Supplementary information

A Platinum(II) Molecular Hinge with Motions Visualized by Phosphorescence Changes

Yeye Ai^[a,b] Michael Ho-Yeung Chan,^[b] Alan Kwun-Wa Chan,^[b] Maggie Ng,^[b] Yongguang Li,^{*[a]} Vivian Wing-Wah Yam^{*[a,b]}

[a] Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China

[b] Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

E-mail: liyongguang@mail.sysu.edu.cn; wwyam@hku.hk

Material and Methods

The synthetic routes of 1–5 were shown in Scheme S1. Complex 6, chloroplatinum(II) precursors P-1 and P-2, compounds C-1 and C-6, and 1,1'-(1,3-butadiyne-1,4-diyl)bis[2-ethynylbenzene] (L') in Schemes S1 and S2 were synthesized according to the reported literatures (1–4). Compound L1, L2 and P-3 were synthesized according to Scheme S2.

Scheme S1. Synthetic routes of 1–5.

Scheme S2. Synthetic routes of ligands and chloroplatinum(II) precursors.

Experimental Procedures

Synthesis of alkynylplatinum(II) complexes

Synthesis of **1**. A mixture of **L1** (30 mg, 0.030 mmol) and NaOH (6 mg, 0.15 mmol) in a methanol (50 mL) solution was stirred for 20 minutes at room temperature under nitrogen atmosphere. Subsequently, [(N^C^N)PtCl] (29 mg, 0.064 mmol) was added to the above reaction mixture. The mixture was stirred for 24 hours at room temperature. Slow precipitation with methanol (100 mL) in batches for 10 min afforded the pure product as a yellow solid. Yield: 43 mg, 0.023 mmol, 77 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.85–0.90 (m, 12H, –CH₃), 1.25–1.52 (m, 72H, –CH₂–), 1.75–1.91 (m, 8H, –CH₂–), 3.95–4.02 (m, 8H, –OCH₂–), 6.28 (d, *J* = 2.1 Hz, 2H, phenyl), 6.59 (d, *J* = 2.1 Hz, 2H, phenyl), 6.71 (t, *J* = 7.6 Hz, 2H, phenyl), 6.96 (d, *J* = 7.6 Hz, 4H, pyridyl); MS (MALDI): *m*/*z*: 1837.914 [*M*+H]⁺; elemental analysis calcd (%) for C₁₀₀H₁₂₆N₄O₄Pt₂: C 65.33, H 6.91, N 3.05; found: C 65.54, H 6.78, N 2.95; mp/°C: complex decomposed before melting.

Synthesis of 2. A mixture of L' (20 mg, 0.080 mmol) and NaOH (8 mg, 0.32 mmol) in a methanol (50 mL) solution was stirred for 20 min at room temperature under nitrogen atmosphere. Subsequently, [(N^C^N-CF₃)PtCl] (89 mg, 0.17 mmol) was added to the above reaction mixture. The mixture was stirred for 24 hours at room temperature. Slow precipitation with methanol (100 mL) in batches for 10 min afforded the pure product as an orange solid. Yield: 78 mg, 0.063 mmol, 79 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 7.06 (s, 4H, phenyl), 7.15 (t, *J* = 7.6 Hz, 2H, phenyl), 7.24–7.32 (m, 10H, pyridyl and phenyl), 7.40 (d, *J* = 7.6 Hz, 2H, phenyl), 7.55 (d, *J* = 7.7 Hz, 2H, phenyl), 7.78 (t, *J* = 7.5 Hz, 4H, pyridyl), 9.46 (d, *J* = 4.9 Hz, 4H, pyridyl); MS (MALDI): *m*/*z*: 1237.945 [*M*+H]⁺; elemental analysis calcd (%) for C₅₄H₂₈F₆N₄Pt₂•0.5CH₂Cl₂: C 51.17, H 2.29, N 4.38; found: C 51.07, H 2.50, N 4.32; mp/°C: complex decomposed before melting. Synthesis of 3. The procedures were similar to that of 1, except P-3 (50 mg, 0.078) mmol) was used in place of [(N^C^N)PtCl] to give the product as a deep-red solid. Yield: 52 mg, 0.024 mmol, 64 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.86–0.89 (m, 12H, –CH₃), 1.27–1.49 (m, 108H, –CH₂– and –CH₃), 1.74-1.81 (m, 4H, -CH₂-), 1.88-1.95 (m, 4H, -CH₂-), 3.94 (t, J = 6.5 Hz, 4H, $-OCH_{2}$, 4.05 (t, J = 6.5 Hz, 4H, $-OCH_{2}$), 6.29 (d, J = 1.8 Hz, 2H, phenyl), 6.50 (d, J = 1.8 Hz, 2H, phenyl), 6.94 (s, 4H, phenyl), 7.26 (s, 4H, pyridyl, mixed with solvent peak), 7.34 (d, J = 5.9 Hz, 4H, pyridyl), 9.30 (d, J = 5.9 Hz, 4H, pyridyl); MS (MALDI): m/z: 2199.628 [*M*+H]⁺; elemental analysis calcd (%) for C₁₁₈H₁₅₆F₆N₄O₄Pt₂: C 64.48, H 7.10, N 2.55; found: C 64.20, H 6.98, N 2.77; mp/°C: 197-199.

