Gene	Allele	Reference Sequence + Variant	RS-number
CYP2C9	*2	NG_008385.1:g.3608C>T	rs1799853
CYP2C9	*3	NG_008385.1:g.42614A>C	rs1057910
CYP2C19	*2	NG_008384.3:g.19154G>A	rs4244285
CYP2C19	*3	NG_008384.3:g.17948G>A	rs4986893
CYP2C19	*17	NG_008384.3:g806C>T	rs12248560
CYP2D6	*2A	M33388:g1584C>G	rs1080985
CYP2D6	*10	M33388:g.100C>T	rs1065852
CYP2D6	*12	M33388:g.124G>A	rs5030862
CYP2D6	*11	M33388:g.883G>C	rs201377835
CYP2D6	*17	M33388:g.1023C>T	rs28371706
CYP2D6		M33388:g.1661G>C	rs1058164
CYP2D6	*6	M33388:g.1707delT	rs5030655
CYP2D6	*4	M33388:g.1846G>A	rs3892097
CYP2D6	*40	M33388:g.1863_1864insTTTCGCCCCTTTCGCCCC	rs72549356
CYP2D6	*20	M33388:g.1973_1974insG	rs72549354
CYP2D6	*19	M33388:g.2539delAACT	rs72549353
CYP2D6	*3	M33388:g.2549delA	rs35742686
CYP2D6	*38	M33388:g.2587delGACT	rs72549351
CYP2D6	*9	M33388:g.2615delAAG	rs5030656
CYP2D6		M33388:g.2850C>T	rs16947
CYP2D6	*7	M33388:g.2935A>C	rs5030867
CYP2D6	*44	M33388:g.2950G>C	rs72549349
CYP2D6	*41	M33388:g.2988G>A	rs28371725
CYP2D6	*29	M33388:g.3183G>A	rs59421388
CYP2D6	*42	M33388:g.3259_3260insGT	rs72549346
CYP2D6	*18	M33388:g.4132_4133insGTGCCCACT	rs1135836
CYP2D6		M33388:g.4180G>C	rs1135840
CYP2D6	*5	NC_000022.10:g.	
CYP2D6	xN	duplication	
CYP3A5	*3	NG_007938.1:g.12083G>A	rs776746
CYP3A5	*6	NG_007938.1:g.19787G>A	rs10264272
DPYD	*2A	NM_000110.3:c.1905+1G>A	rs3918290
DPYD	*13	NM_000110.3:c.1679T>G	rs55886062
DPYD		NM_000110.3:c.1236G>A	rs56038477
DPYD		NM_000110.3:c.2846A>T	rs67376798
SLCO1B1		NM_006446.4:c.521T>C	rs4149056
TPMT	*2	NM_000367.4:c.238G>C	rs1800462
TPMT	*3B	NM_000367.4:c.460G>A	rs1800460
TPMT	*3C	NM_000367.4:c.719A>G	rs1142345
VKORC1		NM_206824.2:c.173+1000C>T	rs9934438

Supplementary Table S1. The tested PGx Panel in the IP3 pilot study.

Cono	Interacting drugs for which actionable DPWG guidelines	Actionable phonotypes
Gene	are available	Actionable pilehotypes
CVP2C9	nhonytoin	PM, IM, *1/*2, *1/*3, *2/*2, *2/*3,
C112C3	phenytom	*3/*3
	citalopram	PM, IM
	clopidogrel	PM, IM
	escitalopram	PM, IM, UM
CYP2C19	imipramine	PM
	lansoprazole	UM
	omeprazole	UM
	pantoprazole	UM
	sertraline	PM
	voriconazole	PM, IM, UM
	amitriptyline	PM, IM, UM
	aripiprazole	PM
	atomoxetine	PM, IM, UM
	clomipramine	PM, IM, UM
	codeine	PM, IM, UM
	doxepin	PM, IM, UM
	eliglustat	PM, IM, UM
	flecainide	PM, IM, UM
	haloperidol	PM, UM
CVDDC	imipramine	PM, IM, UM
CIP2D6	metoprolol	PM, IM, UM
	nortriptyline	PM, IM, UM
	oxycodone	PM ? UM?
	paroxetine	UM
	pimozide	PM, IM
	propafenone	PM, IM, UM
	tamoxifen	PM, IM
	tramadol	PM, IM, UM
	venlafaxine	PM, IM, UM
	zuclopenthixol	PM, IM, UM
C)/D2 45		Homozygote expressor,
CYP3A5	tacrolimus	heterozygote expressor
DPYD	··· 1 · · / /1 · · · 1	Systemic: GAS 0, 0.5, 1, 1.5; Topical:
	capecitabine/fluorouracil	GAS 0
	tegatur	Systemic: GAS 0, 0.5, 1, 1.5
01 CO 1 D 1	atorvastatin	TC, TT
SLCOIBI	simvastatin	TC, TT
	azathioprine/mercaptopurine	PM, IM
IPMT	thioguanine	PM, IM
IWODO	acenocoumarol	AA
VKORC1	fenprocoumon	AA

Supplementary Table S2. Actionable drug-gene interactions relevant to the panel used (*n* = 41).

Drugs primarily prescribed in primary care are bolded

Department postzone	Clinical Pharma L-00-P	cology and Toxicology	to	[PHARMACIST NAME]				
sender								
ing address			'					
Phone		fax	cc	[GENERAL PRACTITIONER NAME]				
e-mail								
Date	26 november 20	14						
subject	Genotype result	s for patiënt XXXX	'					
	Dear Colleagu	e,						
	Through this letter I would like to inform you that patient [PATIENT NAME], born [DATE OF BIRTH], participates in the IP3 study and has been genotyped for 8 genes that are related to the effectiveness and toxicity of drugs. This letter contains the results of the genotyping and the interpretation of the genotypes.							
	Patient:	IPATIENT NAM	(F)					
	Date of Birth:	XX-XX-XXXX						
	General Prace	titioner: [GENERAL PRA	ACTITIONER NAME	E]				
	Pharmacy:	PHARMACY N	IAME]					
	Studynumber	: IP3-XXX	-					
	Method							
	The DNA was	isolated from saliva using	the Oragene kit and th	hen analyzed with the Affymetrix				
	DMET array a	ccording to the manufactur	er's protocol. In addit	ion, the number of CYP2D6 copies				
	has been deten	mined with a Taqman geno	typing test. The trans	the phermacogenetics working				
	group of the K	NMP.	idennes drawn up by	the pharmacogenetics working				
	Results							
I	Gene	Tested variant alleles	Patient genotype	Predicted Phenotype				
	CYP2C9	*2, *3	*1/*2	Intermediate metabolizer				
	CYP2C19	*2, *17	*1/*1	Extensive metabolizer				
	CYP2D6	22 allelen*	*4/*5	Poor metabolizer				
	CYP3A5	*3, *6	*3/*3	Non-expressor				
	DYPD	*2A, *13	*1/*1	Extensive metabolizer				
	SLCO1B1	521T>C	521 TC	Decreased function				
	TDMT	*2 *3C *3B	*1/*1	Extensive metabolizer				
	IFMI	2, 50, 52	4470.00					

