Supporting Information for:

DL5050, A Selective Agonist for the Human Constitutive Androstane Receptor

Dongdong Liang,^{1,†} Linhao Li,^{1,†} Caitlin Lynch,² Benjamin Diethelm-Varela,¹ Menghang Xia,² Fengtian Xue,^{*,1} Hongbing Wang,^{*,1}

¹Department of Pharmaceutical Sciences, University of Maryland School of

Pharmacy, Baltimore, Maryland 21201, United States

²9800 Medical Center Drive, National Center for Advancing Translational Sciences,

National Institutes of Health, Bethesda, Maryland 20892-3375, United states

Contents:

1.	General Procedures	1
2.	General Procedure for the Synthesis of Compounds 1-17	1
3.	General Procedure for the Synthesis of Compounds 18-29	16
4.	CAR Agonist Luciferase Reporter Gene Assay	23
5.	Cell Viability Assay ⁴	24
6.	Experimental protocol for hPXR agonist HTS	25
7.	Culture and Treatment of HPH	25
8.	Real-Time PCR Analysis	26
9.	Western Blot Analysis	26
10.	Table S1 Original Data of Activity and Cytotoxicity for Cpd1-29	27
11.	¹ H, ¹³ C NMR and HPLC Spectra of Compounds 1-29	30
12.	References	88

1. General Procedures.

All reagents and solvents were of analytical grade and used without further purification. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica-gel plates (GF254). UV spectra were obtained on a Nanodrop 2000c spectrophotometer. Flash column chromatography was performed on silica gel (200-300 mesh). NMR spectra were obtained on a Varian INOVA 400 MHz NMR spectrometer at 25 °C. Chemical shifts are reported as δ values (parts per million) using the residual solvent peak as an internal reference. Chemical shifts (δ) were reported in ppm referenced to the CDCl₃ residual peak (δ 7.264) for ¹H NMR. Chemical shifts of ¹³C NMR were reported relative to CDCl3 (δ 77.04). Data for ¹H NMR were reported in the following order: chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; sept, septuplet; dd, double doublet; dt, double triplet; m, multiplet), coupling constant (Hz), number of protons. Data for ${}^{13}C$ NMR were reported as δ values (parts per million). High-resolution mass spectra (HRMS) were obtained on a JEOL AccuTOF with ESI/APCI ion sources coupled to an Agilent 1100 HPLC system. HPLC analysis was performed on a Shimadzu HPLC fitted with a C-18 reversed-phase column (Phenomenex, luna 5 µM C18(2) 4.6 mm ×100 mm) with a flow rate of 0.8 mL/min using CH₃CN-H₂O 8:2 mobile phase. The purity of final products is > 95%.

2. General Procedure for the Synthesis of Compounds 1-17

A solution of 2-aminothiazole (5 mmol, 1 equiv) and bromomethyl ketone **30** (5 mmol, 1 equiv) in EtOH (30 mL) was heated under reflux for 16 h. The solvent was removed under reduced pressure, and saturated NaHCO₃ (30 mL) was added to the remaining solid. The mixture was then extracted with EtOAc (30 mL \times 3), and the organic layers were combined, dried over Na₂SO₄. The concentrated crude product

dried overnight under vacuum to get the crude imidazothiazole **31** that was used directly in the next step.¹

The Vilsmeier reagent was prepared by dropping of POCl₃ (16.5 mmol, 3.3 equiv) into a solution of DMF (5 mmol, 1.0 equiv) in CHCl₃ (5 mL) at 0 °C. To the resulting mixture at 0-5 °C was added a solution of imidazothiazole **31** (5 mmol) in CHCl₃ (30 mL) dropwise. The reaction was warmed to the room temperature over 1 h, and then heated under reflux for an additional 5 h. The solvent was removed under reduced pressure and the resulting residue was poured onto ice. The crude aldehyde **32** was collected by filtration and further purified using flash chromatography. ²

6-(4-Chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32a)

¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 8.39 (d, *J* = 4.8 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.7, 156.8, 155.7, 136.0, 130.9, 130.2, 129.2, 124.0, 121.5, 114.9.

6-Phenylimidazo[2,1-b]thiazole-5-carbaldehyde (32b)

$$\underset{OHC}{\overset{N \rightarrow S}{\longrightarrow}}$$

¹H NMR (400 MHz, CDCl₃): δ 9.90 (s, 1H), 8.39 (d, *J* = 4.0 Hz, 1H), 7.79 (d, *J* = 6.8 Hz, 2H), 7.50 (d, *J* = 7.2 Hz, 3H), 7.05 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 178.1, 158.2, 155.6, 132.5, 129.7, 129.1, 128.9, 124.0, 121.5, 114.6.

6-(4-Fluorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32c)

¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H), 8.38 (d, *J* = 4.8 Hz, 1H), 7.78 (t, *J* = 8.0 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.7, 163.8 (*J* = 248.5 Hz), 156.6, 155.4, 130.9 (*J* = 7.4 Hz), 128.3, 123.8, 121.5, 116.2 (*J* = 20.8 Hz), 115.0.

6-(4-Bromophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (**32d**)

¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 8.37 (d, J = 4.8 Hz, 1H), 7.67-7.61 (m, 4H), 7.07 (d, J = 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.6, 156.7, 155.7, 132.1, 131.4, 130.5, 124.3, 124.0, 121.5, 114.9.

6-(p-Tolyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32e)

¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 8.37 (d, J = 4.8 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 178.1, 158.4, 155.6, 139.9, 129.7, 129.0, 123.9, 121.5, 114.4, 21.4.

6-(4-(Trifluoromethyl)phenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32f)

¹H NMR (400 MHz, CDCl₃): δ 9.93 (s, 1H), 8.41 (d, *J* = 4.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.5, 155.9, 155.6, 135.9, 131.1(*J* = 32.8 Hz), 129.3, 125.8 (*J* = 3.4 Hz), 124.3, 123.9 (*J* = 270.9 Hz), 121.4, 115.3.

¹H NMR (400 MHz, CDCl₃): δ 9.88 (s, 1H), 8.37 (d, J = 4.8 Hz, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.04-7.02 (m, 3H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 178.0, 161.0, 158.0, 155.5, 130.4, 124.8, 123.6, 121.6, 114.4, 114.3, 55.4.

6-(4-Isopropylphenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32h)

¹H NMR (400 MHz, CDCl₃): δ 9.91 (s, 1H), 8.38 (d, *J* = 4.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.8 Hz, 2H), 7.04 (d, *J* = 4.0 Hz, 1H), 3.02-2.95 (m, 1H), 1.30 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 178.2, 158.5, 155.6, 150.8, 130.0, 129.1, 128.9, 127.1, 123.9, 121.5, 114.4, 34.0, 23.9.

6-(4-(tert-Butyl)phenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32i)

¹H NMR (400 MHz, CDCl₃): δ 9.92 (s, 1H), 8.40 (d, *J* = 4.4 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.07 (d, *J* = 4.0 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 178.2, 158.3, 155.6, 153.1, 129.5, 128.8, 125.9, 123.9, 121.5, 114.5, 34.8, 31.2.

4-(5-Formylimidazo[2,1-b]thiazol-6-yl)benzonitrile (32j)

¹H NMR (400 MHz, CDCl₃): δ 9.94 (s, 1H), 8.41 (d, *J* = 4.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.3, 155.8, 155.3, 136.8, 132.7, 129.5, 124.4, 121.5, 118.3, 115.6, 113.2.