<u>Synthesis of 4</u>. The procedures were similar to that of 1, except C-3 (33 mg, 0.060 mmol) was used in place of L1 to give the product as a yellow solid. Yield: 25 mg, 0.025 mmol, 47 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.85–0.90 (m, 6H, –CH₃), 1.20–1.48 (m, 36H, –CH₂–), 1.72–1.80 (m, 2H, –CH₂–), 1.89–1.96 (m, 2H, –CH₂–), 3.93 (t, *J* = 6.5 Hz, 2H, –OCH₂–), 3.03 (t, *J* = 6.8 Hz, 2H, –OCH₂–), 6.40 (d, *J* = 1.8 Hz, 1H, phenyl), 6.76 (d, *J* = 1.8 Hz, 1H, phenyl), 7.17–7.26 (m, 3H, pyridyl and phenyl, mixed with solvent peak), 7.52 (d, *J* = 7.7 Hz, 2H, phenyl), 7.67 (d, *J* = 8.0 Hz, 2H, pyridyl), 7.92 (t, *J* = 7.6 Hz, 2H, pyridyl), 9.79 (d, *J* = 5.4 Hz, 2H, pyridyl); MS (MALDI): *m*/*z*: 975.541 [*M*+H]⁺; elemental analysis calcd (%) for C₄₈H₆₃N₂O₂BrPt: C 59.20 4, H 6.47, N 2.88; found: C 59.49, H 6.20, N 2.75; mp/°C: 121–123.

<u>Synthesis of 5</u>. The procedures were similar to that of 1, except L2 (50 mg, 0.052 mmol) was used in place of L1 to give the product as a yellow solid. Yield: 45 mg, 0.032 mmol, 66 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.85–0.89 (m, 6H, –CH₃), 1.26–1.50 (m, 36H, –CH₂–), 1.69–1.88 (m, 4H, –CH₂–), 3.83 (t, *J* = 6.5 Hz, 2H, –OCH₂–), 3.97–4.03 (m, 2H, –OCH₂–), 6.30 (d, *J* = 2.0 Hz, 1H, phenyl), 6.41 (s, 1H, phenyl), 6.45 (d, *J* = 1.4 Hz, 2H, phenyl), 6.73 (d, *J* = 2.0 Hz, s5

1H, phenyl), 7.20 (t, J = 7.8 Hz, 1H, phenyl), 7.30 (t, J = 6.0 Hz, 2H, pyridyl, mixed with solvent peak), 7.50 (d, J = 7.8 Hz, 2H, phenyl), 7.64 (d, J = 8.2 Hz, 2H, pyridyl), 7.85 (t, J = 8.2 Hz, 2H, pyridyl), 9.73 (d, J = 6.0 Hz, 2H, pyridyl); MS (MALDI): m/z: 1389.135 [M+H]⁺; elemental analysis calcd (%) for C₈₂H₁₁₆N₂O₄Pt: C 70.94, H 8.36, N 2.02; found: C 70.78, H 8.49, N 2.25; mp/°C: 64–66.

Synthesis of chloroplatinum(II) precursor complexes

<u>Synthesis of P-3</u>. The compound was synthesized according to the modification of a reported procedure (5). **C-10** (130 mg, 0.31 mmol) and K₂PtCl₄ (125 mg, 0.30 mmol) were added into glacial acetic acid (15 mL), and the mixture was heated for 110 °C for 3 days. After cooling to room temperature, slow participation with ethanol (30 mL) in batches afforded the pure product as an orange solid. Yield: 110 mg, 0.17 mmol, 57 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 1.43 (s, 18H, –CH₃), 7.35 (d, *J* = 6.1 Hz, 2H, pyridyl), 7.69–7.73 (m, 4H, pyridyl and phenyl), 9.24 (d, *J* = 6.1 Hz, 2H, pyridyl); MS (MALDI): *m*/*z*: 606.278 [*M*–Cl]⁺; elemental analysis calcd (%) for C₂₅H₂₆N₂F₃ClPt: C 46.80, H 4.06, N 4.37; found: C 46.65, H 4.26, N 4.50; mp/°C: > 300.

Synthesis of ligand precursors

Synthesis of C-2. The compound was synthesized according to the modification of a reported procedure (6). To a solution of C-1 (4.4 g, 8.4 mmol) in dry DMF (50 mL) was added *N*-iodosuccinimide (2.0 g, 8.8 mmol). The mixture was heated at 70 °C for overnight under nitrogen atmosphere. Upon completion of the reaction, dichloromethane (200 mL) was added into the reaction mixture, which was washed with deionized water for 2 times. The organic layer was dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel using dichloromethane–petroleum ether (1:20 v / v) as the eluent to give C-2 as a white solid. Yield: 3.9 g, 6.0 mmol, 71 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.82 (t, *J* = 6.7 Hz, 6H, –CH₃), 1.21–1.52 (m, 36H, –CH₂–), 1.65–1.80 (m, 4H, –CH₂–), 3.81–3.86 (m, S6

4H, -OCH₂-), 6.24 (d, *J* = 2.4 Hz, 1H, phenyl), 6.77 (d, *J* = 2.4 Hz, 1H, phenyl); MS (MALDI): *m/z*: 652.35 [*M*]⁺.

Synthesis of C-3. The compound was synthesized by a Sonogashira coupling reaction according to the modification of reported procedure (7). C-2 (1.2 g, 1.8 mmol), $Pd(PPh_3)_2Cl_2$ (66 mg, 0.09 mmol), CuI (18 mg, 0.09 mmol) and trimethylsilylacetylene (TMSA, 1.0 mL, 7.2 mmol) were added to the flask with degassed triethylamine (60 mL), and the mixture was stirred overnight at room temperature under nitrogen atmosphere. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel using dichloromethane-petroleum ether (1:20 v / v) as the eluent to give C-3-TMS (0.9 g, 1.45 mmol) as a light-yellow solid. Subsequently, to the THF-methanol (1:1 v / v, 50 mL) solution mixture of C-3-TMS (0.5 g, 0.8 mmol) was added K₂CO₃ (167 mg, 1.2 mmol). The reaction mixture was stirred for 2 hours at room temperature. Then the reaction mixture was poured into dichloromethane (100 mL) and was washed with deionized water for 2 times. The organic layer was dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude product, which was used for subsequent reactions without further purification. Yield: 390 mg, 0.71 mmol, 69 %; ¹H NMR (400 MHz, CDCl₃, 298 K, relative to Me₄Si, δ / ppm): 0.88 (t, J = 6.6 Hz, 6H, -CH₃), 1.26-1.52 (m, 36H, -CH₂-), 1.72-1.85 (m, 4H, -CH₂-), 3.90-3.99 (m, 4H, -OCH₂-), 6.32 (d, J = 1.5 Hz, 1H, phenyl), 6.69 (d, J = 1.5 Hz, 1H, phenyl); MS (MALDI): m/z: 551.170 [M+H]⁺.

