## Supplementary Information:

Generating kinetic environments to study dynamic cellular processes in single cells

## Authors

Alexander Thiemicke<sup>1\*</sup>, Hossein Jashnsaz<sup>1\*</sup>, Guoliang Li<sup>1</sup>, Gregor Neuert<sup>1-3</sup>

\*equally contributing

## Affiliations

<sup>1</sup>Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA.

<sup>2</sup>Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, 37232, USA.

<sup>3</sup>Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA.

corresponding author: Gregor Neuert (gregor.neuert@vanderbilt.edu)





We calculate the stimulus concentration for any profile over discrete time points set by programmable pump by combining several short segments with linear concentration profiles. During each interval, we increase (**Supplementary Figure 2**) or decrease (**Supplementary Figure 3**) the concentration linearly with a fixed rate to achieve increasing or decreasing kinetics of any shape over time. For linear gradient kinetics, the rates are fixed during all intervals ( $k_1 = k_2 = \cdots k_N$ ). By changing the rate from one interval to the next, any arbitrary profile over the whole treatment time can be generated ( $k_1 \neq k_2 \neq$  $\cdots k_N$ ). During each interval ( $dt_i$ ), stimulus is delivered continually over time by adding appropriate amount ( $dv_i$ ) of concentrated stimulus. The profiles are corrected for the added ( $dv_i$ ) and removal ( $du_i$ and  $dw_i$ ) volumes therefore change in stimulus concentration.



**kinetics.** (**a-b**) Calculation of pump profile generation for Time Point (TP, **a**) and Time series (TS, **b**) data collection. In both TP and TS experiments, computed pump profiles (corrected for volume removal and therefore change in stimulus concentration) are linear increasing gradient to 0.60M (red), linear increasing gradient to 0.40M (black), quadratic increasing gradient to 0.40M (blue), and linear increasing gradient to 0.20M (green), all compared to their theoretical values (cyan). (**c-d**) Error comparisons between computed pump profiles and their corresponding proposed concentration profiles for TP (**c**) and TS (**d**) experiments. The profiles are generated under the following conditions (the same conditions are used for **Supplementary Figure 3**); the concentrated stimulus concentration  $C_{max} = 4 M$ . The total flask volume is set  $V_0 = 50 mL$  at t = 0. Pump 2 rate was set to  $\bar{k} = 0.1 mL/min$  for TS and  $\bar{k} = 0$  for TP experiment. Samples are taken out at the fixed volumes of  $dw_i = 1 mL$  at the time points [1,2,4,6,8,10,15,20,25,30,35,40,45,50] minutes for TP (dotted lines in **a**), while no sampling is done for TS. Both TP and TS profiles are generated over 50 minutes. TS is computed in 40 intervals and TP profile in 34 intervals set optimally by the programmable syringe pump.



**Supplementary Figure 3 | Calculated pump profiles for decreasing linear and nonlinear gradient kinetics.** (**a-f**) Calculation of decreasing pump profile generation for Time Point (TP, **a,c,e**) and Time series (TS, **b,d,f**) data collection. In both TP and TS experiments, computed pump profiles (corrected for volume removal and therefore change in stimulus concentration) are linear decreasing gradient from 0.60 M (red), linear decreasing gradient from 0.40 M (black), quadratic decreasing gradient from 0.40 M (blue), and linear decreasing gradient from 0.20 M (green), all to 0.01M and all compared to their theoretical values (cyan). (**a-b**) Computed and instrument adapted syringe dispense volume. (**c-d**) Computed concentration profiles over time. (**e-f**) Error comparisons between computed decreasing pump profiles and their corresponding proposed concentration profiles for TP (**e**) and TS (**f**) experiments.