6-(4-Cyclohexylphenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32k)

¹H NMR (400 MHz, CDCl₃): δ 9.91 (s, 1H), 8.39 (d, J = 4.0 Hz, 1H), 7.72 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 4.8 Hz, 1H), 2.60-2.56 (m, 1H), 1.94-1.76 (m, 5H), 1.52-1.26 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 178.2, 158.5, 156.6, 150.0, 130.0, 129.1, 127.5, 123.9, 121.6, 114.4, 44.4, 34.3, 26.8, 26.1.

6-([1,1'-Biphenyl]-4-yl)imidazo[2,1-b]thiazole-5-carbaldehyde (32l)

¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.42 (d, *J* = 4.8 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 178.0, 157.3, 155.4, 142.6, 140.1, 130.9, 129.5, 128.9, 127.9, 127.7, 127.124.0, 121.6, 114.9.

6-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)imidazo[2,1-b]thiazole-5-c arbaldehyde (**32m**)

¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 8.33 (d, J = 4.8 Hz, 1H), 7.71 (d, J = 1.6 Hz, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 6.98 (d, J = 4.8 Hz, 1H),

1.69 (s, 4H), 1.32 (s, 6H), 1.29 (s, 6H); 13 C NMR (100 MHz, CDCl₃): δ 178.1, 158.8, 155.6, 146.8, 145.6, 129.7, 127.4, 127.2, 126.3, 123.9, 121.5, 114.4, 60.3, 34.9, 34.8, 34.4, 31.8, 31.7.

6-(3-Chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde (32n)

¹H NMR (400 MHz, CDCl₃): δ 9.89 (s, 1H), 8.37 (d, J = 4.8 Hz, 1H), 7.79 (s, 1H), 7.65 (d, J = 6.4 Hz, 1H), 7.43-7.39 (m, 2H), 7.07 (d, J = 4.0 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 177.7, 156.2, 155.6, 135.0, 134.1, 130.2, 129.7, 129.0, 127.2, 124.1, 121.5, 115.1.

6-(Naphthalen-2-yl)imidazo[2,1-b]thiazole-5-carbaldehyde (320)

¹H NMR (400 MHz, CDCl₃): δ 10.00 (s, 1H), 8.41 (d, *J* = 4.8 Hz, 1H), 8.27 (s, 1H), 7.99-7.89 (m, 4H), 7.56-7.54 (m, 2H), 7.07 (d, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 178.2, 158.1, 155.7, 133.7, 133.2, 129.7, 128.9, 128.8, 128.5, 127.8, 127.1, 126.8, 126.1, 124.2, 121.6, 114.8.

6-(Naphthalen-1-yl)imidazo[2,1-b]thiazole-5-carbaldehyde (32p)

¹H NMR (400 MHz, CDCl₃): δ 9.61 (s, 1H), 8.44 (d, J = 3.6 Hz, 1H), 8.32-8.29 (m, 1H), 8.00-7.93 (m, 2H), 7.65 (d, 7.2 Hz, 1H), 7.60-7.54 (m, 3H), 7.12 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 178.3, 157.9, 155.5, 133.9, 132.0, 130.2, 129.7, 129.2, 128.3, 127.1, 126.4, 125.8, 125.5, 124.9, 121.3, 114.8.

6-Ethylimidazo[2,1-b]thiazole-5-carbaldehyde (32q)

¹H NMR (400 MHz, CDCl₃): δ 9.81 (s, 1H), 8.26 (d, J = 3.6 Hz, 1H), 6.98 (d, J = 4.8 Hz, 1H), 2.99 (q, J = 8.0 Hz, 2H), 1.41 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.6, 162.8, 155.6, 123.8, 121.2, 114.0, 21.7, 14.4.

To a solution of aldehyde **32** (1 mmol) in EtOH (5 mL) was added hydroxylamine **33** (1 mmol) followed by AcOH (5 mmol, 5 equiv). The reaction mixture was heated under reflux overnight. After cooled to room temperature, a saturated aqueous solution of NaHCO₃ (30 mL) was added. The aqueous layer was extracted with EtOAc (30 mL \times 3) and the combined organics were washed with brine (45 mL), dried (Na₂SO₄). The crude product was then purified by flash chromatography to give the desired product.

(E)-6-(4-Chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (1)

Yield 23%, ¹H NMR (400 MHz, CDCl₃): δ 8.39 (s, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.51 (s, 1H), 7.46-7.42 (m, 3H), 7.24 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 4.4 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 149.3, 139.9, 137.7, 134.5, 132.6, 132.1, 131.9, 130.5, 130.1, 129.5, 129.0, 127.4, 121.5, 115.7, 113.0, 75.0; RMS (ESI): Exact mass calcd for C₁₉H₁₃Cl₃N₃OS [M+H]⁺ 435.9845, found 435.9855; HPLC analysis: retention time = 12.25 min, peak area 98.0%, 80:20 CH₃CN/H₂O.

Yield 91%, ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 8.00 (d, J = 4.8 Hz, 1H), 7.66 (d, J = 6.8 Hz, 2H), 7.52-7.37 (m, 5H), 7.25 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 4.8 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 150.6, 140.3, 137.9, 133.3, 132.6, 132.0, 130.5, 130.1, 128.8, 128.4, 127.4, 121.6, 115.6, 112.8, 74.9; RMS (ESI): Exact mass calcd for C₁₉H₁₄Cl₂N₃OS [M+H]⁺ 402.0234, found 402.0227; HPLC analysis: retention time = 8.01 min, peak area 97.4%, 80:20 CH₃CN/H₂O.

(E)-6-(4-Fluorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**3**)

Yield 81%, ¹H NMR (400 MHz, CDCl₃): δ 8.38 (s, 1H), 7.99 (d, J = 3.6 Hz, 1H), 7.64-7.61 (m, 2H), 7.51 (s, 1H), 7.44 (t, J = 4.8 Hz, 1H), 7.24 (J = 8.4 Hz, 1H), 7.17-7.12 (m, 2H), 6.91 (d, J = 4.8 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.9 (J = 247 Hz), 152.6, 149.5, 140.0, 137.8, 132.6, 132.0, 130.5, 130.14, 130.06, 129.5, 127.4, 121.5, 115.8 (J = 20.8 Hz), 115.5, 112.9, 74.9; HRMS (ESI): Exact mass calcd for C₁₉H₁₃Cl₂FN₃OS [M+H]+ 420.0140, found 420.0137; HPLC analysis: retention time = 8.37 min, peak area 96.4%, 80:20 CH₃CN/H₂O.

(E)-6-(4-Bromophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**4**)

50% ¹H NMR (400 MHz, CDCl₃): δ 8.39 (s, 1H), 7.98 (d, J = 2.8 Hz, 1H), 7.56-7.44 (m, 6H), 7.24 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 2.8 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 149.2, 139.9, 137.7, 132.6, 132.5, 132.3, 131.9, 130.5, 130.1, 129.8, 127.4, 122.7, 121.5, 115.7, 113.1, 75.0; HRMS (ESI): Exact mass calcd for C₁₉H₁₃BrN₃OS [M+H]⁺ 479.9340, found 479.9454; HPLC analysis: retention time = 13.64 min, peak area 95.2%, 80:20 CH₃CN/H₂O.