Interpretation of abberant genotypes The CYP2C9 * 1 / * 2 genotype leads to the intermediate metabolizer phenotype. Persons with this phenotype have a reduced metabolic capacity of the enzyme CYP2C9 and an increased risk of side effects and efficacy in drugs metabolised by CYP2C9 The CYP2D6 * 4 / * 5 genotype leads to the poor metaboliser phenotype. Individuals with this phenotype have a greatly reduced or absent metabolic capacity of the enzyme CYP2D6 and a greatly increased risk of side effects and efficacy in drugs metabolised by CYP2D6. The SLCO1B1 521 TC genotype leads to a reduced transport activity of statins from the portal vein to the liver cells. As a result, the plasma concentration of statins and thereby the risk of myopathy can increase. Recommendation for drug of enrolment The recommendation the KNMP pharmacogenetics working group for the use of atorvastatin in patients with the SLCO1B1 521 TC genotype is: 1. If this patient has additional risk factors for statin-induced myopathy *: 1.1. to choose an alternative to atorvastatin. Rosuvastatin and pravastatin are similarly affected by SLCO1B1 polymorphisms, but are not affected by CYP3A4 inhibitors such as amiodarone, verapamil and diltiazem. Fluvastatin is not affected by SLCO1B1 polymorphisms and CYP3A4 inhibitors. 1.2. or if an alternative is not possible: advise the patient to contact muscle complaints. * Use of CYP3A4 inhibitors, colchicine, fusidic acid and gemfibrozil as co-medication. 2. If this patient has no significant additional risk factors for statin-induced myopathy: Advise the patient to contact him if you have a muscle complaint. I request you to record the patient's genotypes found as a contraindication in your electronic prescribing system. A notification will automatically follow if there is a relevant gene-drug interaction I hope to have informed you sufficiently. If you have any questions, you can always contact us by email or telephone. Kind regards, [NAME CLINICAL PHARMACIST]

Supplementary Figure S1. Example report sent to physicians and pharmacists.

Drug	Gene	Phenotype	Increased risk of adverse event	Effect measure*
Amitriptyline	CYP2D6	РМ	The genetic polymorphism leads to a reduced metabolic capacity of CYP2D6, causing an increase in the plasma concentrations of amitriptyline and its active metabolite nortriptyline and a decrease in the plasma concentrations of the active metabolites E-10- OH-amitriptyline and E-10- OH-amitriptyline. [1] The side effects are correlated to the plasma concentration of nortriptyline. The hydroxy-metabolites may be cardiotoxic. [1] Theoretically, the risk of side effects such as dry mouth, constipation, dizziness, sedation, reduction of sexual functions and perspiration is increased with high plasma concentration of nortriptyline.	Studies found an increase of 30-69% of the plasma concentration amitriptyline plus nortriptyline. [1] PMs did not have excessive side effects. [2]
Amitriptyline	CYP2D6	ΙΜ	The genetic polymorphism leads to a reduced metabolic capacity of CYP2D6, causing an increase in the plasma concentrations of amitriptyline and its active metabolite nortriptyline and a decrease in the plasma concentrations of the active metabolites E-10- OH-amitriptyline and E-10- OH-nortriptyline. [1] The side effects are correlated to the plasma concentration of	In a study an increase of the percentage of patients with substantial side effects was found by a factor of 6. For the subgroup of patients without co-medication affecting CYP2D6, the percentage increased by a factor of 16. This study found for patients with phenotypes IM versus EM + UM an increase in the percentage of patients with substantial side effects from 12.1% to 76.5% (S by 523%) The same for patients without CYP2D6-relevant comedication: from 4.2% to 69.2% (S by 1548%). [3]

Supplementary Table 3. Pre-defined drug-gene associated adverse drug reactions based on literature underlying the DPWG.

			The hydroxy-metabolites may	
			be cardiotoxic. [1]	
			Theoretically, the risk of side	
			effects such as dry mouth,	
			constipation, dizziness,	
			sedation, reduction of sexual	
			functions and perspiration is	
			increased with high plasma	
			concentration of nortriptyline.	
			[1]	
			The genetic polymorphism	
			leads to an increased	
			metabolic capacity of CYP2D6,	
			which may decrease the	
			plasma concentrations of	
		YP2D6 UM	amitriptyline and its active	
Amitriptyline			metabolite nortriptyline and	
			increase the plasma	A study found a decrease of the plasma
			concentrations of the active	concentration of amitriptyline plus
			metabolites E-10-OH-	nortriptyline with 20% (non-significant).
	CYP2D6		amitriptyline and E-10-OH-	[4]
			nortriptyline. [1]	
			Result: Possible failure of	
			therapy due to decreased	
			plasma concentrations of	
			amitriptyline and nortriptyline	
			and an increase in the plasma	
			concentration of the	
			potentially cardiotoxic, active	
			hydroxy-metabolites. [1]	
			The genetic variation increases	Results vary from no reduced appetite to
			the plasma concentration of	an increase in the incidence of reduced
			atomoxetine and thus the risk	appetite with 42% or OR = 2.0. The
			of side effects (such as loss of	incidence of tremor increased by 364% and
			appetite, vomiting, abdominal	the incidence of insomnia by 54% or OR =
			pain, constipation, insomnia.	2.1.[4.9] In a study with 117 adult PM. PMs
Atomoxetine	CYP2D6	PM	early awakening, drowsiness,	had a higher risk of urinary retention (OR
	•		irritability, pupil dilation.	= 9.1), an erectile dysfunction (OR = 3.1). a
			itching, dry mouth urinary	dry mouth (OR = 2.2), an increase in
			retention, erectile dysfunction	diastolic blood pressure ($OR = 2.2$).
			excessive sweating increase of	excessive sweating ($OR = 2.0$) and an
			heart rate, increase in diastolic	increase in heart rate ($OR = 1.7$) Sedation
			blood pressure palaitations	depression early awakening provides and
			biood pressure paipitations,	depression, early awakening, pruritus and