Table S1. Calculation results for TS experiment profile generation.

| Interval | Time   | Disp.   | Cumulative | Pump rate | Molarity* | Error* % in |
|----------|--------|---------|------------|-----------|-----------|-------------|
|          | points | Volume* | Disp.      | (µL /min) | (M)       | molarity    |
|          | (min)  | (mL)    | Volume     |           |           | compared    |
|          |        |         | (mL)       |           |           | to theory   |
| 1        | 1.25   | 0.125   | 0.125      | 100       | 0.01      | 0           |
| 2        | 2.5    | 0.126   | 0.251      | 100.8     | 0.02      | 0           |
| 3        | 3.75   | 0.126   | 0.377      | 100.8     | 0.03      | 0           |
| 4        | 5      | 0.127   | 0.504      | 101.6     | 0.04      | 0           |
| 5        | 6.25   | 0.127   | 0.631      | 101.6     | 0.05      | 0           |
| 6        | 7.5    | 0.127   | 0.758      | 101.6     | 0.06      | 0           |
| 7        | 8.75   | 0.127   | 0.885      | 101.6     | 0.07      | 0           |
| 8        | 10     | 0.128   | 1.013      | 102.4     | 0.08      | 0           |
| 9        | 11.25  | 0.128   | 1.141      | 102.4     | 0.09      | 0           |
| 10       | 12.5   | 0.128   | 1.269      | 102.4     | 0.1       | 0           |
| 11       | 13.75  | 0.129   | 1.398      | 103.2     | 0.11      | 0           |
| 12       | 15     | 0.129   | 1.527      | 103.2     | 0.12      | 0           |
| 13       | 16.25  | 0.129   | 1.656      | 103.2     | 0.13      | 0           |
| 14       | 17.5   | 0.13    | 1.786      | 104       | 0.14      | 0           |
| 15       | 18.75  | 0.13    | 1.916      | 104       | 0.15      | 0           |
| 16       | 20     | 0.131   | 2.047      | 104.8     | 0.16      | 0           |
| 17       | 21.25  | 0.131   | 2.178      | 104.8     | 0.17      | 0           |
| 18       | 22.5   | 0.131   | 2.309      | 104.8     | 0.18      | 0           |
| 19       | 23.75  | 0.131   | 2.44       | 104.8     | 0.19      | 0           |

| 20 | 25    | 0.132 | 2.572 | 105.6 | 0.2   | 0     |
|----|-------|-------|-------|-------|-------|-------|
| 21 | 26.25 | 0.133 | 2.705 | 106.4 | 0.211 | 0.476 |
| 22 | 27.5  | 0.132 | 2.837 | 105.6 | 0.221 | 0.455 |
| 23 | 28.75 | 0.133 | 2.97  | 106.4 | 0.231 | 0.435 |
| 24 | 30    | 0.134 | 3.104 | 107.2 | 0.241 | 0.417 |
| 25 | 31.25 | 0.134 | 3.238 | 107.2 | 0.251 | 0.4   |
| 26 | 32.5  | 0.134 | 3.372 | 107.2 | 0.261 | 0.385 |
| 27 | 33.75 | 0.134 | 3.506 | 107.2 | 0.271 | 0.37  |
| 28 | 35    | 0.135 | 3.641 | 108   | 0.281 | 0.357 |
| 29 | 36.25 | 0.135 | 3.776 | 108   | 0.291 | 0.345 |
| 30 | 37.5  | 0.136 | 3.912 | 108.8 | 0.301 | 0.333 |
| 31 | 38.75 | 0.136 | 4.048 | 108.8 | 0.311 | 0.323 |
| 32 | 40    | 0.137 | 4.185 | 109.6 | 0.321 | 0.312 |
| 33 | 41.25 | 0.137 | 4.322 | 109.6 | 0.331 | 0.303 |
| 34 | 42.5  | 0.137 | 4.459 | 109.6 | 0.341 | 0.294 |
| 35 | 43.75 | 0.138 | 4.597 | 110.4 | 0.351 | 0.286 |
| 36 | 45    | 0.138 | 4.735 | 110.4 | 0.361 | 0.278 |
| 37 | 46.25 | 0.138 | 4.873 | 110.4 | 0.371 | 0.27  |
| 38 | 47.5  | 0.139 | 5.012 | 111.2 | 0.381 | 0.263 |
| 39 | 48.75 | 0.14  | 5.152 | 112   | 0.391 | 0.256 |
| 40 | 50    | 0.14  | 5.292 | 112   | 0.401 | 0.25  |

 Table S2. Calculation results for TP experiment profile generation.