(E)-6-(p-Tolyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (5)

Yield 92%, ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 7.99 (d, J = 4.0 Hz, 1H), 7.56-7.51 (m, 3H), 7.45 (d, J = 8.0 Hz, 1H), 7.28-7.24 (m, 3H), 6.89 (d, J = 4.0 Hz, 1H), 5.13 (s, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.5, 150.8, 140.4, 138.4, 137.9, 132.6, 132.0, 130.5, 130.1, 129.5, 128.3, 127.4, 121.6, 115.3, 112.6, 74.8, 21.3; HRMS (ESI): Exact mass calcd for C₂₀H₁₆Cl₂N₃OS [M+H]⁺ 416.0391, found 416.0384; HPLC analysis: retention time = 10.75 min, peak area 95.7%, 80:20 CH₃CN/H₂O.

(E)-6-(4-(Trifluoromethyl)phenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**6**)

Yield 90%, ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 8.00 (d, J = 4.8 Hz, 1H), 7.78 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.52 (s, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 4.8 Hz, 1H), 5.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.8, 148.7, 139.7, 137.7, 136.9, 132.6, 132.1, 130.5, 130.3, 130.1, 128.5, 127.4, 126.8 (J = 270.9 Hz), 125.7, 121.5, 116.3, 113.4, 75.0; HRMS (ESI): Exact mass calcd for C₂₀H₁₃Cl₂F₃N₃OS [M+H]⁺ 470.0108, found 470.0100; HPLC analysis: retention time = 5.38 min, peak area 97.6%, 80:20 CH₃CN/H₂O.

(E)-6-(4-Methoxyphenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (7)

Yield 93%, ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 7.97 (d, J = 3.2 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.51 (s, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 7.6 Hz, 2H), 6.87 (d, J = 3.2 Hz, 1H), 5.12 (s, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 152.5, 150.6, 140.4, 137.9, 132.5, 132.0, 130.5, 130.1, 129.6, 127.4, 126.0, 121.6, 115.0, 114.2, 112.4, 74.8, 55.3; HRMS (ESI): Exact mass calcd for C₂₀H₁₆Cl₂N₃O₂S [M+H]⁺ 432.0340, found 432.0346; HPLC analysis: retention time = 6.36 min, peak area 95.4%, 80:20 CH₃CN/H₂O. (E)-6-(4-Isopropylphenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**8**)

Yield 71%, ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 7.99 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.51 (s, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 3.6 Hz, 1H), 5.12 (s, 2H), 2.99-2.92 (m, 1H), 1.29 (d, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.5, 150.9, 149.3, 140.5, 137.9, 132.5, 132.0, 130.9, 130.5, 130.1, 128.4, 127.4, 126.9, 125.8, 121.6, 115.3, 112.5, 74.8, 33.9, 23.9; HRMS (ESI): Exact mass calcd for C_{222H20}Cl₂N₃OS [M+H]⁺ 444.0704, found 444.0700; HPLC analysis: retention time = 15.80 min, peak area 95.2%, 80:20 CH₃CN/H₂O.

(E)-6-(4-(tert-Butyl)phenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**9**)

Yield 98%, ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 7.98 (d, J = 4.4 Hz, 1H), 7.60 (d, J = 8.8 Hz, 2H), 7.51-7.42 (m, 4H), 7.23 (d, J = 8.0 Hz, 1H), 6.87 (d, J = 4.8 Hz, 1H), 5.12 (s, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 152.5, 151.6, 150.7, 140.5, 137.9, 132.5, 131.9, 130.5, 130.0, 128.1, 127.4, 125.7, 121.6, 115.4, 112.6, 74.8, 34.7, 31.3; HRMS (ESI): Exact mass calcd for C₂₃H₂₂Cl₂N₃OS [M+H]⁺ 458.0860, found 458.0864; HPLC analysis: retention time = 19.74 min, peak area 97.3%, 80:20 CH₃CN/H₂O. (E)-4-(5-((((3,4-Dichlorobenzyl)oxy)imino)methyl)imidazo[2,1-b]thiazol-6-yl)benzoni trile (10)

Yield 80%,¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 8.00 (d, J = 2.8 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 7.6 Hz, 2H), 7.51 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 4.0 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 153.0, 147.8, 139.4, 137.9, 137.6, 132.5, 132.2, 130.6, 130.1, 128.7, 128.1, 127.4, 121.5, 118.7, 116.6, 113.7, 111.7, 75.1; HRMS (ESI): Exact mass calcd for C₂₀H₁₃Cl₂N₄OS [M+H]⁺427.0184, found 427.0188; HPLC analysis: retention time = 12.64 min, peak area 96.8%, 80:20 CH₃CN/H₂O.

(E)-6-(4-Cyclohexylphenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (11)

Yield 79%, ¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 7.98 (d, J = 4.4 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.51 (s, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.30-7.23 (m, 3H), 6.87 (d, J = 4.8 Hz, 1H), 5.12 (s, 2H), 2.55 (t, J = 7.6 Hz, 1H), 1.92-1.75 (m, 5H), 1.50-1.26 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 152.5, 150.9, 148.5, 140.5, 137.9, 132.5, 132.0, 130.9, 130.5, 130.1, 128.3, 127.4, 127.3, 121.6, 115.3, 112.5, 74.8, 44.4, 34.4, 26.9, 26.1; HRMS (ESI): Exact mass calcd for C₂₅H₂₄Cl₂N₃OS [M+H]⁺ 484.1017, found 384.1034; HPLC analysis: retention time = 43.23 min, peak area 96.5%, 80:20 CH₃CN/H₂O. (E)-6-([1,1'-Biphenyl]-4-yl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**12**)

Yield 84%, ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.01 (d, J = 4.0 Hz, 1H), 7.76-7.64 (m, 6H), 7.49-7.44 (m, 4H), 7.38 (t, J = 7.2 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 4.0 Hz, 1H), 5.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 150.2, 141.1, 140.4, 140.3, 137.9, 132.6, 132.4, 132.0, 130.5, 130.1, 128.9, 128.7, 127.6, 127.44, 127.40, 127.1, 121.6, 115.6, 112.8.74.9; HRMS (ESI): Exact mass calcd for C₂₅H₁₈Cl₂N₃OS [M+H]⁺ 478.0547, found 478.0542; HPLC analysis: retention time = 17.33 min, peak area 97.0%, 80:20 CH₃CN/H₂O.

(E)-6-(5,5,8,8-Tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (13)

Yield 59%, ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 7.99 (d, J = 3.6 Hz, 1H), 7.61 (s, 1H), 7.51 (s, 1H), 7.44 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 3.6 Hz, 1H), 5.13 (s, 2H), 1.72 (s, 4H), 1.35 (s, 6H), 1.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.5, 151.3, 145.4, 140.7, 138.1, 132.5, 131.9, 130.5, 130.0, 127.3, 127.0, 126.6, 125.6, 121.6, 115.3, 112.5, 74.8, 35.1, 34.9, 34.4, 34.3, 31.9,31.8; HRMS (ESI): Exact mass calcd for C₂₇H₂₈N₃OS [M+H]⁺ 521.1330, found 512.1341; HPLC analysis: retention time = 52.94 min, peak area 96.4%, 80:20 CH₃CN/H₂O.