<u>Synthesis of C-4</u>: The compound was synthesized according to the modification of a reported procedure (8). CuI (82 mg, 0.44 mmol) was dispersed in a solution of dichloromethane (50 mL), N,N,N',N'-tetramethylethylenediamine (0.16 mL, 1.1 mmol) was added and the mixture was stirred for 5 min. The dichloromethane solution of C-3 (1.2 g, 2.2 mmol) was then added to the mixture and stirred for overnight at room temperature at the oxygen atmosphere. Upon completion of the reaction, the reaction mixture was washed with deionized water for 2 times and the solution of Γ times and the mixture was been added to the mixture and stirred for the reaction.

organic layer was dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel using dichloromethane–petroleum ether (1:5 v / v) as the eluent to give **C-4** as a pale-yellow solid. Yield: 900 mg, 0.82 mmol, 75 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.85–0.89 (m, 12H, –CH₃), 1.23–1.50 (m, 72H, –CH₂–), 1.72–1.86 (m, 8H, –CH₂–), 3.91–3.99 (m, 8H, –OCH₂–), 6.34 (d, *J* = 2.0 Hz, 2H, phenyl), 6.70 (d, *J* = 2.0 Hz, 2H, phenyl); MS (MALDI): *m/z*: 1095.655 [*M*+H]⁺.

Synthesis of C-5 and C-7. The compounds were synthesized according to the modification of a reported procedure (9). To a solution of C-3 (1.32 g, 2.0 mmol) and AgNO₃ (0.41 g, 2.4 mmol) in acetone (30 mL) was added. NBS (0.53 g, 3.0 mmol), and the mixture was stirred in the dark at room temperature for overnight. Removal of the solvent under reduced pressure afforded the crude product C-5 (1.0g, 1.6 mmol) which was used without further purification. CuI (0.3 g, 1.6 mmol) was dispersed in a mixture of butylamine (6 mL) and water (8 mL), and the mixture was stirred for 5 min. Subsequently, NH₂OH•HCl was added in portions until the solution turned colorless. C-6 (0.6 g, 1.3 mmol) was added and the mixture was stirred for 5 min. The dichloromethane solution of C-5 (0.8 g, 1.3 mmol) was then added dropwise to the mixture and stirred for another 30 min at room temperature. Upon completion of the reaction, the reaction mixture was washed with deionized water for 2 times and the organic layer was dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel using dichloromethane–petroleum ether (1:5 v / v) as the eluent to give C-7 as a yellow solid. Yield: 630 mg, 0.62 mmol, 38 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.85–0.90 (m, 12H, –CH₃), 1.24–1.50 (m, 72H, -CH₂-), 1.72–1.87 (m, 8H, -CH₂-), 3.89–4.00 (m, 8H, -OCH₂-), 6.35 (d, J = 1.8 Hz, 1H, phenyl), 6.46 (s, 1H, phenyl), 6.65 (d, J = 2.0 Hz, 2H, phenyl), 6.71 (d, J = 1.8 Hz, 1H, phenyl); MS (MALDI): m/z: 1019.942 [M+H]⁺.

Synthesis of C-8. The compounds were synthesized according to the modification of a reported procedure (10). 3,5-Dibromobenzotrifluoride (1.0 g, 3.3 mmol), bispinacolatodiboron (1.8 g, 7.2 mmol), Pd(dppf)Cl₂ (178 mg, 0.23 mmol) and KOAc (2.6 g, 26.2 mmol) were added to the flask with degassed dioxane (70 mL), and the mixture was stirred at 110 °C for 24 hours under nitrogen atmosphere. Upon cooling to the room temperature, ethyl acetate (150 mL) was added. The reaction mixture was washed with deionized water for 2 times and the organic layer was dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel using ethyl acetate–petroleum ether (1:15 v / v) as the eluent to give C-8 as a white solid. Yield: 1.0 g, 2.5 mmol, 78 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me4Si, δ / ppm): 1.35 (s, 24H, –CH₃), 8.13 (s 2H, phenyl), 8.41 (s 1H, phenyl); MS (MALDI): *m/z*: 399.55 [*M*+H]⁺.

Synthesis of C-9. The compounds were synthesized according to the modification of a reported procedure (10). 2-Bromopyridine (1.1 g, 6.7 mmol), C-8 (1.0 g, 3.0 mmol), Pd(PPh₃)₄ (345 mg, 0.30 mmol) and Na₂CO₃ (2.1 g, 15.0 mmol) were added to the flask with degassed DME/H₂O mixture (60 mL, 1:1, v/v), and the mixture was stirred at 100 °C for 24 hours under nitrogen atmosphere. Upon cooling to the room temperature, ethyl acetate (100 mL) was added. The reaction mixture was washed with deionized water for 2 times and the organic layer was dried over anhydrous MgSO₄. Removal of the solvent under reduced pressure afforded the crude product, which was purified by column chromatography on silica gel using ethyl acetate–petroleum ether (1:8 v / v) as the eluent to give C-9 as a white solid. Yield: 0.7 g, 2.3 mmol, 77 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 7.32 (t, *J* = 6.2 Hz, 2H, pyridyl), 7.83 (t, *J* = 7.0 Hz, 2H, pyridyl), 7.89 (d, *J* = 7.9 Hz, 2H, pyridyl), 8.34 (s, 2H, phenyl), 8.75 (d, *J* = 4.6 Hz, 2H, pyridyl), 8.83 (s, 1H , phenyl); MS (MALDI): *m/z*: 301.23 [*M*+H]⁺;