| Interval | Time   | Disp.   | Cumulative | Pump rate | Molarity* | Error* % in |
|----------|--------|---------|------------|-----------|-----------|-------------|
|          | points | Volume* | Disp.      | (µL/min)  | (M)       | molarity    |
|          | (min)  | (mL)    | Volume     |           |           | compared    |
|          |        |         | (mL)       |           |           | to theory   |
| 1        | 1      | 0.1     | 0.1        | 100       | 0.008     | 0           |
| 2        | 2      | 0.099   | 0.199      | 99        | 0.016     | 0           |
| 3        | 3      | 0.097   | 0.296      | 97        | 0.024     | 0           |
| 4        | 4      | 0.097   | 0.393      | 97        | 0.032     | 0           |
| 5        | 5      | 0.096   | 0.489      | 96        | 0.04      | 0           |
| 6        | 6      | 0.096   | 0.585      | 96        | 0.048     | 0           |
| 7        | 7      | 0.095   | 0.68       | 95        | 0.056     | 0           |
| 8        | 8      | 0.094   | 0.774      | 94        | 0.064     | 0           |
| 9        | 9      | 0.094   | 0.868      | 94        | 0.072     | 0           |
| 10       | 10     | 0.093   | 0.961      | 93        | 0.08      | 0           |
| 11       | 11.667 | 0.154   | 1.115      | 92.4      | 0.093     | 0.357       |
| 12       | 13.333 | 0.154   | 1.269      | 92.4      | 0.107     | 0.312       |
| 13       | 15     | 0.156   | 1.425      | 93.6      | 0.12      | 0           |
| 14       | 16.667 | 0.153   | 1.578      | 91.8      | 0.133     | 0.25        |
| 15       | 18.333 | 0.154   | 1.732      | 92.4      | 0.147     | 0.227       |
| 16       | 20     | 0.156   | 1.888      | 93.6      | 0.16      | 0           |
| 17       | 21.667 | 0.152   | 2.04       | 91.2      | 0.173     | 0.192       |
| 18       | 23.333 | 0.154   | 2.194      | 92.4      | 0.187     | 0.179       |
| 19       | 25     | 0.155   | 2.349      | 93        | 0.2       | 0           |

| 20 | 26.667 | 0.153 | 2.502 | 91.8 | 0.213 | 0.156 |
|----|--------|-------|-------|------|-------|-------|
| 21 | 28.333 | 0.154 | 2.656 | 92.4 | 0.227 | 0.147 |
| 22 | 30     | 0.155 | 2.811 | 93   | 0.24  | 0     |
| 23 | 31.667 | 0.152 | 2.963 | 91.2 | 0.253 | 0.132 |
| 24 | 33.333 | 0.153 | 3.116 | 91.8 | 0.267 | 0.125 |
| 25 | 35     | 0.155 | 3.271 | 93   | 0.28  | 0     |
| 26 | 36.667 | 0.152 | 3.423 | 91.2 | 0.293 | 0.114 |
| 27 | 38.333 | 0.153 | 3.576 | 91.8 | 0.307 | 0.109 |
| 28 | 40     | 0.154 | 3.73  | 92.4 | 0.32  | 0     |
| 29 | 41.667 | 0.152 | 3.882 | 91.2 | 0.333 | 0.1   |
| 30 | 43.333 | 0.153 | 4.035 | 91.8 | 0.347 | 0.096 |
| 31 | 45     | 0.154 | 4.189 | 92.4 | 0.36  | 0     |
| 32 | 46.667 | 0.151 | 4.34  | 90.6 | 0.373 | 0.089 |
| 33 | 48.333 | 0.153 | 4.493 | 91.8 | 0.387 | 0.086 |
| 34 | 50     | 0.154 | 4.647 | 92.4 | 0.4   | 0     |

\*Note on rounding the values: We round the calculated values of  $dv_i$  (in mL) to 3 decimal places, which is required by the software of the syringe pump. The resulting calculated pump rates for  $k_i$  (in µL /min) are within the range of recommended minimum to maximum pump rate of the syringe pump. The reconstructed molarities and their errors are plotted without rounding in Figure 3 and **Supplementary Figures 2-3**, while in Tables 1 and 2 we round them to 3 decimal places for illustration purposes.