(E)-6-(3-Chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**14**)

Yield 99%, ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 8.00 (d, J = 4.0 Hz, 1H), 7.68 (s, 1H), 7.52 (s, 2H), 7.46 (d, J = 8.8 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 4.0 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 148.8, 139.8, 137.7, 135.1, 134.8, 132.6, 132.1, 130.5, 130.1, 130.0, 128.5, 128.3, 127.4, 126.4, 121.6, 115.9, 113.2, 75.0; HRMS (ESI): Exact mass calcd for C₁₉H₁₃Cl₃N₃OS [M+H]⁺435.9874, found 435.9850; HPLC analysis: retention time = 12.90 min, peak area 97.2%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (15)

Yield 24%, ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.11 (s, 1H), 8.03 (d, *J* = 4.4 Hz, 1H), 7.94-7.81 (m, 4H), 7.53-7.44 (m, 4H), 7.25 (d, *J* = 6.8 Hz, 1H), 6.93 (d, *J* = 4.4 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.7, 150.6, 140.4, 137.8, 133.3, 133.1, 132.0, 130.8, 130.5, 130.1, 128.5, 128.3, 127.7, 127.5, 127.4, 126.5, 126.0, 121.6, 115.8, 112.8, 74.9; HRMS (ESI): Exact mass calcd for C₂₃H₁₆Cl₂N₃OS [M+H]⁺ 452.0391, found 425.0397; HPLC analysis: retention time = 13.55 min, peak area 96.2%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-1-yl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (16)

Yield 79%, ¹H NMR (400 MHz, CDCl₃): δ 8.22 (t, J = 5.6 Hz, 1H), 8.11 (s, 1H), 8.05 (d, J = 4.0 Hz, 1H), 7.94-7.91 (m, 2H), 7.90-7.41 (m, 6H), 7.19 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 4.0 Hz, 1H), 5.08 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 150.0, 140.2, 137.9, 133.9, 132.5, 132.1, 131.9, 130.5, 130.2, 130.0, 129.3, 128.8, 128.2, 127.3, 126.7, 126.13, 126.10, 125.0, 121.4, 112.9, 74.8; HRMS (ESI): Exact mass calcd for C₂₃H₁₆Cl₂N₃OS [M+H]⁺ 452.0391, found 452.0399; HPLC analysis: retention time = 9.87 min, peak area 95.7%, 80:20 CH₃CN/H₂O.

(*E*)-*N*-(3,4-*Dichlorophenethyl*)-1-(6-*ethylimidazo*[2,1-*b*]*thiazo*l-5-*y*l)*methanimine* (17)

Yield 75%, ¹H NMR (400 MHz, CDCl₃): δ 8.25 (s, 1H), 7.88 (d, J = 4.8 Hz, 1H), 7.51 (s, 1H), 7.44 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 3.6 Hz, 1H), 5.10 (s, 2H), 2.72 (q, J = 7.2 Hz, 2H), 1.31 (d, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.1, 152.1, 138.9, 138.0, 132.5, 131.9, 130.4, 130.1, 127.5, 127.4, 121.2, 115.0, 112.0, 74.7, 21.3, 14.4; HRMS (ESI): Exact mass calcd for C₁₅H₁₄Cl₂N₃OS [M+H]⁺ 354.0234, found 354.0219; HPLC analysis: retention time = 4.85 min, peak area 98.9%, 80:20 CH₃CN/H₂O.

3. General Procedure for the Synthesis of Compounds 18-29

A solution of oxazol-2-amine (5 mmol, 1 equiv) and bromomethyl ketone **30** (5 mmol, 1 equiv) in THF (20 mL) and CH₃CN (30 mL) was stirred at room temperature for 24 h. The precipitation from the reaction mixture was collected by filtration and then washed using CH₃CN. To a mixture of the resulting solid in toluene (50 mL) at 0 $^{\circ}$ C was added titanium (IV) chloride (0.94 g, 5 mmol) as a solution in toluene (5 mL) over 30 min. The reaction mixture was heated at 100 $^{\circ}$ C for an additional 3 h, and cooled. The solvent was removed by rotary evaporation, and ice was added to the resulting solution was extracted using EtOAc (30 mL × 3). The organic layers were combined, and dried over Na₂SO₄. The concentrated crude product was dried overnight under vacuum to get the imidazooxazole **35** that was used without further purification. ³

The Vilsmeier reagent was prepared by dropping of POCl₃ (16.5 mmol, 3.3 equiv) into a solution of DMF (5 mmol, 1.0 equiv) in CHCl₃ (5 mL) at 0 °C. To the resulting mixture at 0-5 °C was added a solution of imidazothiazole **35** (5 mmol) in CHCl₃ (30 mL) dropwise. The reaction was warmed to the room temperature over 1 h, and then heated under reflux for an additional 5 h. The solvent was removed under reduced pressure and the resulting residue was poured onto ice. The crude aldehyde **36** was collected by filtration and further purified using flash chromatography.

6-(4-Chlorophenyl)imidazo[2,1-b]oxazole-5-carbaldehyde (36a)

¹H NMR (400 MHz, CDCl₃): δ 9.85 (s, 1H), 7.97 (s, 1H), 7.74 (d, J = 8.8 Hz, 2H), 7.57 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 177.9, 154.7, 139.2 (2C), 136.0, 131.0, 130.1 (2C), 129.2 (2C), 120.4, 113.9.

¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.28 (s, 1H), 8.00-7.89 (m, 5H), 7.58-7.55 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 178.5, 156.2, 139.2, 139.0, 133.8, 133.2, 129.9, 128.8, 128.6, 127.8, 127.2, 126.8, 125.9, 121.2, 114.0, 113.9.

To a solution of aldehyde **36** (1 mmol) in EtOH (5ml) was added hydroxylamine **33** (1 mmol) followed by AcOH (5 mmol 5 equiv). The reaction mixture was heated under reflux over light. After cooled to room temperature, a saturated aqueous solution of NaHCO₃ (30 mL) was added. The aqueous layer was extracted with EtOAc (30 mL \times 3) and the combined organics were washed with brine (45 mL), dried (Na₂SO₄). The crude product was then purified by flash column chromatography to give the desired product.

(E)-6-(4-Chlorophenyl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(3,4-dichlorobenzyl) oxime (**18**)

Yield 24%,¹H NMR (400 MHz, CDCl₃): δ 8.35 (s, 1H), 7.57 (d, J = 8.4 Hz, 3H), 7.50 (s, 1H), 7.46-7.39 (m, 4H), 7.23 (d, J = 8.8 Hz, 1H), 5.11 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 146.0, 139.9, 137.9, 137.7, 134.3, 132.6, 132.0, 130.5, 130.2, 130.1, 129.3, 129.0, 127.4, 113.8, 111.7, 74.9; HRMS (ESI): Exact mass calcd for C₁₉H₁₃Cl₃N₃O₂ [M+H]⁺ 420.0073.0678, found 420.0069; HPLC analysis: retention time = 9.35 min, peak area 96.8%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde

O-(3,4-dichlorobenzyl) oxime (19)