			dizziness, increased systolic	mydriasis are also more common in PMs.
			blood pressure, tremor and	[5]
			sedation).[5–8]	In 131 healthy male PMs, a dose of 60 mg
				2x daily resulted in a statistically
				significant but not clinically significant
				increase in the QT interval. For the increase
				relative to placebo, the upper limit of the
				confidence interval was less than 10 msec.
				There were no subjects at any time with a
				corrected QT interval greater than 500
				msec or an increase in the corrected QT
				interval by more than 60 msec with respect
				to pre-treatment. [7]
				The results for the incidence of
				discontinuation of therapy due to side
				effects vary from no difference, an increase
				by 3-50% or a decrease after 6 months by
				100%. [5]
				The plasma concentration of atomoxetine
		'P2D6 IM	The genetic variation increases the plasma concentration of atomoxetine and can therefore reduce the dose requirement. [5] Side effects related to high atomoxetine levels: dry mouth, sleep disturbances, dizziness, nausea and abdominal pain	is a factor 2-3 times higher for IM than for
				EM at the same dose.
				Results range from no difference in
				frequency, severity and nature of the side
				effects to an increase in the risk of a sleep
				disorder (OR = 1.7) or dry mouth (OR =
				1.6). IM were not overrepresented in
Atomoxetine	CYP2D6			patients who did not finish treatment and
				the mean dose was similar for IM and
				EM/UM. [6]
			[6.10]	One study found that of 10 patients who
			[0]10]	had side effects and/or a late response at
				normal dosing, 6 were IM. In the two IMs
				where the dose was reduced (up to 1.14
				mg/kg per day and 0.42 mg/kg per day),
				this led to maintenance of efficacy and
				decrease in side effects. [8]
			The genetic variation leads to	
	CYP2D6		an increased conversion of	
		6 UM	atomoxetine into the active	
Atomoxetine			metabolite 4-	-
			hydroxyatomoxetine, which	
			has a much lower plasma	
			concentration. Because the	

plasma concentration of the

active substances decreases as

a result, the gene variation can

lead to a reduced effectiveness.

Atorvastatin	SLCO1B1	521TC	The genetic polymorphism can lead to a reduced transport of atorvastatin to the liver. This may increase the plasma concentration of atorvastatin and thus the risk of myopathy. [11]	Myopathy Results range from no significant effect of the genetic polymorphism on the risk of myopathy or muscle complaints (two studies with 143-146 atorvastatin users and two case-control study with 10-13 cases) to an association of the 521C allele with intolerance or muscle complaints with OR = 2.7 (case-control study with 46 case). [12] In one case involving two related patients with atorvastatin-induced muscle pain, one patient had genotype 521CC and the other genotype 521TC. [11]
				Cholesterol reduction In two studies, there was no difference in
				the decrease of LDL cholesterol. [11]
Atorvastatin	SLCO1B1	521CC	The genetic polymorphism can lead to a reduced transport of atorvastatin to the liver. This may increase the plasma concentration of atorvastatin and thus the risk of myopathy. [11]	Myopathy Results range from no significant effect of the genetic polymorphism on the risk of myopathy or muscle complaints (two studies with 143-146 atorvastatin users and two case-control study with 10-13 cases) to an association of the 521C allele with intolerance or muscle complaints with OR = 2.7 (case-control study with 46 case). [12– 16] In one case involving two related patients with atorvastatin-induced muscle pain, one patient had genotype 521CC and the other genotype 521TC. [11]
				Cholesterol reduction In two studies, there was no difference in the decrease of LDL cholesterol. [17,18]
Citalopram	CYP2C19	РМ	This gene variation leads to an increase in plasma concentrations of citalopram. This causes a hogher risk of	A study found a 3.0% greater QTc interval for a group of 16 IM and 1 PM. The study found no difference for this group in the median dose and the percentage of

			QT-prolongation and torsade	patients with a dose higher than 40
			de pointes. [19]	mg/day. [20]
				Two studies found no difference in the
				occurrence of side effects. A study with
				new-borns found no difference in severity
				of serotonergic symptoms after mother's
				citalopram use for a group of 4 IM and 1
				PM. [21]
				For the probability of remission, the effect
				varies from no difference to an increase of
				48%. [22]
				A study with 16 IM found a trend for a
			This gene variation leads to an	2.4% larger QTc interval. The study found
			increase in plasma	a significant increase in the QTc interval
			concentrations of citalopram.	for a group of 16 IM and 1 PM and no
			This causes a higher risk of QT	difference in the median dose and the
		CYP2C19 IM	prolongation and torsade de	percentage of patients with a dosage
			pointes. [19]	higher than 40 mg/day. [20]
			The relationship between	A study with 25 IM found no difference in
			plasma concentration and	the occurrence of side effects. [23] A study
			efficacy and side effects has	with new-borns found no difference in
Citalopram	CIP2CI9		not been established. The risk	severity of serotonergic symptoms after
			of induction of QT	mother's citalopram use for a group of 4
			prolongation and torsade de	IM and 1 PM. For IM + PM, the results for
			pointes by citalopram is dose-	the probability of tolerance vary from no
			dependent and therefore	difference in the validation study to a
			plasma concentration-	decrease. [21]
			dependent. [19]	A study with 298 IM found no difference
				in the chance of remission. The same study
				found no association between set dose and
				genotype. [22]
			The gape variation in more	A study with 60 UM found no difference in
			the conversion of a single	the likelihood of tolerance and remission.
			the conversion of escitalopram	[22]
Citalopram			to a low active substance.	Two studies found no difference in set
	CYP2C19	UM	However, no significant effect	dosage.
			on plasma concentration of	A study with 18 UM found no significant
			citalopram, tolerance and	increase in the percentage of patients with
			response nas been	plasma concentrations below the
			aemonstrated. [19]	therapeutic range. [4]
			The gene variation leads to an	A study found no increase in the QTc
Escitalopram	CYP2C19	PM	increase in the plasma	interval for a group of 1 PM and 21 IMs.
			concentration of escitalopram.	However, the IM + PM group and the EM

This increases the risk of QT prolongation and torsade de pointes. [24] Side effects related to higher escitalopram levels are dry mouth, dizziness and diarrhoea. [25] group were not comparable. The percentage of women was significantly lower for IM + PM. Women had a 3.7% higher QTc interval than men. In addition, the percentage of patients with a CYP2C19 substrate, inhibitor or inducer was significantly higher for IM + PM. There was a trend for a 2.8% higher QTc interval when using this co-medication. [20] A study with 6 PM found no difference between the genotypes in adverse events and in the percentage of patients who discontinued in the study. [25] Another study found no difference in neurological, psychological and 'other' side effects for a group of 23 IM + PM after 1 week. The score for autonomic side effects, such as sweating and gastrointestinal complaints, was reduced after 1 week, but this is probably not clinically relevant. [26] There was no difference in the dose adjusted according to side effects and effect.