Synthesis of C-10.

similar **C-9**. The procedures were that of compound except to 2-bromo-4-(tert-butyl)pyridine (296 mg, 1.38 mmol) was used in place of 2-Bromopyridine. The crude product was purified by column chromatography on silica gel using ethyl acetate-petroleum ether (1:10 v / v) as the eluent to give the desired product as a gray-white solid. Yield: 130 mg, 0.31 mmol, 50 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 1.40 (s, 18H, -CH₃), 7.31 (d, J = 5.2 Hz, 2H, pyridyl), 7.80 (s, 2H, pyridyl), 8.28 (s, 2H, phenyl), 8.65 (d, J = 5.2 Hz, 2H, pyridyl), 8.74 (s, 1H, phenyl); MS (MALDI): *m/z*: 413.34 [*M*+H]⁺.

Synthesis of alkynyl ligands

<u>Synthesis of L1</u>. The procedures were similar to that of compound C-3, except C-4 (200 mg, 0.2 mmol) was used in place of C-2 with heating at 70 °C. The crude product was purified by column chromatography on silica gel using dichloromethane–petroleum ether (1:3 v / v) as the eluent to give the desired product as an off-white solid. Yield: 110 mg, 0.11 mmol, 52 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.86–0.89 (m, 12H, –CH₃), 1.20–1.47 (m, 72H, –CH₂–), 1.73–1.87 (m, 8H, –CH₂–), 3.22 (s, 2H, –C≡C–H), 3.93 (t, *J* = 6.5 Hz, 4H, –OCH₂–), 4.00 (t, *J* = 6.7 Hz, 4H, –OCH₂–), 6.44 (d, *J* = 1.8 Hz, 2H, phenyl), 6.62 (d, *J* = 1.8 Hz, 2H, phenyl); MS (MALDI): *m/z*: 986.669 [*M*]⁺; mp/°C: 53–55.

<u>Synthesis of L2</u>. The procedures were similar to that of compound L1, except C-7 (400 mg, 0.39 mmol) was used in place of C-4. The crude product was purified by column chromatography on silica gel using dichloromethane–petroleum ether (1:3 v / v) as the eluent to give the desired product as a yellow solid. Yield: 275 mg, 0.29 mmol, 74 %; ¹H NMR (400 MHz, 298 K, CDCl₃, relative to Me₄Si, δ / ppm): 0.83–0.90 (m, 12H, –CH₃), 1.24–1.51 (m, 72H, –CH₂–), 1.72–1.87 (m, 8H, –CH₂–), 3.34 (s, 1H, –C=C–H), 3.89–4.01 (m, 8H, –OCH₂–), 6.42 (d, *J* = 1.3 Hz, 1H, phenyl), 6.46 (s, 1H, phenyl), 6.60 (d, *J* = 1.3 Hz, 1H, phenyl), 6.65 (d, *J* = 1.8 Hz, 2H, phenyl); MS (MALDI): *m/z*: 962.981 [*M*]⁺; mp/°C: 45–47.

Physical Measurements and Instrumentations

All ¹H NMR spectra were recorded on a Bruker DPX 400 FT–NMR spectrometer 400 MHz. Matrix assisted laser desorption ionization time of flight mass were performed on a Bruker ultrafleXtreme MALDI–TOF/TOF mass spectrometer using positive-ion mode (Bruker Daltonics). Elemental analyses of the complexes were performed on a Vario EL elemental analyzer. Melting points (mp) were measured on a Buchi M-560 apparatus with heating rate of 1°C/min.

Electronic absorption spectra and temperature-dependent electronic absorption spectra were recorded using a Shimadzu UV-3600 spectrophotometer and a Varian Cary 50 UV-vis spectrophotometer, respectively, with the monitoring of temperature using the Varian Cary single-cell Peltier thermostat. The photoluminescence spectra were measured on Edinburgh Instruments FS5 and Edinburgh Instruments FLS980 fluorescence spectrophotometers. Emission lifetime measurements were performed using LP980 transient absorption spectrometer (Edinburgh Instruments Ltd, UK). The excitation source was the 355 nm output (third harmonic) of an Nd: YAG laser (Quanta-Ray Lab130 Pulsed Nd: YAG Laser) and the probe light source was a Xe900 450 W xenon arc lamp. All solutions for photophysical studies were prepared under high vacuum in a 10-cm³ round-bottomed flask equipped with a sidearm 1-cm fluorescence cuvette and sealed from the atmosphere by a Rotaflo HP6/6 quick-release Teflon stopper. Solutions were rigorously degassed on a high-vacuum line in a two-compartment cell with no less than four successive freeze-pump-thaw cycles. The emission quantum yields were measured on a Hamamatsu C9920-02G absolute PL quantum yield measurement system. Time-resolved emission spectra were obtained using an Edinburgh Instrument LP980KS transient absorption spectrometer equipped with a R928P photomultiplier tube, with capability for time-resolved emission measurements. Dynamic light scattering spectra were obtained using a Malvern Panalytical Zetasizer Nano ZS90 particle size analyzer. Scanning electron microscope experiments were performed by using ZEISS GeminiSEM 500. The atomic force microscopy measurements were performed on Bruker Dimension Scanfast in a tapping mode. The SEM and AFM samples were S11

prepared by dropcasting solutions onto silicon wafers and allowing them to dry naturally. Transmission electron micrographs (TEM) were recorded on a FEI Tecnai G2 Spirit. The samples for TEM were prepared by dropcasting solutions on the carbon-coated copper grids.