Yield 23%, ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.10 (s, 1H), 7.92-7.79 (m, 4H), 7.62 (s, 1H), 7.52-7.45 (m, 5H), 7.25 (d, *J* = 9.2 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 147.3, 140.4, 137.9, 133.3, 133.1, 132.6, 132.0, 131.0, 130.5, 130.1, 128.5, 128.3, 127.7, 127.4 (2C), 127.2, 126.5 (2C), 125.8, 113.9, 111.9, 74.9; RMS (ESI): Exact mass calcd for C₂₃H₁₆Cl₂N₃O₂ [M+H]⁺ 436.0619, found 436.0620; HPLC analysis: retention time = 10.04 min, peak area 95.4%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(2,4-dichlorobenzyl) oxime (**20**)

Yield 46%, ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.10 (s, 1H), 7.91-7.79 (m, 4H), 7.65 (s, 1H), 7.53-7.48 (m, 2H), 4.43-7.41 (m, 3H), 7.27 (d, *J* = 8.8 Hz, 1H), 5.26 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 147.1, 140.4, 137.8, 134.3, 134.05, 133.97, 133.3, 133.0, 131.0, 130.8, 129.3, 128.5, 128.3, 127.7, 127.2, 127.16, 126.5, 126.4, 125.8, 114.0, 111.9, 72.8; HRMS (ESI): Exact mass calcd for C₂₃H₁₆Cl₂N₃O₂ [M+H]⁺ 436.0619, found 436.624; HPLC analysis: retention time = 11.71 min, peak area 96.6%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(2-chlorobenzyl) oxime (21)

Yield 41%, ¹H NMR (400 MHz, CDCl₃): δ 8.54 (s, 1H), 8.11 (s, 1H), 7.91-7.80 (m, 4H), 7.68 (d, J = 1.6 Hz, 1H), 7.53-7.49 (m, 3H), 7.41 (d, J = 1.6 Hz, 2H), 7.31-7.27 (m, 2H), 5.33 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 146.9, 140.1, 137.8, 135.3, 133.5, 133.3, 133.0, 131.1, 130.2, 129.5, 129.3, 128.5, 128.3, 127.7, 127.2, 126.8, 126.44, 126.38, 125.8, 114.0, 112.1, 73.5; HRMS (ESI): Exact mass calcd for C₂₃H₁₇ClN₃O₂ [M+H]⁺ 402.1009, found 402.1015; HPLC analysis: retention time = 6.20 min, peak area 95.7%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(4-chlorobenzyl) oxime (22)

Yield 44%, ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.10 (s, 1H), 7.91-7.79 (m, 4H), 7.61 (s, 1H), 7.51-7.47 (m, 2H), 7.42 (s, 1H), 7.36 (s, 5H), 5.15 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 146.9, 140.1, 137.8, 136.0, 133.9, 133.3, 133.0, 131.0, 129.7, 128.7, 128.5, 128.3, 127.7, 127.2, 126.5, 126.4, 125.8, 113.9, 112.0, 75.7; HRMS (ESI): Exact mass calcd for C₂₅H₂₀N₃O₂ [M+H]⁺ 402.1009, found 402.1000; HPLC analysis: retention time = 6.42 min, peak area 97.7%, 80:20 CH₃CN/H₂O.

Yield 71%, ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.10 (s, 1H), 7.91-7.79 (m, 4H), 7.67 (s, 1H), 7.53-7.33 (m, 8H), 5.21 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 146.7, 139.8, 137.7, 137.3, 133.3, 133.0, 131.1, 128.5, 128.4, 128.3, 128.1, 127.7, 127.1, 126.41, 126.37, 125.8, 114.0, 112.2, 76.6; HRMS (ESI): Exact mass calcd for C₂₃H₁₈N₃O₂ [M+H]⁺ 368.1399, found 368.1397; HPLC analysis: retention time = 5.41 min, peak area 95.4%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(2,3-dihydro-1H-inden-2-yl) oxime (**24**)

Yield 64%, ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 8.08 (s, 1H), 7.87-7.77 (m, 4H), 4.9 (t, J = 4.8 Hz, 2H), 7.39 (d, J = 1.6 Hz, 2H), 7.28-7.20 (m, 4H), 5.16 (s, 1H), 3.37-3.23 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 146.3, 141.2, 139.7, 137.6, 133.3, 133.0, 1331.1, 128.4, 128.3, 127.7, 127.1, 126.6, 126.4, 126.3, 125.8, 124.6, 114.0, 83.4, 39.2; HRMS (ESI): Exact mass calcd for C₂₅H₂₀N₃O₂ [M+H]⁺ 394.1555, found 394.1563; HPLC analysis: retention time = 6.67 min, peak area 96.3%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-((perfluorophenyl)methyl) oxime (**25**)

Yield 35%, ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 8.06 (s, 1H), 7.99-7.83 (m, 3H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.71 (s, 1H), 7.51-7.49 (m, 3H), 5.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.4, 147.6, 147.0, 144.5, 142.8, 140.9, 138.7, 138.0, 133.3, 133.1, 130.8, 128.5, 128.3, 127.7, 127.2, 126.5, 125.7, 113.8, 111.6, 62.6; HRMS (ESI): Exact mass calcd for C₂₃H₁₃F₅N₃O₂ [M+H]⁺458.0928, found 458.0935; HPLC analysis: retention time = 7.63 min, peak area 95.2%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(4-(trifluoromethyl)benzyl) oxime (**26**)

Yield 33%, ¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 8.10 (s, 1H), 7.92-7.80 (m, 4H), 7.65 (d, J = 8.0 Hz, 2H), 7.60 (s, 1H), 7.54-7.50 (m, 4H), 7.43 (s, 1H), 5.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 147.2, 141.6, 140.3, 137.8, 133.3, 133.0, 131.0, 130.1 (J = 32.7 Hz),128.5, 128.3, 128.2, 127.7, 127.2, 126.5, 125.8, 125.5, 125.4, 124.1 (J = 270.8 Hz), 113.9, 111.9, 75.5; HRMS (ESI): Exact mass calcd for C₂₄H₁₇F₃N₃O₂ [M+H]⁺ 436.1273, found 436.1264; HPLC analysis: retention time = 7.23 min, peak area 96.5%, 80:20 CH₃CN/H₂O.

(*E*)-6-(*Naphthalen-2-yl*)*imidazo*[2,1-*b*]*oxazole-5-carbaldehyde* O-(4-*methoxybenzyl*) *oxime* (**27**)

Yield 33%, ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.10 (s, 1H), 7.90-7.80 (m, 4H), 7.70 (s, 1H), 7.52-7.37 (m, 5H), 6.93 (d, *J* = 8.4 Hz, 2H), 5.14 (s, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.6, 156.2, 146.6, 139.7, 137.7, 133.3, 133.0, 131.1, 130.2, 129.3, 128.4, 128.3, 127.7, 127.1, 126.4, 126.3, 125.8, 114.0, 113.9, 112.3, 76.4, 55.3; HRMS (ESI): Exact mass calcd for C₂₄H₂₀N₃O₃ [M+H]⁺ 398.1504, found 398.1514; HPLC analysis: retention time = 4.36 min, peak area 95.1%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(4-(tert-butyl)benzyl) oxime (**28**)

Yield 31%, ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.10 (s, 1H), 7.90-7.80 (m, 4H), 7.70 (s, 1H), 7.51-7.38 (m, 7H), 5.19 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 151.2, 146.6, 139.7, 137.7, 134.2, 133.3, 133.0, 131.1, 128.4, 128.3, 127.7, 127.1, 126.41, 126.36, 125.8, 125.5, 114.0, 112.3, 75.5, 34.6, 31.3; HRMS (ESI): Exact mass calcd for C₂₇H₂₆N₃O₂ [M+H]⁺ 424.2025, found 424.2018; HPLC analysis: retention time = 13.39 min, peak area 98.3%, 80:20 CH₃CN/H₂O.