Three studies found no difference in response to depression (one with 16 PM, one with 9 PM and one with 23 IM + PM). [25–27] A study with 1 PM found no difference in response to peripheral neuropathy. [28] For a group with 22 IMs and 1 PM, a study found no difference in response to autism spectrum disorder. [29]

There was no association of escitalopram plasma concentration found with the number of side effects or the occurrence of side effects. The adverse events dry mouth was increased with high escitalopram plasma concentration (OR = 1.48). The side effect diarrhoea occurred less frequently with higher ratios of desmethylescitalopram/escitalopram (OR = 0.60; S). [25] Escitalopram CYP2C19

IM

The gene variation leads to an increase in the plasma concentration of escitalopram. This increases the risk of QT prolongation and torsade de pointes. [24] Side effects related to higher escitalopram levels: dry mouth, dizziness and diarrhoea. [25] A study found no increase in the QTc interval for a group of 1 PM and 21 IMs. However, the IM + PM group and the EM group were not comparable. The percentage of women was significantly lower for IM + PM. Women had a 3.7% higher QTc interval than men. In addition, the percentage of patients with a CYP2C19 substrate, inhibitor or inducer was significantly higher for IM + PM. There was a trend for a 2.8% higher QTc interval when using this co-medication. [20] A 94 IM study found no difference between the genotypes in adverse reactions and in the percentage of patients who discontinued the study. Another study found no difference in neurological, psychological and 'other' side effects for a group of 23 IM + PM after 1 week. The score for autonomic side effects, such as sweating and gastrointestinal complaints, was reduced after 1 week, but this is probably not clinically relevant. There was no difference in the dose adjusted according to side effects and effect. A study with 116 IM found no difference in response to depression. Another study found no difference for a group of 23 IM + PM. [26] A study with 7 IM found no difference in response to peripheral neuropathy. [28] For a group with 22 IMs and 1 PM, a study found no difference in response to autism spectrum disorder. [29]

There was no association of escitalopram plasma concentration found with the number of side effects or the occurrence of side effects. The adverse events dry mouth was increased with high escitalopram plasma concentration (OR = 1.48). The side effect diarrhoea occurred less frequently with higher ratios of

				desmethylescitalopram/escitalopram (OR =
				0.60; S). [25]
				A study with 28 UM found no difference in
			NO action is required with this	response to depression. [25] A study with 2
			gene-drug interaction.	UM found no difference in response to
			The gene variation increases	peripheral neuropathy. [28] For a group
			the conversion of escitalopram	with 9 UMs and 17 times *1/*17, a study
			to a low active substance.	found no difference in response to autism
			However, this does not lead to	spectrum disorder. [29]
			a reduced effect, a need for a	The first and last study also found no effect
Escitalopram	CYP2C19	UM	higher dose or an increase in	of the genotype on the final dose. The
			side effects. [24]	latter study found no difference in the rate
				of dose increase during the whole 6 week
			High desmethylescitalopram	treatment period, but found a lower rate of
			plasma concentration	dose increase in the fourth, fifth and sixth
			increased the occurrence of	week after the start of treatment. [29]
			vertigo (OR = 1.56; S). [25]	Two studies with a total of 27 UM found
				no difference in side effects. [24,25]
			The genetic polymorphism	
			leads to a reduced metabolic	
			capacity of CYP2D6. As a	
			result, the plasma	
			concentrations of	
			clomipramine and the active	
			metabolite may increase and	In a study, an increase in the percentage of
Clomipramine	CYP2D6	IM	those of the potentially	patients with adverse events was found
- 1			cardiotoxic hvdroxy-	with a factor of 1.9. [31]
			metabolites may decrease.	
			Side effects include dry	
			mouth, constipation, dizziness.	
			sedation, reduction of sexual	
			functions and transpiration.	
			[30]	
			The genetic polymorphism	In two cases, side effects were observed
			leads to a reduced metabolic	[32] The side effects disappeared in a case
			capacity of CYP2D6. As a	after lowering the clomipramine dose. [33]
			result, the plasma	As a result, plasma concentrations of
			concentrations of	clomipramine and N-
Clomipramine	CYP2D6	PM	clomipramine and the active	desmethylclomipramine reached the
			r	
			metabolite may increase and	therapeutic range.
			metabolite may increase and those of the potentially	therapeutic range. There was an increase in plasma
			metabolite may increase and those of the potentially cardiotoxic hydroxy-	therapeutic range. There was an increase in plasma concentration of clomipramine +

			Side effects include dry	For the plasma concentration of
			mouth, constipation, dizziness,	clomipramine, the results vary of a
			sedation, reduction of sexual	decrease by 34% to an increase of 185%.
			functions and perspiration.	[34,35]
			[30]	After single administration, clomipramine
				clearance decreased by 43% and half-life
				increased by 21%. [34]
			The genetic polymorphism	
			leads to an increased	
			metabolic capacity of CYP2D6.	
			As a result, the plasma	
			concentrations of	
			clomipramine and the active	
			metabolite may decrease and	
			those of the potentially	
			cardiotoxic hydroxyl-	In two cases with non-response, increased
			metabolites may increase.	plasma concentrations due to dose
			The inactive hydroxy-	escalation or CYP2D6 inhibition led to
			metabolites may be	recovery of the problem. [36,37] The dose
			cardiotoxic. These are formed	increase involved an increase of 150–300
			to an increased extent at UM	mg/day. Other reports of dose increase at
Clomipramine	CYP2D6	UM	and at dose increases. The	UM are not known.
			hydroxy-metabolites	On theoretical grounds, the risk of adverse
			accumulate in severe renal	reactions due to the possible cardiotoxic
			dysfunction.	hydroxy-metabolites increases with higher
			The active metabolite	plasma concentrations. [30]
			desmethylclomipramine does	
			not have serotonin reuptake	
			activity. The metabolite	
			therefore does not appear to	
			contribute to the treatment of	
			obsessive-compulsive disorder	
			and other anxiety disorders.	
			The metabolite does contribute	
			to toxicity and treatment of	
			depression. [30]	
			The genetic polymorphism	In a study no significant change in the
			leads to a reduced metabolic	percentage of patients with side effects was
			capacity of CYP2D6 which	found after 6 weeks use of nortriptyline.
Nortriptyline	CYP2D6	PM	may increase the plasma	[40]
			concentration of nortriptyline.	In a case, side effects were observed, which
			[38]	disappeared after normalization of the
				plasma concentration of nortriptyline and