Time-Dependent Emission and UV-Vis Spectral Changes

1. Solutions of **1** in dichloromethane (0.3 mL, 5.4×10^{-4} M) were injected into hexane, cyclohexane, decane, or methylcyclohexane (2.7 mL) to yield the respective solution mixtures of **1** in hexane-dichloromethane, cyclohexane-dichloromethane, decane-dichloromethane, methylcyclohexane-dichloromethane (9:1, v/v) (5.4×10^{-5} M). After rapid mixing, the emission intensity at 516 nm was recorded with time.

2. Solutions of **1** in dichloromethane (0.3 mL) were injected into hexane or cyclohexane (2.7 mL) to yield solution mixtures of **1** in hexane-dichloromethane, cyclohexane-dichloromethane (9:1, v/v) respectively. After rapid mixing, the absorbance intensity at 425 nm was recorded with time under different conditions.

Crystal Structure Determination

Single crystals of 2 suitable for X-ray diffraction studies were grown by vapor diffusion of diethyl ether into a concentrated dichloromethane solution of 2. Single-crystal diffraction data of 2 were collected on an Agilent SuperNova X-ray diffractometer using micro-focus dual with X-ray Source of Cu-Ka radiation (λ = 1.54178 Å) at 150 K. Using Olex2 (11), the structure of the crystal was solved with the ShelXS (12) structure solution program using direct methods and refined with the XL (12) refinement package using least squares minimization. CCDC XXX contains the supplementary crystallographic data for 2. This can be obtained free of charge Crystallographic from the Cambridge Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational Details

All the density functional theory (DFT) calculations were performed using the Gaussian 09 suite of programs (13). The ground-state geometries of both the open and closed forms of 1 and 3 were fully optimized by DFT with the hybrid meta exchange-correlation M06 functional (14), which is recommended for application in organometallic and metal coordination compounds and for non-covalent interactions (14, 15), in conjunction with the solvation model density (SMD) continuum method (16) using dichloromethane as the solvent. Vibrational frequencies were then computed for all stationary points to verify that each was a minimum (NIMAG = 0) on the potential energy surface (PES). The lowest-lying triplet excited state (T_1) of the open form of 1 has also been optimized with the unrestricted method (UM06) in order to calculate its emission energy. All calculations were performed with the Stuttgart effective core potentials (ECPs) and the associated basis set to describe Pt (17), with two f-type polarization functions ($\zeta = 0.70$ and 0.14) (18), and the 6-31G(d,p) basis set (19-22) to describe all other atoms. All the DFT calculations were performed with a pruned (99,590) grid for numerical integration. The Cartesian coordinates of the optimized ground-state geometries of the open and closed forms of 1 and 3, and those of the optimized T_1 geometry of the open form of 1, are given in Tables S3–S7.

Figure S1. (A) Perspective drawing of **2**. Hydrogen atoms and solvent molecules are omitted for clarity. Thermal ellipsoids were shown at the 30 % probability level.(B) Crystal packing of **2** without intermolecular π - π interaction.

Figure S2. Concentration-dependent (A) emission and (B) UV-vis absorption spectra of **1** in dichloromethane from 6.0×10^{-6} to 2.0×10^{-3} M. (C) A plot of apparent absorbance at 490 nm as a function of concentration and the solid line gives the linear relationship between absorbance and concentration. The apparent absorbance is the absorbance corrected to 1-cm pathlength equivalence. (D) Temperature-dependent UV-vis absorption and emission spectra of **1** in dichloromethane at 8.2×10^{-5} M. (E) UV-vis absorption spectra of **1**, **2**, **6** and **L1** in dichloromethane solutions. (F) Emission spectrum of **2** in degassed dichloromethane solution (2.5×10^{-5} M).

Figure S3. Emission spectrum of 3 in degassed dichloromethane solution $(1.3 \times 10^{-5} \text{ M})$.

Figure S4. Optimized structures of molecular hinge 1 in (A) open form and (B) closed form.

Figure S5. Optimized structures of molecular hinge 3 in (A) open form and (B) closed form.

Figure S6. Solvent-dependent (A) UV-vis absorption and (B) emission spectra of **1** upon increasing cyclohexane portion in dichloromethane (v/v, 5.6×10^{-5} M). Inset of (A): Plots of the corresponding absorbance at 348, 423 and 467 nm upon increasing cyclohexane content. (C) The phosphorescence intensity ratio between 516 and 690 nm (I_{516} / I_{690}) upon increasing cyclohexane portion in dichloromethane (v/v, 5.6×10^{-5} M). Inset: Photographs of different emission colors in cyclohexane-dichloromethane (0:1, 8:1, 9:1, v/v) mixtures.

Figure S7. (A) UV-vis absorption of 1, 4–6 and L1 in dichloromethane solutions and UV-vis absorption of 1 in hexane-dichloromethane (9:1, v/v) mixture. (B) Emission spectra of 1, 4–6 in dichloromethane solutions and emission spectrum of 1 in hexane-dichloromethane (9:1, v/v) mixture.

Figure S8. Excitation spectra of **1** with emission peaks at 690 nm in dichloromethane and 516 nm in hexane-dichloromethane (9:1, v/v) mixture respectively.

Figure S9. Emission decay profiles monitored at 690 nm in dichloromethane solution with closed form ($\tau = 1.4 \ \mu s$) and 516 nm in hexane/cyclohexane-dichloromethane (9:1, v/v) mixtures with open form ($\tau = 3.6 \ \mu s$) after a laser pulse.

Figure S10. Time-resolved emission spectra of 1 in (A) dichloromethane solution (5.7 $\times 10^{-5}$ M) and (B) hexane-dichloromethane (9:1, v/v) mixture (5.7 $\times 10^{-5}$ M).

Figure S11. Concentration-dependent (A) UV-vis absorption and (B) emission spectra of **1** in cyclohexane-dichloromethane (9:1, v/v) mixtures at different concentrations from 2.2×10^{-5} to 2.2×10^{-4} M at room temperature. Inset: A plot of the corresponding phosphorescence intensity ratio between 516 and 690 nm (I_{516} / I_{690}) in cyclohexane-dichloromethane (9:1, v/v) mixtures at different concentrations. (C) Photographs of emission color changes in cyclohexane-dichloromethane (9:1, v/v) mixtures at concentrations of 7.2×10^{-5} , 5.8×10^{-5} , 4.8×10^{-5} M (from left to right).