(E)-6-(Naphthalen-2-yl)imidazo[2,1-b]oxazole-5-carbaldehyde O-(4-phenoxybenzyl) oxime (**29**)

Yield 38%, ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.11 (s, 1H), 7.91-7.81 (m, 4H), 7.70 (s, 1H), 7.51 (t, *J* = 4.0 Hz, 2H), 7.43 (t, *J* = 4.4 Hz, 3H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 8.8 Hz, 4H), 5.18 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 156.9, 156.2, 146.7, 139.9, 137.8, 133.3, 133.0, 132.0, 131.1, 130.3, 129.8, 128.5, 128.3, 127.7, 127.1, 126.5, 126.4, 125.8, 123.5, 119.1, 118.7, 114.0, 112.2, 76.2; HRMS (ESI): Exact mass calcd for C₂₉H₂₂N₃O₃ [M+H]⁺ 460.1661, found 460.1659; HPLC analysis: retention time = 8.30 min, peak area 96.3%, 80:20 CH₃CN/H₂O.

4. CAR Agonist Luciferase Reporter Gene Assay

HepG2-CYP2B6-hCAR⁴ cells were cultured in DMEM (Invitrogen, Carlsbad, CA) supplemented with 5 μ g/mL blasticidin (Invitrogen), 0.5 mg/mL geneticin (Invitrogen), 10% HycloneTM FBS (GE Healthcare Life Sciences, Logan, UT), and 100 U/mL penicillin and 100 μ g/mL streptomycin (Invitrogen). For the assay, the HepG2-CYP2B6-hCAR cells were dispensed at 2,500 cells/4 μ L/well in tissue culture–treated 1536-well white assay plates (Greiner Bio-One North America, Monroe, NC) using a Thermo Scientific Multidrop Combi (Thermo Fisher Scientific Inc., Waltham, MA). The media used for plating was DMEM supplemented with 10% HycloneTM FBS and 100 U/mL penicillin and 100 μ g/mL streptomycin. After the assay plates were incubated at 37°C/5% CO₂ for 5 h, 23 nL of compounds dissolved in dimethyl sulfoxide (DMSO), CITCO (Sigma-Aldrich Corp., St. Louis, MO), or

DMSO were transferred to the assay plates by a Wako Pintool station (Wako Automation, San Diego, CA). One µL of PK11195 (Sigma-Aldrich Corp.) was added (final concentration of 0.75 µM PK11195) using a Flying Reagent Dispenser (FRD, Aurora Discovery, Carlsbad, CA). The final test compound concentrations in the 5 µL assay volume ranged from 6.41 pM to 92 µM in 16 different concentrations at a 1:3 dilution. The final concentration of DMSO (used for the negative control) was 0.46%. plate format of the positive control is as follows: Column 1: The concentration-response titration of CITCO from 2.81 nM to 92 µM at a 1:2 dilution with DMSO; Column 2 top half: 60 µM of CITCO; Column 2 bottom half: 48 µM of CITCO; Column 3 top half and Column 4: DMSO only; Column 3 bottom half: 92 µM of tetraoctyl ammonium bromide. After 23 h of incubation at 37 °C/5% CO₂, One µL of CellTiter-Fluor[™] (Promega, Madison, WI) was added, using the FRD, after which, all plates were put back into the incubator at 37 °C/5% CO₂ for another hour. The fluorescence intensity was then measured at 540 nm following excitation at 405 nm using a ViewLux plate reader (Perkin Elmer, Shelton, CT) to determine cell viability. Immediately after, 4 µL of ONE-GloTM Luciferase reagent (Promega) was added to each well using the FRD and a 30 min incubation at room temperature occurred. Luminescence intensity was then measured using the ViewLux plate reader and data was expressed in relative luminescence units.

5. Cell Viability Assay⁴

The potential cytotoxicity of the compounds in HepG2-CYP2B6-hCAR cells was measured using a luciferase-coupled ATP quantitation assay (CellTiter-Glo viability assay, Promega). The change of intracellular ATP content indicates the number of metabolically competent cells. The cells were seeded at 2,500 cells/5 μ L in 1536-well plates and were exposed to each test compound at concentrations and treatment duration as previously mentioned. The assay plates were incubated for 24 h at 37 °C, followed by the addition of 4 μ /well of CellTiter-Glo reagent. After 30 min incubation at RT, the luminescence intensity of the plates was measured using a ViewLux plate

reader.

6. Experimental protocol for hPXR agonist HTS

HepG2-CYP3A4-hPXR cells were cultured in EMEM medium (ATCC, Manassas, VA) supplemented with 10% FBS (ThermoFisher Scientific, Waltham, MA), 100 U/mL of penicillin and 100 mg/mL of streptomycin (ThermoFisher Scientific), and 500 µg/mL geneticin (ThermoFisher Scientific) in collagen coated flasks (Corning Inc., Corning, NY). Cells were dispensed at 3,000 cells/well/5 µL in 1,536-well plates (Greiner Bio-One North America, Monroe, NC) using a Multidrop Combi (Thermo Fisher Scientific) in assay media which entailed phenol red free DMEM (ThermoFisher Scientific) supplemented with 5% charcoal/dextran treated FBS (Invitrogen, Carlsbad, CA), 1 mM sodium pyruvate (Invitrogen), 2 mM L-Glutamine (Invitrogen), and 100 U/mL of penicillin and 100 mg/mL of streptomycin (ThermoFisher Scientific). The assay plates were incubated at 37 °C/5% CO₂ for 5 hrs before 23 nL of each compound was transferred from the compound plate to the assay plate via a pin tool station (Kalypsys, San Diego, CA). After 23 hrs of incubation at 37°C/5% CO₂, 1 µL of CellTiter Fluor (Promega, Madison, WI) is added to each well for determination of cell viability. Plates were placed back in the incubator at 37 °C/5% CO₂ for another hour. Fluorescence intensity was then measured at 540 nm emission following excitation at 405 nm using a ViewLux plate reader (Perkin Elmer, Shelton, CT). Four µl of the ONE-Glo luciferase reagent (Promega) was then added followed by a 30 min incubation at room temperature. Finally, luminescence intensity was quantified using the ViewLux plate reader and data was expressed in relative luminescence units.

7. Culture and Treatment of HPH

Human primary Hepatocytes obtained from BioIVT (Baltimore, MD) were seeded at 0.75×10^6 cells/well in 12-well biocoat plate and cultured in sandwich format as

described previously⁵ for 36 h before treatment with solvent (0.1% DMSO), PB (1 mM), RIF (10 μ M), CITCO, compounds **18** and **19** (0.5, 1, 5 μ M) for 24 h and 72 h before harvesting cells to detect RNA and protein, respectively.