			Side effects include dry	E-10-hydroxynortriptyline by dose
			mouth, constipation, dizziness,	reduction. [41]
			nervousness and tinnitus	The plasma concentration and AUC of
			(tinnitus), instability of the	nortriptyline increase by 146% and 232%,
			knees, drowsiness, inertia,	respectively. Oral clearance decreases with
			anxiety, agitation, hypotension	62%. [42–44]
			and fatigue. [39]	
			The genetic polymorphism	
			leads to a reduced metabolic	
			capacity of CYP2D6, which	
			may increase the plasma	
			concentration of nortriptyline.	
			[38] Anticholinergic adverse	
			reactions (dry mouth,	The plasma concentration and AUC of
			constipation, dizziness)	nortriptyline increase by 35–123% and 86-
Nortriptyline	CYP2D6	IM	reported in 1 case,	179%, respectively. [42,43,45,46] Clearance
			disappeared with dose	decreases by 31% -57%. [44,46] The dose
			reduction. In another case,	decreases to 70% of the dose at EM. [38]
			nervousness and tinnitus	
			(ringing in the ears), instability	
			of the knees, drowsiness,	
			slowness, anxiety, agitation	
			and side effects have been	
			reported. [39]	
			The genetic polymorphism	
			leads to an increased	
			metabolic capacity of CYP2D6,	On theoretical grounds, the risk of
			which may decrease the	cardiotoxic adverse reactions is increased
			plasma concentration of	with an increased plasma concentration of
			nortriptyline and increase the	E-10-hydroxynortriptyline and the risk of
			plasma concentration of the	reduced effectiveness of therapy is
			active metabolite E-10-OH-	increased with a reduced plasma
Nortriptyline	CYP2D6	UM	nortriptyline. E-10-	concentration of nortriptyline.[15]
			hydroxynortriptyline is about	In studies, the AUC of nortriptyline was
			half as potent as the parent	reduced by 23-41% and the oral clearance
			compound in inhibiting	increased by 85%. [44,47]
			norepinephrine uptake. It has	At 13 functional alleles: for nortriptyline
			a much lower anticholinergic	increase clearance by 62% -315% and
			activity than nortriptyline and	decrease half-life by 12%. [43,44]
			is associated with	
			cardiotoxicity. [38]	
	01.0015		The genetic polymorphism can	
Simvastatin	SLCO1B1	521TC	lead to a reduced transport of	Myopathy

simvastatin to the liver. This may increase the plasma concentration of simvastatin and thus the risk of myopathy. [48]

The genetic polymorphism

increases the plasma

and thus the risk of

myopathy.[48]

leads to a reduced transport of simvastatin to the liver. This

concentration of simvastatin

The risk of myopathy was increased. The increase of myopathy seems to increase with the simvastatin dose. In a study with simvastatin 80 mg/day, the OR for myopathy with creatine kinase was higher than 3 or 10 times the upper limit of normal 4.5 (95% CI [2.6-7.7]) per 521C allele. The calculated cumulative myopathy risk was 3% for 521CT versus 0.6% for 521TT. The OR for myopathy per 521C allele was 2.6 (95% CI [1.3-5.0]) for simvastatin 40 mg/day. [49] In a study with simvastatin 30 mg/day on average there was no significant increase in the risk of myopathy with creatine kinase higher than 10 times the upper limit of normal for (521TC + 521CC). [15] In a study with simvastatin 20 mg/day followed by 80 mg/day, the percentage of patients who either discontinued the study prematurely due to an adverse reaction or developed myalgia or muscle cramps or increased creatine kinase to more than 3 times the upper limit of normal had increased by a factor of 2.2 for (521TC + 521CC). [14]

Cholesterol reduction

In three studies there was no difference in the decrease of LDL cholesterol. [50–52] In one study, the decrease in LDL-cholesterol decreased by 3.2% per 521C allele. [48] The risk of myopathy was increased. The increase of myopathy seems to increase with the simvastatin dose. In a study with simvastatin 80 mg/day, the OR for myopathy with creatine kinase was higher than 3 or 10 times the upper limit of normal 4.5 (95% CI [2.6-7.7]) per 521C allele. The calculated cumulative myopathy risk was 3% for 521CT versus 0.6% for 521TT. The OR for myopathy per

Simvastatin	SLCO1

01B1 521CC

521C allele was 2.6 (95% CI [1.3-5.0]) for simvastatin 40 mg/day. [49] In a study with simvastatin 30 mg/day on average there was no significant increase in the risk of myopathy with creatine kinase higher than 10 times the upper limit of normal for (521TC + 521CC). [15] In a study with simvastatin 20 mg/day followed by 80 mg/day, the percentage of patients who either discontinued the study prematurely due to an adverse reaction or developed myalgia or muscle cramps or increased creatine kinase to more than 3 times the upper limit of normal had increased by a factor of 2.2 for (521TC + 521CC). [14]

Cholesterol reduction

In three studies there was no difference in the decrease of LDL cholesterol. [50–52] In one study, the decrease in LDL-cholesterol decreased by 3.2% per 521C allele. [48]

The results of a decrease in effectiveness vary to no difference in efficacy with respect to EM + IM in patients with depression. In a study with 3 PM there was 100% non-response. [53] In obsessive compulsive disorder, there was no difference in effectiveness. [56] For side effects, the results vary from no difference to an increase in the number of side effects by 369% (increase in the number of side effects per patient from 0.49 to 2.3 (S by 369%). [54,57] There is virtually no effect on the sodium concentration (decrease by 3%). [54] Cardiac adverse reactions (syncope,

palpitations, dizziness) have been reported. [58]

A study found an statistically significant increase in the number of patients with high alkaline phosphatase levels by a

The genetic polymorphism leads to a reduced metabolic capacity of CYP2D6. As a result, the plasma concentration of venlafaxine may increase and that of the active metabolite Odesmethylvenlafaxine may decrease. There are indications that the effectiveness of venlafaxine is reduced in patients with this genetic polymorphism. [53] Side effects related to elevated venlafaxine levels: elevation of alkaline phosphatase levels, sweating, insomnia, dry mouth, increased appetite, drowsiness, diminished effect, nausea, anxiety, palpitations,

Venlafaxine

CYP2D6

PM

vomiting and diarrhoea. [53–
55]
Cardiac events (syncope,
palpitations, dizziness) have
been reported.
Venlafaxine is possibly
cardiotoxic.
In one study, reduced efficacy
in depression was found in
patients with an elevated ratio
of venlafaxine/active
metabolite (PM). [53]

factor of 20.5 (from 0.2% to 4.1%) when comparing PM versus EM+IM+UM. The number of patients which has sweating as side-effect was statistically significant increased by a factor of 1.9 (from 13.3% to 24.5%) and the number of patients with insomnia increased statistically significant by a factor of 1.7 (from 22.4% to 38.8%). [57]

			The genetic polymorphism	
	CYP2D6		leads to a reduced metabolic	For venlafaxine + O-desmethyl
			capacity of CYP2D6. As a	
			result, the plasma	
			concentration of venlafaxine	
			may increase and that of the	
			active metabolite O-	
			desmethylvenlafaxine may	
			decrease. [53]	
			Venlafaxine is possibly	
			cardiotoxic.	venlafaxine, AUC increases by 14-17% and
			plasma concentration by 1-22 In one study, reduced efficacy	plasma concentration by 1-22%. [54,59,60]
			in depression was found in	The ratio of plasma concentrations of O-
			patients with an elevated ratio	desmethylvenlataxine/venlataxine
Venlafaxine		IM	decr of venlafaxine/active in th metabolite (PM). Cardiac events (syncope,	decreases by 52-66%. [54,60] The decrease
				in the ratio is mainly caused by an increase
				in the plasma concentration of venlafaxine.
			palpitations, dizziness) have	[53]
			been reported.	
			Side effects related to elevated	
			venlafaxine levels: elevation of	
			alkaline phosphatase levels,	
			sweating, insomnia, dry	
			mouth, increased appetite,	
			drowsiness, diminished effect,	
			nausea, anxiety, palpitations,	
			vomiting and diarrhoea. [53-	
			55]	