Figure **S12.** Time-dependent emission spectral (A) changes of 1 in *n*-hexane/*n*-decane/cyclohexane/methylcyclohexane-dichloromethane (9:1, v/v) 10^{-5} M). (B) Photographs of hexane-dichloromethane, mixtures (5.4 Х cyclohexane-dichloromethane and decane-dichloromethane (9:1, v/v, left to right) mixtures with increasing time.

Figure S13. Temperature-dependent UV-vis absorption spectra of **1** in cyclohexane-dichloromethane (9:1, v/v) (5.6×10^{-5} M) mixture with (A) heating and (B) cooling processes. (C) Plots of the corresponding absorbance at 423 and 467 nm at different temperatures with heating and cooling processes. Temperature-dependent emission spectra of **1** in cyclohexane-dichloromethane (9:1, v/v) (5.6×10^{-5} M) mixture with (D) heating and (E) cooling processes.

Figure S14. (A) Reversible processes of the molecular hinge between open form and closed form with electronic absorption spectra of **1** in cyclohexane-dichloromethane (9:1, v/v) (5.6×10^{-5} M) mixture in 5 cycles. (B) Plots of the corresponding absorbance at 423 and 467 nm with the number of repeating cycles. (C) Reversible processes of the molecular hinge between open form and closed form with emission spectra of **1** in cyclohexane-dichloromethane (9:1, v/v) (5.6×10^{-5} M) mixture in 5 cycles. (C) Reversible processes of the molecular hinge between open form and closed form with emission spectra of **1** in cyclohexane-dichloromethane (9:1, v/v) (5.6×10^{-5} M) mixture in 5 cycles.

Figure S15. (A) Time-dependent UV-vis spectra complex of 1 in hexane-dichloromethane (9:1, v/v) mixtures at different concentrations from 15 to 50 (B) Time-dependent UV-vis spectra of complex 1 in μM at 293 Κ. cyclohexane-dichloromethane (9:1, v/v) mixtures at different concentrations from 51 to 80 µM at 293 K.

Figure S16. Time-dependent UV-vis spectra of complex 1 in (A) 10^{-5} hexane-dichloromethane (9:1, v/v) (1.5)M) and (B) Х cyclohexane-dichloromethane (9:1, v/v) (5.7 \times 10⁻⁵ M) mixtures at different temperatures.

Figure S17. DLS studies of 1 in (A) hexane-dichloromethane (9:1, v/v) mixture (5.7 $\times 10^{-5}$ M) and (B) cyclohexane-dichloromethane (9:1, v/v) mixture (5.7 $\times 10^{-5}$ M) respectively.

Figure S18. ¹H NMR spectra of **1** upon increasing the hexane- d_{14} portion in CD₂Cl₂ (4.6 × 10⁻⁴ M).

Figure S19. (A) TEM, (B) SEM and (C) AFM images of **1** prepared from cyclohexane-dichloromethane (9:1, v/v) mixture (5.6×10^{-5} M). Scale bars: 200 nm.

Figure S20. XRD patterns of **1** prepared from (A) hexane-dichloromethane (9:1, v/v) mixture and (B) cyclohexane-dichloromethane (9:1, v/v) mixture with the ratio of about 1:1/2:1/3:1/4:1/5.

Figure S21. Schematic representation of one-dimensional nanofiber formed in hexane/cyclohexane-dichloromethane (9:1, v/v) mixtures.

Video 1. A video showing the luminescence changes in hexane-dichloromethane mixture of **1**.

Video 2. A video showing the luminescence changes in cyclohexane-dichloromethane mixture of **1**.

Identification code	Complex 2
Empirical formula	$C_{54}H_{28}F_6N_4Pt_2$
Formula weight	1236.98
Temperature/K	150.00
Crystal system	triclinic
Space group	PĪ
a/Å	10.136 1(2)
<i>b</i> /Å	14.9235(3)
$c/{ m \AA}$	27.9163(6)
$\alpha/^{\circ}$	97.5834(17)
$eta/^{\circ}$	97.4100(18)
γ/°	90.1700(18)
V/Å ³	4150.06(16)
Ζ	4
$ ho_{calc}/g \cdot cm^{-3}$	1.980
μ/mm^{-1}	13.046
<i>F</i> (000)	2360.0
Crystal size/mm ³	$0.696 \times 0.513 \times 0.233$
Radiation	$Cu-Klpha$ ($\lambda = 1.54184$ Å)
2θ range for data collection/°	7.158 to 148.476
Index ranges	$-12 \le h \le 12, -18 \le k \le 16, -30 \le l \le 34$
Reflections collected	27688
Independent reflections	16187 [$R_{int} = 0.0849, R_{sigma} = 0.0681$]
Data/restraints/parameters	16187/852/776
Goodness-of-fit on F^2	1.085
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0849, wR_2 = 0.2293$
Final R indexes [all data]	$R_1 = 0.0906, wR_2 = 0.2379$
Largest diff. peak/hole / e Å $^{-3}$	5.51/-4.46