8. Real-Time PCR Analysis

Total RNA from hepatocytes were isolated and reverse transcribed as described previously.⁶ Real-Time PCR assay was performed on an ABI StepOnePlus Real-Time PCR system with SYBR Green PCR master mix from Qiagen (Germantown, MD). The primer sequences for CYP2B6, CYP3A4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are as follows: CYP2B6, 5'-AGACGCCTTCAATCCTGACC-3' and 5'-CCTTCACCAAGACAAATCCGC-3'; CYP3A4, 5'-GTGGGGGCTTTTATGATGGTCA-3' and 5'-GCCTCAGATTTCTCACCAACACACA-3'; GAPDH, 5'-CCCATCACCATCTTCCAGGAG-

3' and 5'-GTTGTCATGGATGACCTTGGC-3'. Induction values were calculated according to the previous description.⁶

9. Western Blot Analysis

20 µg of cell homogenate proteins from hepatocytes were resolved on NuPAGETM 4-12% Bis-Tris gels (Life Technologies) and electrophoretically transferred onto polyvinylidine fluoride membranes. Membranes were incubated with antibodies against CYP2B6 (Abcam), CYP3A4 (Millipore), or β -actin (Sigma-Aldrich), diluted at 1:500, 1:5000 and 1:5000, respectively at 4 °C overnight, followed by incubation with horseradish peroxidase secondary antibodies for 1 h at room temperature. Blots were developed with West Pico chemiluminescent substrates (ThermoFisher).

Cpd	pd Structure All Curve EC ₅₀		EC ₅₀ Curve	Curve EC ₅₀ (µM) ^a		Cytotoxicity
						Curve
1 CITCO		CITCO	Cirrco	0.62 ± 0.11	2.8	
2	$C \rightarrow C \rightarrow$	Subset	5058	0.58 ± 0.36	2.3	5058
3	$F + \begin{pmatrix} S \\ S \\ S \\ S \\ C \\ C \\ C \\ C \\ C \\ C \\$	S067 S07 S07 S07 S07 S07 S07 S07 S0	5067	0.67 ± 0.10	2.6	5067
4	$Br + \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5064	5064	0.48 ± 0.22	2.4	SOE4
5		5066 August	5068	0.48 ± 0.23	2.7	Soca Soca
6	$F_{3}C \longrightarrow \bigvee_{N} N \longrightarrow S$	5063 5063 5063 5063 5063 5063 5063 5063 Concentration log [M]	5063 5065 5063 5065 5063 5065 5065 5065 5065 5065 5065 5065 5065 5065 5065 5065	0.88 ± 0.09	2.3	5063
7		5069	5069	0.49 ± 0.27	2.4	Soss Soss
8		DL5132	DL5132	0.59 ± 0.13	3.0	5132
9		5059	5059	2.4 ± 0.30	2.0	5059

10. Table S1 Original Data of Activity and Cytotoxicity for Cpd**1-29**

10	5061 ⁴ 1	5061	3.4 ± 0.29	2.2	5061 సా ⁻³⁰]
	4 4 4 4 4 4 4 4 4 4 4 4 4 4	Concentration log [M]			er and a second an
11	DL5131-1	DL5131-1	>100	2.3	5131-1 Signal and Signal and Sig
12	5050	5060	NC	1.1	Soco August vin second August
13	DL5125	DL5126	NC	1.2	3125 30 40 41 41 41 41 41 41 41 41 41 41
14	5005 The provided and the provided and	Socs Age of a second s	1.1 ± 0.08	2.3	And the second s
15	5044	5044	0.38 ± 0.31	2.3	5544
16	DLS066	DL5066 44 47 3- 19 2- 1 4 4 4 - 5 Concentration leg [M]	0.94 ± 0.73	2.2	2004 Note the set of
17	DL5071	DL5071	2.6 ± 0.16	3.6	5271
18	DL5043	DL5043	0.41 ± 0.09	4.2	5943 ⁶ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴
19	DL5050	DL5050	0.37 ± 0.11	3.8	5050 Monto Part of the second
20	DL5096-1	DL5096-1	1.5 ± 0.12	3.5	5995-1

21		DL5098-2	DL5098-2	1.1 ± 0.11	3.8	
	CI	3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	³ / ₂ + 3 − 4 0 + − + 5 -8 -7 -6 -5 -4 Concentration log [M]			2
22	N N N N N N N N N N N N N N N N N N N	DL5096-3	DL5096-3	0.99 ± 0.15	4.2	5096-3
23	S S S	DL5098-3	DL5098-3	0.84 ± 0.10	4.4	508-3
24		DL5099 DL5099	DL5090	0.98 ± 0.11	3.7	5090
25	F + F = F	DL5098-1	DL5098-1	1.7 ± 0.13	3.1	5098-1
26	$ \begin{array}{c} & & \\ & & $	DL5096-2	DL5096-2	0.47 ± 0.18	2.8	596-2 Not the second s
27	N N MeO	DL50964	DL5096-4	4.4 ± 0.44	3.3	5986-4
28	C + + + *		DL6085-1	7.9 ± 0.48	2.3	6085-1 August and a second se
29	N N Pho	DL6095	DL6988	NC	1	Const Co

^aEC₅₀ and E_{max} values were calculated by nonlinear regression. Data are presented as mean ± SEM of at least three independent experiments in quadruplicate. NC (if the maximum concentration produced no effect).

11. ¹H, ¹³C NMR and HPLC Spectra of Compounds **1-29**

Compound 1

1 DA C	DR OIT 20400							
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%	
1	8.253	16465	1649	0.000		M	1.951	
2	12.247	827306	28833	0.000		M	98.049	
Total		843770	30483				100.000	

C:\Users\sop\Desktop\Xue Lab\Liang\7222.lcd

Compound 2

<Peak Table> PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	5.643	7035	1181	0.000		M	2.251
2	8.010	304362	19860	0.000		M	97.405
3	20.061	1074	980	0.000		M	0.344
Total		312470	22021				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7223.lcd

Compound 3

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

<Peak Table>

2DA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%	
1	5.869	15680	2015	0.000		M	3.566	
2	8.367	424045	23634	0.000		M	96.434	
Total		439725	25648				100.000	

C:\Users\sop\Desktop\Xue Lab\Liang\7191.lcd

PDAC	n i 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	9.012	34300	3091	0.000		M	4.839
2	13.639	674544	23998	0.000		M	95.161
Total		708843	27089				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7232.lcd

LabSo	eu Iutiona	Analy	sis Repo	rt
<sample inform<="" th=""><th>nation></th><th></th><th></th><th></th></sample>	nation>			
Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	: 5068 : 0.8/80 : 7211.lcd : DL single run : : 1-4 : 10 uL : 7/20/2018 12 : 7/20/2018 12	n.lcm 2:20:47 PM 2:40:59 PM	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator

<Chromatogram>

mAU

<Peak Table>

FDAG	n i 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	7.286	34692	3800	0.000		M	4.279
2	10.754	776045	28942	0.000		M	95.721
Total		810736	32742				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7211.lcd

mAU

<Peak Table>

PDAC	n i 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	3.891	7371	1054	0.000		M	2.402
2	5.384	299456	27386	0.000		M	97.598
Total		306828	28440				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7278.lcd

FUAC	n i 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	4.618	22992	3025	0.000		M	4.621
2	6.364	474545	30701	0.000		M	95.379
Total		497537	33726				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7238.lcd

<Peak Table>

PDAC	n1294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	10.346	31402	2272	0.000		M	4.068
2	13.204	5407	1146	0.000		M	0.700
3	15.795	735171	24649	0.000		M	95.232
Total		771980	28068				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7275.lcd

mAU

<Peak Table>

PDAC	n1 204nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	12.516	36706	2080	0.000		M	2.712
2	19.743	1316959	30590	0.000		M	97.288
Total		1353666	32670				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7284.lcd

