B1 - Forward	CTTGCCGAGAAGGCTGTG	1.01	
HSD3B1 - Reverse	TTGGTCAGGATGCCGTTG	101	
HSD17B1 - Forward	TCGGGACGCATATTGGTG	262	
HSD17B1 - Reverse	GGCGACAGTAGCGGTAGAA	262	
HSL - Forward	CCTCCTCGTGGCTCAACTCCT	05	
HSL - Reverse	CGCCGCATTGGCTCTGTCTT	85	
<i>h/pGAPDH</i> - Forward	GGGAAGCTCACTGGCATGGCCTTCC	110	
<i>h/pGAPDH</i> - Reverse	GCCTGCTTCACCACCTTCTTG	119	
<i>mGAPDH</i> - Forward	CGGCAAATTCAACGGCACA	0.4	
<i>mGAPDH</i> - Reverse	TCTCGCTCCTGGAAGATGG	84	
ov/bGAPDH - Forward	TTCCACGGCACAGTCAA	241	
ov/bGAPDH - Reverse	TCACGCCCATCACAAAC	241	
LDLR - Forward	TCGCCTACCTCTTCTTCACCAA	107	
LDLR - Reverse	GTCCAGGGCAACCACATTCTT	107	
$LXR\alpha$ - Forward	GAGGTACAACCCTGGAAGTGAGA	0.0	
$LXR\alpha$ - Reverse	ATCAGTCGGTCCTGCTTTGG	88	
$LXR\beta$ - Forward	CAGATCGCCCTCCTGAAAGCC	102	
$LXR\beta$ - Reverse	CATGGCCCGTGAGAACTCGA	185	
RPL27 - Forward	CGCAAGGCCCGACGAGAGGC	02	
RPL27 - Reverse	GACCTAAAACCGCAGCTTCTGG	93	
RXRa - Forward	TCCTTAGCGATGCCTTAGCCG	00	
<i>RXRa</i> - Reverse	ACCTTTCCCGACGCTTTAGACG	90	
$RXR\beta$ - Forward	AGCAGCCCAAATGACCC	02	
$RXR\beta$ - Reverse	ATCCTCTTCGCCCACTCA	83	
hStAR - Forward	GCTCAGGAAGGACGAAG	01	
hStAR - Reverse	CAAATGTGGCAGTGGTG	- 91	
mStAR - Forward	GGGCATACTCAACAACC		
<i>mStAR</i> - Reverse	CATCTGGCACCATCTTAC		
ov/bStAR - Forward CCCTGGGCATCCTCAAAGA		115	
ov/bStAR - Reverse	ACCTCCAACCGGAACACCTT	115	

<i>pStAR</i> - Forward	AAGCTCAGCCCGCCACT	120	
<i>pStAR</i> - Reverse	ACACCACTGCAACATCCCAC	120	
SREBF1 - Forward	TACATCCGCTTCCTTCAGCACAG	192	
SREBF1 - Reverse	TCCACCACCTCGGGCTTCAT	165	
SR-B1 - Forward	GCCGCTAATGTGGTTCG	125	
SR-B1 - Reverse	TGTGATGTGAGCAGGAAGC	123	
TSPO - Forward	GCCTTCGTGGATCTCCTGCTGA	00	
TSPO - Reverse	TCCTGCCACATACGGTAGTTGAGC	00	

Unless specified, all primer sequences are designed against the sheep genome sequence. b: bovine, h: human, m: mouse, p: porcine, ov: ovine.

ovRXRa	1 · · · · · · · · · · · · · · · · · · ·			
	TRCN0000330707	CCGG CAAGGACTGCCTGATTGACAA CTCGAG		
		Inserted sequence		

Supplemental Figure 1. Sequence map for *RXRα* knockdown. *Top*: ovine *RXRα* sequence. *Bottom*: *RXRα* shRNA insert

Supplemental Figure 2. Identification of primary cultured ovine ovarian theca cells. Morphology (**A**), growth curve (**B**) of primary cultured ovine theca cells over 8 days. Immunofluorescence stain of theca cell positive marker vimentin (VIM) (**C**) and fibulin 5 (FBLN5) (**D**). Dynamic expression pattern of steroidogenic enzymes (*ovHSD3B1* and *ovHSD17B1*) (**E**) and progesterone production (**F**) in ovine ovarian theca cells before (growth medium) and after luteinization (luteal medium). * denote differences among treatments (P<0.05). N = 3 cultured cell lines per group. ND means not detectable.

Supplemental Figure 3. Cytotoxicity effects of TBT (A) and RXR antagonist, UVI3003 (B) on primary ovine ovarian theca cells upon three days exposure using an MTT assay. Asterisks denote differences among treatments (P<0.05). N = 3 cultured cell lines per group.

Supplemental Figure 4. Effect of TBT exposure on mRNA expression in pre-luteinized and luteinized ovine primary theca cells. mRNA expression (mean \pm SEM) of nuclear receptors (*LXRa*, *LXRβ*, *RXRa*, *RXRβ*) in primary ovine pre-luteinized (**A**) and luteinized (**B**) ovine primary theca cells exposed to 1 ng/ml TBT (T1; *gray bars*), 10 ng/ml TBT (T10; *closed bars*) or vehicle (C; control group; *open bars*). * denote differences among treatments (P < 0.05). N=3 primary cultured cell lines per group.

Supplemental Figure 5

Supplemental Figure 5. Effect of TBT (0 and 10 ng/ml) and/or RXR antagonist (UVI3003; 0.5, 2, 4 and 8 μ M) exposure on mRNA (*ovHSL*, *ovSREBF1*, *ovLXRa*, *ovLXRβ* and *ovRXRa*) expression (mean \pm SEM) in pre-luteinized ovine primary theca cells. Asterisks denote differences among treatments (P<0.05). N=3 cultured cell lines per group. U: UVI3003 (μ M). T: TBT.