Table S1. Crystallographic and structural refinement data for complex ${\bf 2}$

Pt(1)–N(1)	2.033(8)	Pt(1)–C(12)	1.949(9)
Pt(1)–N(2)	2.039(8)	Pt(1)–C(18)	2.049(9)
Pt(2)–N(3)	2.045(8)	Pt(2)–C(49)	1.957(9)
Pt(2)–N(4)	2.035(8)	Pt(2)–C(37)	2.062(9)
C(18)–C(19)	1.207(13)	C(28)–C(29)	1.195(15)
C(26)–C(27)	1.184(15)	C(36)–C(37)	1.212(13)
N(1)-Pt(1)-N(2)	160.2(3)	N(1)-Pt(1)-C(12)	80.8(4)
N(1)-Pt(1)-C(18)	100.5(3)	N(2)-Pt(1)-C(12)	79.3(4)
N(2)-Pt(1)-C(18)	99.3(3)	Pt(1)-C(18)-C(19)	175.0(8)
C(12)-Pt(1)-C(18)	178.2(4)	C(37)-Pt(2)-C(49)	178.5(4)
N(3)-Pt(2)-N(4)	160.4(3)	N(3)-Pt(2)-C(49)	80.1(4)
N(3)-Pt(2)-C(37)	99.0(3)	N(4)-Pt(2)-C(49)	80.3(4)
N(4)-Pt(2)-C(37)	100.6(3)	Pt(2)-C(37)-C(36)	177.9(8)
C(26)-C(27)-C(28)	178.1(11)	C(27)-C(28)-C(29)	178.6(12)

Table S2. Selected bond distances (Å) and bond angles (°) for 2 with estimated standard deviations (e.s.d.s.) in parentheses

	Energy = -4642.03829696 Hartree									
1	Pt	-1.536839	-3.138260	2.683490	54	С	3.208195	3.877166	-1.411238	
2	С	-0.563727	-4.812014	2.953996	55	Pt	2.059432	5.219931	-2.500905	
3	С	-1.097882	-5.764057	3.823743	56	С	0.951137	6.449663	-3.540408	
4	С	0.646398	-5.004361	2.283740	57	С	1.527379	7.623843	-4.027436	
5	С	-0.396847	-6.957233	4.026828	58	С	-0.390127	6.126588	-3.757530	
6	С	1.344730	-6.198167	2.490218	59	С	0.732679	8.505210	-4.768416	
7	С	0.812442	-7.159939	3.355522	60	С	-1.181546	7.011260	-4.496125	
8	Н	-0.773661	-7.730331	4.697130	61	С	-0.609096	8.186176	-4.995274	
9	Н	2.294093	-6.394517	1.992181	62	Н	1.138538	9.432467	-5.173549	
10	Н	1.357093	-8.087805	3.515975	63	Н	-2.233268	6.803738	-4.692152	
11	Ν	0.104955	-2.825549	1.457942	64	Н	-1.226182	8.871833	-5.571870	
12	С	1.018642	-3.854750	1.452935	65	N	3.432993	6.719429	-2.899790	
13	С	0.348432	-1.715585	0.747697	66	С	2.934311	7.764004	-3.642921	
14	С	2.193602	-3.734910	0.718391	67	С	4.707786	6.746064	-2.485971	
15	С	1.500829	-1.555723	-0.006321	68	С	3.753357	8.842327	-3.961223	
16	Н	-0.412637	-0.939682	0.804643	69	С	5.560378	7.798304	-2.779255	
17	С	2.439591	-2.579918	-0.014182	70	Н	5.032267	5.887933	-1.903034	
18	Н	2.913271	-4.549948	0.730848	71	С	5.072268	8.861958	-3.529538	
19	Н	1.654485	-0.632068	-0.557307	72	Н	3.348394	9.660516	-4.551243	
20	Н	3.362568	-2.477975	-0.580377	73	Н	6.584694	7.774748	-2.421494	
21	Ν	-2.785343	-4.083492	4.039599	74	Н	5.713917	9.703677	-3.776882	
22	С	-3.919062	-3.578243	4.545873	75	N	0.250903	4.208962	-2.479868	
23	С	-2.353031	-5.326289	4.439769	76	С	-0.774090	4.859121	-3.128276	
24	С	-4.687655	-4.264853	5.471962	77	С	0.015212	3.043274	-1.862956	
25	Н	-4.198461	-2.592061	4.183608	78	С	-2.053372	4.313097	-3.125063	
26	С	-3.090465	-6.051476	5.370048	79	С	-1.239429	2.453334	-1.847062	
27	С	-4.263081	-5.520939	5.889774	80	Н	0.869786	2.590876	-1.362817	
28	Н	-5.597679	-3.813951	5.854608	81	С	-2.290684	3.105316	-2.479713	
29	Н	-2.737538	-7.032109	5.679590	82	Н	-2.858989	4.843373	-3.627380	
30	Н	-4.840634	-6.084771	6.617729	83	Н	-1.377532	1.508889	-1.328431	
31	С	-2.563104	-1.364428	2.356040	84	Н	-3.291386	2.679447	-2.467582	
32	С	-3.128774	-0.297477	2.102538	85	0	7.634443	0.193757	0.357024	
33	С	-3.706306	0.957358	1.754361	86	0	3.477048	-0.421396	2.532554	
34	С	-5.099164	1.104524	1.663351	87	С	8.473735	0.879925	-0.565387	
35	С	-2.861745	2.053701	1.458768	88	Н	8.045087	0.818460	-1.578830	
36	С	-5.640848	2.323242	1.261776	89	Н	8.535757	1.946014	-0.292985	
37	Н	-5.729666	0.252289	1.895823	90	С	9.836532	0.233860	-0.519696	
38	С	-3.439920	3.283986	1.053798	91	Н	9.735507	-0.833018	-0.767707	
39	С	-4.815337	3.414563	0.949299	92	Η	10.221832	0.284205	0.509321	
40	Н	-5.285530	4.342293	0.637617	93	С	10.811972	0.901628	-1.476233	
41	С	-1.456184	1.931612	1.492349	94	Η	10.412926	0.854453	-2.502435	
42	С	-0.237663	1.847185	1.449284	95	Η	10.893134	1.973117	-1.231591	
43	С	1.110205	1.711092	1.328265	96	С	12.195035	0.270226	-1.442848	
44	С	2.309259	1.549509	1.155701	97	Η	12.112408	-0.802592	-1.682627	
45	С	3.677013	1.272947	0.944999	98	Η	12.593801	0.319505	-0.416341	
46	С	4.441325	1.988898	-0.006456	99	С	13.177519	0.927339	-2.399218	
47	С	4.281826	0.206763	1.659114	100	Η	12.778065	0.876805	-3.425681	
48	С	5.787257	1.651174	-0.216910	101	Η	13.257755	2.000821	-2.160577	
49	С	5.605376	-0.132546	1.430319	102	С	14.561502	0.298085	-2.365070	
50	С	6.356132	0.598340	0.496388	103	Н	14.480398	-0.776003	-2.601009	
51	Η	6.356933	2.214164	-0.949329	104	Н	14.961440	0.350374	-1.338844	
52	Η	6.092484	-0.946053	1.959468	105	С	15.544702	0.951498	-3.323565	
53	С	3.821839	3.022864	-0.766157	106	Н	15.144397	0.899071	-4.349692	