			The genetic polymorphism	
Venlafaxine	CYP2D6	UM	 leads to an increased metabolic capacity of CYP2D6. As a result, the plasma concentration of venlafaxine may decrease and that of the active metabolite O- desmethylvenlafaxine may increase. [53] 	In one study, the number of adverse events did not significantly decrease by 39% (0.49 to 0.3) and there was no difference in therapeutic efficacy (both 1.7 points). [54] In another study there was no effect on the sodium concentration. [53]
Doxepin	CYP2D6	IM	The genetic polymorphism leads to a reduced metabolic capacity of CYP2D6, which may increase plasma concentrations of doxepin and nordoxepin. [61] On theoretical grounds, the risk of side effects increases when plasma concentrations of doxepin and nordoxepin increase. [61]	In single-dose administration of 75 mg doxepin, the AUC of doxepin + nordoxepin increased by 19% and the oral clearance of doxepin decreased by 42%. [62]
Doxepin	CYP2D6	UM	 Genetic polymorphism leads to increased metabolic capacity of CYP2D6, which may decrease plasma concentrations of doxepin and nordoxepin and increase plasma concentrations of the hydroxy-metabolites. [61] On theoretical grounds, the risk of reduced effectiveness of therapy increases when plasma concentrations of doxepin and nordoxepin decrease. [61] 	The AUC of doxepin + nordoxepin was reduced by 55% (from 1061 to 479 nmol.h/L). [62]
Doxepin	CYP2D6	РМ	The genetic polymorphism leads to a reduced metabolic capacity of CYP2D6, which may increase plasma concentrations of doxepin and nordoxepin. [61]	The AUC of doxepin + nordoxepin increases by 116-190% with a single administration. [62,63] For multiple-dose administration, results vary from a decrease of 12% in plasma concentration of doxepin (a case) to an increase in the frequency of PMs from 0- 50% in patients with high plasma

normal plasma concentrations.

*The risk on a side effect when compared with EM; PM, poor metabolizer; IM, intermediate metabolizer; UM, ultrarapid metabolizer; EM, extensive metabolizer.

References Appendix 1

- 1. Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 AMITRIPTYLINE
 CYP2D6
 IM-PM-UM.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html
 (accessed on 29 March 2019).
- Baumann, P.; Jonzier-Perey, M.; Koeb, L.; Küpfer, A.; Tinguely, D.; Schöpf, J. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. *Int. Clin. Psychopharmacol.* 1986, 2, 102–112.
- 3. Steimer, W.; Zöpf, K.; von Aemlunxen, S.; Preiffer, H.; Bachofer, J.; Popp, J.; et al. Amitriptyline or not, that is the question: Pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. *Clin. Chem.* **2005**, *2*, 376–385.
- de Vos, A.; van der Weide, J.; Loovers, H.M. Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. *Pharmacogenomics J.* 2011, *5*, 359–367. doi: 10.1038/tpj.2010.39.
- Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.
 Farmacogenetica. ATOMOXETINE CYP2D6 PM-IM-UM. Available online: https://kennisbank.knmp.nl/article/farmacogenetica/intro.html (accessed on 29 March 2019).
- 6. Fijal, B.A.; Guo, Y.; Li, S.G.; Ahl, J.; Goto, T.; Tanaka, Y.; Nisenbaum, L.K.; Upadhyaya, H.P. CYP2D6 predicted metabolizer status and safety in adult patients with attention-deficit hyperactivity disorder participating in a large placebo-controlled atomoxetine maintenance of response clinical trial. *J. Clin. Pharmacol.* **2015**, *55*, 1167–1174.
- Loghin, C.; Haber, H.; Beasley, C.M.Jr.; Kothare, P.A.; Kauffman, L.; April, J.; et al. Effects of atomoxetine on the QT interval in healthy CYP2D6 poor metabolizers. *Br. J. Clin. Pharmacol.* 2013, 2, 538–49. doi: 10.1111/j.1365-2125.2012.04382.x.
- ter Laak, M.A.; Temmink, A.H.; Koeken, A.; van 't Veer, N.E.; van Hattum, P.R.; Cobbaert, C.M. Recognition of impaired atomoxetine metabolism because of low CYP2D6 activity. *Pediatr Neurol.* 2010, *3*, 159–62. doi: 10.1016/j.pediatrneurol.2010.04.004.
- 9. Michelson, D.; Read, H.A.; Ruff, D.D.; Witcher, J.; Zhang, S.; McCracken, J. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. *J. Am. Acad. Child Adolesc. N.a.* 2007, *46*, 242–251.
- 10. Cui, Y.M.; Teng, C.H.; Pan, A.X.; Yuen, E.; Yeo, K.P.; Zhou, Y.; Zhao, X.; Long, A.J.; Bangs, M.E.; Wise, S.D. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. *Br. J. Clin. Pharmacol.* 2007, *64*, 445–449.
- 11.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 ATORVASTATINE
 SLCO1B1
 521TC-521CC.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html
 (accessed on 29 March 2019).
- Puccetti, L.; Ciani, F.; Auteri, A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. *Atherosclerosis* 2010, *1*, 28–29. doi: 10.1016/j.atherosclerosis.2010.02.026.
- 13. Santos, P.C.; Gagliardi, A.C.; Miname, M.H.; Chacra, A.P.; Santos, R.D.; Krieger, J.E.; Pereira, A.C. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. *Eur. J. Clin. Pharmacol.* 2012, *3*, 273–9. doi: 10.1007/s00228-011-1125-1.
- 14. Voora, D.; Shah, S.H.; Spasojevic, I.; Ali, S.; Reed, C.R.; Salisbury, B.A.; Ginsburg, G.S. The SLCO1B1*5 genetic variant is associated with statin- induced side effects. J. Am. Coll. Cardiol. 2009, 17, 1609–1616. doi: 10.1016/j.jacc.2009.04.053.
- Brunham, L.R.; Lansberg, P.J.; Zhang, L.; Miao, F.; Carter, C.; Hoving, G.K.; Visscher, H.; Jukema, J.W.; Stalenhoef, A.F.; Ross, C.J.; et al. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. *Pharmacogenomics J.* 2012, *3*, 233–7. doi: 10.1038/tpj.2010.92.
- 16. Hermann, M.; Bogsrud, M.P.; Molden, E.; Asberg, A.; Mohebi, B.U.; Ose, L.; Retterstøl, K. Exposure of atorvastatin is unchanged but lactone and acid metabolites are increased several- fold in patients with atorvastatin-induced myopathy. *Clin. Pharmacol. Ther.* **2006**, *6*, 532–9.
- Rodrigues, A.C.; Perin, P.M.S.; Purim, S.G.; Silbiger, V.N.; Genvigir, F.D.V.; Willrich, M.A.V.; Arazi, S.S.; Luchessi, A.D.; Hirata, M.H.; Bernik, M.M.S.; et al. Pharmacogenetics of OATP Transporters Reveals That SLCO1B1 c.388A>G Variant Is Determinant of Increased Atorvastatin Response. *Int. J. Mol. Sci.* 2011, *12*, 5815–5827.