PDAC	n i 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	8.490	23888	2069	0.000		M	3.185
2	12.636	726170	25982	0.000		M	96.815
Total		750058	28052				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7224.lcd

#	: 1-4	Sample Type	: Unknown
ction Volume Acquired Processed	: 10 uL : 7/22/2018 2:19:27 PM : 7/22/2018 3:13:44 PM	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

mAU

<Peak Table>

PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	26.380	63131	1815	0.000		M	3.533
2	43.225	1723798	19506	0.000		M	96.467
Total		1786929	21321				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7228.lcd

DL5060H DL5060H $\begin{array}{c} -8.502\\ -8.502\\ 8.012\\ 7.7760\\$

PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	11.214	11845	1034	0.000		M	2.958
2	17.334	388588	13365	0.000		M	97.042
Total		400433	14399				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7229.lcd

PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	31.178	20337	996	0.000		M	3.576
2	52.938	548383	7112	0.000		M	96.424
Total		568720	8109				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7194.lcd

<Chromatogram>

mAU

<Peak Table>

PDAC	n1 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	8.503	15986	1711	0.000		M	2.772
2	12.895	560698	22227	0.000		M	97.228
Total		576684	23938				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7193.lcd

LabSo	lutiona	Analy	sis Repo	rt
<sample inform<="" th=""><th>nation></th><th></th><th></th><th></th></sample>	nation>			
Sample Name Sample ID Data Filename Method Filename Batch Filename Vial # Injection Volume Date Acquired Date Processed	: 5044 : 0.8/80 : 7189.lcd : DL single run : : 1-4 : 10 uL : 7/18/2018 3: : 7/18/2018 3:	1.lcm 30:12 PM 50:52 PM	Sample Type Acquired by Processed by	: Unknown : System Administrator : System Administrator

<Chromatogram> mAU

<Peak Table>

PDAC	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	8.978	12351	1445	0.000		M	3.782
2	13.554	314174	14041	0.000		M	96.218
Total		326524	15486				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7189.lcd

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

PDAC	n1294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	6.567	20460	2312	0.000		M	4.069
2	9.902	482418	24135	0.000		M	95.931
Total		502878	26447				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7297.lcd

min

<Peak Table>

PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	4.847	222277	20930	0.000		M	98.935
2	5.142	2392	940	0.000		M	1.065
Total		224669	21870				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7225.lcd

PDAC	n1 204nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	7.421	12000	1479	0.000		M	3.249
2	9.350	357345	19829	0.000		M	96.751
Total		369345	21308				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7188.lcd

min

<Peak Table>

PDAC	n1204nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	7.891	27786	2327	0.000		M	4.566
2	10.042	580782	26370	0.000		M	95.434
Total		608568	28696				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7230.lcd

PDAC	n1 204nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	9.071	14668	1282	0.000		M	3.358
2	11.714	422166	19748	0.000		M	96.642
Total		436834	21029				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7221.lcd

 $\begin{array}{c} -8.540 \\ -8.540 \\ 8.112$

PDA Ch1 254nm

	11 20 100						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	5.334	41004	4955	0.000		M	4.922
2	6.457	792005	37940	0.000		M	95.078
Total		833008	42894				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7244.lcd
DL5096-3H DL5096-3H $\begin{array}{c} & 8.496\\ & -8.496\\ & -8.496\\ & -8.488\\ & -7.8885\\ & -7.8885\\ & -7.8885\\ & -7.8885\\ & -7.8845\\ & -7.8816\\ & -7.8816\\ & -7.8816\\ & -7.8816\\ & -7.8816\\ & -7.7896\\ & -7.786\\$

PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	5.281	23235	2434	0.000		M	2.257
2	6.420	1006255	40354	0.000		M	97.743
Total		1029490	42788				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7252.lcd

DL5098-3H DL5098-3H

-8, 518 -8, 518 -8, 518 -8, 518 -1, 2, 286 -1, 2, 286 -1, 2, 286 -1, 2, 286 -1, 2, 286 -1, 2, 286 -1, 2, 286 -1, 2, 516 -1, 2, 426 -1, 2, 386 -1, 3, 386 -1, 3, 386 -1, 3, 386 -1, 3, 386 -1, 3, 386 -1, 3,

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

0.0

2.5

PDA Ch1 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%		
1	4.650	29884	4456	0.000		M	4.598		
2	5.413	620116	31292	0.000		M	95.402		
Total		650000	35748				100.000		

7.5

10.0

12.5

15.0 min

5.0

C:\Users\sop\Desktop\Xue Lab\Liang\7235.lcd

<Chromatogram>

mAU

<Peak Table>

PDAC	n1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	5.751	16614	1804	0.000		M	3.725
2	6.669	429361	29414	0.000		M	96.275
Total		445975	31218				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7239.lcd

<Chromatogram>

mAU

<Peak Table>

PDAC	n1294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	6.221	28429	3117	0.000		M	4.798
2	7.628	564032	28063	0.000		M	95.202
Total		592461	31180				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7234.lcd

<Chromatogram>

mAU

<Peak Table>

PDAC	n1 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	5.919	14209	1599	0.000		M	3.482
2	7.225	393901	26812	0.000		M	96.518
Total		408110	28411				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7217.lcd

PDAC	n i 294nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	3.953	24086	3402	0.000		M	4.928
2	4.358	464707	36073	0.000		M	95.072
Total		488793	39475				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7268.lcd

PDAC	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%
1	10.980	18572	1264	0.000		M	1.687
2	13.386	1082286	29564	0.000		M	98.313
Total		1100858	30828				100.000

C:\Users\sop\Desktop\Xue Lab\Liang\7231.lcd

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Area%	
1	7.072	8338	1188	0.000		M	3.686	
2	8.303	217859	14650	0.000		M	96.314	
Total		226198	15837				100.000	

C:\Users\sop\Desktop\Xue Lab\Liang\7274.lcd

12. References

(1) Baig, M. F.; Nayak, V. L.; Budaganaboyina, P.; Mullagiri, K.; Sunkari, S.; Gour, J.; Kamal, A. *Bioorg. Chem.* **2018**, *77*, 515-526.

- (2) Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.;
- Lenaz, G.; Fato, R.; Bergamini, C.; Farruggia, G. J. Med. Chem. 2005, 48, 3085-3089.
- (3) Mekonnen, B.; Crank, G.; Craig, D. J. Heterocyclic Chem. 1997, 34, 589-599.
- (4) Lynch, C.; Zhao, J.; Huang, R.; Xiao, J.; Li, L.; Heyward, S.; Xia, M.; Wang, H. *Sci. Rep.* **2015**, *5*, 10405.
- (5) Faucette, S. R.; Zhang, T. C.; Moore, R.; Sueyoshi, T.; Omiecinski, C. J.;
- LeCluyse, E. L.; Negishi, M.; Wang, H. J. Pharmacol. Exp. Ther. 2007, 320, 72-80.
- (6) Mackowiak, B.; Li, L.; Welch, M. A.; Li, D.; Jones, J. W.; Heyward, S.; Kane, M.
- A.; Swaan, P. W.; Wang, H. Mol. Pharmacol. 2017, 92, 75-87.