- Mega, J.L.; Morrow, D.A.; Brown, A.; Cannon, C.P.; Sabatine, M.S. Identification of genetic variants associated with response to statin therapy. *Arter. Thromb. Vasc. Boil.* 2009, 29, 1310–1315.
- 19.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 CITALOPRAM
 CYP2C19
 IM-PM-UM.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html
 (accessed on 29 March 2019).
- Kumar, Y.; Kung, S.; Shinozaki, G. CYP2C19 variation, not citalopram dose nor serum level, is associated with QTc prolongation. J. Psychopharmacol. 2014, 12, 1143–1148. doi: 10.1177/0269881114543720
- 21. Hilli, J.; Heikkinen, T.; Rontu, R.; Lehtimäki, T.; Kishida, I.; Aklillu, E.; Bertilsson, L.; Vahlberg, T.; Laine, K. MAO-A and COMT genotypes as possible regulators of perinatal serotonergic symptoms after in utero exposure to SSRIs. *Eur. Neuropsychopharmacol.* 2009, *5*, 363–370. doi: 10.1016/j.euroneuro.2009.01.006.
- Mrazek, D.A.; Biernacka, J.M.; O'Kane, D.J.; Black, J.L.; Cunningham, J.M.; Drews, M.S.; Snyder, K.A.; Stevens, S.R.; Rush, A.J.; Weinshilboum, R.M. CYP2C19 variation and citalopram response. *Pharmacogenet. Genomics*. 2011, 1, 1–9.
- 23. Yin, O.Q.; Wing, Y.-K.; Cheung, Y.; Wang, Z.-J.; Lam, S.-L.; Chiu, H.F.; Chow, M.S. Phenotype-genotype Relationship and Clinical Effects of Citalopram in Chinese Patients. J. Clin. Psychopharmacol. 2006, 26, 367–372.
- 24.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 ESCITALOPRAM
 CYP2C19
 UM-IM-PM.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html
 (accessed on 29 March 2019).
- Hodgson, K.; Tansey, K.E.; Uher, R.; Dernovsek, M.Z.; Mors, O.; Hauser, J.; Souery, D.; Maier, W.; Henigsberg, N.; Rietschel, M.; et al. Exploring the role of drug-metabolising enzymes in antidepressant side effects. *Psychopharmacology (Berl).* 2015, 14, 2609–2617. doi: 10.1007/s00213-015-3898-x.
- 26. Bousman, C.; Byron, K.; Peh, L.H.; Smith, D.J.; Tan, C.H.; Ng, C.; Sarris, J.; Singh, A.; Schweitzer, I. Pharmacogenetic polymorphisms and response to escitalopram and venlafaxine over 8 weeks in major depression. *Hum. Psychopharmacol. Clin. Exp.* 2013, *28*, 516–522.
- 27. Tsai, M.-H.; Lin, K.-M.; Hsiao, M.-C.; Shen, W.W.; Lu, M.-L.; Tang, H.-S.; Fang, C.-K.; Wu, C.-S.; Lu, S.-C.; Liu, S.C.; et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. *Pharmacogenomics* **2010**, *11*, 537–546.
- 28. Brasch-Andersen, C.; Møller, M.U.; Christiansen, L.; Thinggaard, M.; Otto, M.; Brosen, K.; Sindrup, S.H. A candidate gene study of serotonergic pathway genes and pain relief during treatment with escitalopram in patients with neuropathic pain shows significant association to serotonin receptor2C (HTR2C). *Eur. J. Clin. Pharmacol.* 2011, 67, 1131–1137.
- 29. Bishop, J.R.; Najjar, F.; Rubin, L.H.; Guter, S.J.; Owley, T.; Mosconi, M.W.; Jacob, S.; Cook, E.H. Escitalopram pharmacogenetics: CYP2C19 relationships with dosing and clinical outcomes in autism spectrum disorder. *Pharmacogenet. Genomics.* 2015, *11*, 548–554. doi: 10.1097/FPC.000000000000173.
- 30.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 CLOMIPRAMINE
 CYP2D6
 PM-IM-UM.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html (accessed on 29 March 2019).
 PM-IM-UM.
 Available
 Online:
- 31. Vandel, P.; Haffen, E.; Nezelof, S.; Broly, F.; Kantelip, J.P.; Sechter, D. Clomipramine, fluoxetine and CYP2D6 metabolic capacity in depressed patients. *Hum. Psychopharmacol.* 2004, *5*, 293–298.
- **32.** Balant-Gorgia, A.E.; Balant, L.P.; Garrone, G. High blood concentrations of imipramine or clomipramine and therapeutic failure: A case report study using drug monitoring data. *Ther. Drug Monit.* **1989**, *11*, 415–420.
- 33. Stephan, P.L.; Jaquenoud Sirot, E.; Mueller, B.; Eap, C.B.; Baumann, P. Adverse drug reactions following nonresponse in a depressed patient with CYP2D6 deficiency and low CYP 3A4/5 activity. Pharmacopsychiatry. **2006**, *4*, 150–152.
- 34. Nielsen, K.K.; Brosen, K.; Gram, L.F.; Danish University Antidepressant Group. Steady-state plasma levels of clomipramine and its metabolites: Impact of the sparteine/debrisoquine oxidation polymorphism. *Eur. J. Clin. Pharmacol.* 1992, 43, 405–411.
- 35. Danish University Antidepressant Group. Clomipramine dose- effect study in patients with depression: clinical end points and pharmacokinetics. *Clin. Pharmacol. Ther.* **1999**, *2*, 152–165.
- Bertilsson, L.; Dahl, M.L.; Sjögvit, F.; Aberg-Wistedt, A.; Humble, M.; Johansson, I.; Lundqvist, E.; Ingelman-Sundberg, M. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. *Lancet.* 1993, 8836.
- 37. Baumann, P.; Broly, F.; Kosel, M.; Eap, C.B. Ultrarapid metabolism of clomipramine in a therapy-resistant depressive patient, as confirmed by CYP2 D6 genotyping. *Pharmacopsychiatry*. **1998**, *2*, 72.
- 38.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 NORTRIPTYLINE
 CYP2D6
 IM-PM-UM.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html. 2018
 (accessed on 29 March 2019).

- 39. Chen, S.; Chou, W.-H.; Blouin, R.A.; Mao, Z.; Humphries, L.L.; Meek, Q.C.; Neill, J.R.; Martin, W.L.; Hays, L.R.; Wedlund, P.J. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: Screening costs and influence on clinical outcomes in psychiatry. *Clin. Pharmacol. Ther.* 1996, 60, 522–534.
- 40. Roberts, R.L.; Mulder, R.T.; Joyce, P.R.; Luty, S.E.; Kennedy, M.A. No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. *Hum Psychopharmacol.* 2004, *1*, 17–23.
- **41.** Bertilsson, L.; Mellström, B.; Sjökvist, F.; Mårtenson, B.; Asberg, M. Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: clinical implications. *Lancet.* **1981**, *8219*, 560–1.
- 42. Dahl, M.-L.; Bertilsson, L.; Nordin, C. Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to theCYP2D6 genotype. *Psychopharmacology* **1996**, *123*, 315–319.
- 43. Dalén, P.; Dahl, M.-L.; Ruiz, M.L.B.; Nordin, J.; Bertilsson, L. 10-hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. *Clin. Pharmacol. Ther.* **1998**, *63*, 444–452.
- 44. Kvist EE, Al-Shurbaji A, Dahl ML, Nordin C, Alván G, Ståhle L. Quantitative pharmacogenetics of nortriptyline: a novel approach. *Clin. Pharmacokinet.* **2001**, *40*, 869–877.
- Murphy, G.M.; Pollock, B.G.; Kirshner, M.A.; Pascoe, N.; Cheuk, W.; Mulsant, B.H.; Reynolds, C.F.3rd. CYP2D6 genotyping with oligonucleotide microarrays and nortriptyline concentrations in geriatric depression. *Neuropsychopharmacol.* 2001, 11, 869–877.
- 46. Yue, Q.-Y.; Zhong, Z.-H.; Tybring, G.; Dalén, P.; Dahl, M.-L.; Bertilsson, L.; Sjöqvist, F. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. *Clin. Pharmacol. Ther.* **1998**, *64*, 384–390.
- 47. Lee, S.Y.; Sohn, K.M.; Ryu, J.Y.; Yoon, Y.R.; Shin, J.G.; Kim, J.W. Sequence-based CYP2D6 genotyping in the Korean population. *Ther. Drug Monit.* 2006, *3*, 382–387.
- 48.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 SIMVASTATINE
 SLCO1B1
 521TC-521CC.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html (accessed on 29 March 2019).
- SEARCH Collaborative Group; Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. SLCO1B1 variants and statin-induced myopathy -- a genomewide study. N. Engl. J. Med. 2008, 8, 789–799. doi: 10.1056/NEJMoa0801936.
- 50. Sortica, V.A.; Fiegenbaum, M.; Lima, L.O.; Van der Sand, C.R.; Van der Sand, L.C.; Ferreira, M.E.; Pires, R.C.; Hutz, M.H. SLCO1B1 gene variability influences lipid-lowering efficacy on simvastatin therapy in Southern Brazilians. *Clin. Chem. Lab. Med.* 2012, *3*, 441–448. doi: 10.1515/cclm.2011.804.
- **51.** Hu, M.; Mak, V.W.; Tomlinson, B. Intronic variants in SLCO1B1 related to statin-induced myopathy are associated with the low-density lipoprotein cholesterol response to statins in Chinese patients with hyperlipidaemia. *Pharmacogenetics Genom.* **2012**, *22*, 803–806.
- Bailey, K.M.; Romaine, S.P.; Jackson, B.M.; Farrin, A.J.; Efthymiou, M.; Barth, J.H.; Copeland, J.; McCormack, T.; Whitehead, A.; Flather, M.D.; et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: The GEOSTAT-1 Study. *Circ. Cardiovasc. Genet.* 2010, *3*, 276– 285. doi:10.1161/CIRCGENETICS.109.898502.
- 53.
 Kennisbank, Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Version 3.0.5.

 Farmacogenetica.
 VENLAFAXINE
 CYP2D6
 PM-IM-UM.
 Available
 online:

 https://kennisbank.knmp.nl/article/farmacogenetica/intro.html
 (accessed on 29 March 2019).
- 54. Shams, M.E.E.; Arneth, B.; Hiemke, C.; Dragicevic, A.; Müller, M.J.; Kaiser, R.; Lackner, K.; Härtter, S. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. *J. Clin. Pharm. Ther.* **2006**, *31*, 493–502.
- 55. McAlpine, D.E.; O'Kane, D.J.; Black, J.L.; Mrazek, D.A. Cytochrome P450 2D6 genotype variation and venlafaxine dosage. *Mayo Clin. Proc.* 2007, *9*, 1065–1068.
- 56. van Nieuwerburgh, F.C.; Denys, D.A.; Westenberg, H.G.; Deforce, D.L. Response to serotonin reuptake inhibitors in OCD is not influenced by common CYP2D6 polymorphisms. *Int. J. Psychiatry Clin. Pract.* 2009, 1, 345–348.
- 57. Lobello, K.W.; Preskorn, S.H.; Guico-Pabia, C.J.; Jiang, Q.; Paul, J.; Nichols, A.I.; Patroneva, A.; Ninan, P.T. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: A secondary analysis of 4 studies in major depressive disorder. J. Clin. Psychiatry 2010, 11, 1482–1487. doi:10.4088/JCP.08m04773blu.
- 58. Lessard, E.; A Yessine, M.; A Hamelin, B.; O'Hara, G.; Leblanc, J.; Turgeon, J. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. *Pharmacogenetics* **1999**, *9*, 435–443.
- Fukuda, T.; Yamamoto, I.; Nishida, Y.; Zhou, Q.; Ohno, M.; Takada, K.; Azuma, J. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. *Br. J. Clin. Pharmacol.* 1999, 47, 450–453.
- 60. Hermann, M.; Hendset, M.; Fosaas, K.; Hjerpset, M.; Refsum, H. Serum concentrations of venlafaxine and its metabolites O- desmethylvenlafaxine and N- desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele. *Eur. J. Clin. Pharmacol.* 2018, 5, 483–487.

- 62. Kirchheiner, J.; Meineke, I.; Müller, G.; Roots, I.; Brockmöller, J. Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of Eand Z-doxepin in healthy volunteers. *Pharmacogenetics*. 2002, *7*, 571–580.
- 63. Kirchheiner, J.; Henckel, H.-B.; Franke, L.; Meineke, I.; Tzvetkov, M.; Uebelhack, R.; Roots, I.; Brockmöller, J. Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets. *Pharmacogenetics Genom.* 2005, *15*, 579–587.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).