Table S3. Cartesian coordinates of the optimized ground-state geometry of the open form of 1 in dichloromethane

107	Н	15.625980	2.025639	-3.087888	160	Н	-21.765911	-0.099560	-0.235488
108	С	16.928489	0.321750	-3.289871	161	н	-22.443418	-1.346999	0.821620
109	н	16 846617	-0 752711	-3 523991	162	н	-21 899406	0 194140	1 502876
110	ц	17 329600	0 375330	-2 264133	163	C	-3 026630	5 482882	0 215935
111	C II	17.011147	0.070000	4 2504133	164		3.020030	5.402002	0.2100060
110		17 500775	0.972999	-4.230432	165	п	-3.730703	5.971702	0.300002
112	п	17.004404	0.920631	-5.275615	100	п	-3.337883	5.2/5///	-0.729422
113	Н	17.994404	2.04/199	-4.015606	166	C	-1.818288	6.3551/3	-0.022778
114	С	19.294009	0.341451	-4.219499	167	Н	-1.345053	6.585950	0.942647
115	Η	19.698366	0.394007	-3.194846	168	Η	-1.078445	5.780323	-0.602610
116	Н	19.211254	-0.733024	-4.453830	169	С	-2.166682	7.637299	-0.760060
117	С	20.276572	0.991319	-5.182191	170	Η	-2.593713	7.384973	-1.746570
118	Η	19.868594	0.940470	-6.203564	171	Η	-2.957079	8.180847	-0.216685
119	Η	20.360072	2.063098	-4.944346	172	С	-0.962133	8.544722	-0.955994
120	С	21.650380	0.344776	-5.142969	173	Η	-0.548502	8.824349	0.026671
121	Н	22.348116	0.817154	-5.844142	174	Н	-0.167399	7.978069	-1.471661
122	Н	22.091422	0.414069	-4.139776	175	С	-1.279423	9.796922	-1.756967
123	Н	21.592713	-0.721056	-5.400726	176	Н	-2.058984	10.382653	-1.241895
124	0	-6.961827	2.558563	1.133266	177	Н	-1.713914	9.498719	-2.726411
125	0	-2.561798	4.263494	0.779150	178	С	-0.065073	10.676100	-2.010651
126	С	-7.877234	1.498349	1.387348	179	Н	0.339605	11.038279	-1.051241
127	Н	-7.660890	0.649389	0.718492	180	Н	0.734301	10.063060	-2.463925
128	н	-7.764072	1,144359	2,424801	181	С	-0.363388	11.856963	-2.920679
129	С	-9.269278	2.028881	1.147971	182	н	-1.165804	12.470636	-2.478686
130	н	-9 325058	2 429557	0 125142	183	н	-0 766615	11 480135	-3 876494
121	ц	-0.4520030	2.425557	1 020010	100	C	0.700013	12 721726	-2 100400
122	п	-10 221229	0 059/93	1.324016	104	U U	1 245206	12./31/30	-2 247170
102		-10.331228	0.930403	1.344010	100	п	1.245590	10 111077	-2.24/1/0
104	п	-10.134673	0.116016	0.001137	100	п	1.655104	12.1112//	-3.025251
134	н	-10.258807	0.545725	2.363179	187	C	0.553865	13.889462	-4.139497
135	С	-11./39031	1.482693	1.108091	188	Н	-0.246956	14.514363	-3./10693
136	Н	-11.801118	1.915181	0.095972	189	Н	0.150808	13.494987	-5.087235
137	H	-11.939809	2.314666	1.802905	190	С	1.768559	14.756084	-4.431614
138	С	-12.814417	0.419878	1.267592	191	Н	2.169499	15.156402	-3.485573
139	Η	-12.615926	-0.408766	0.567741	192	Η	2.571583	14.130142	-4.855659
140	Н	-12.751249	-0.018152	2.277410	193	С	1.475314	15.907940	-5.381489
141	С	-14.219276	0.952926	1.034036	194	Н	0.672917	16.530937	-4.957052
142	Н	-14.275884	1.403536	0.029224	195	Η	1.075958	15.505249	-6.325286
143	Η	-14.420474	1.774145	1.741870	196	С	2.699311	16.762551	-5.662094
144	С	-15.300854	-0.106990	1.171090	197	Н	2.475776	17.590839	-6.344328
145	Н	-15.103655	-0.924722	0.458071	198	Н	3.099703	17.195324	-4.735866
146	Н	-15.242703	-0.562813	2.173423	199	Н	3.501535	16.166244	-6.116574
147	С	-16.703530	0.434282	0.943088	200	С	3.932741	-1.596300	3.190791
148	Н	-16.757577	0.899681	-0.055122	201	Н	4.823128	-1.370337	3.799416
149	Н	-16.903034	1.245746	1.662596	202	Н	4.219931	-2.353092	2.439973
150	С	-17.788152	-0.624502	1.064065	203	С	2.795710	-2.090601	4.051843
151	Н	-17.593605	-1.431408	0.338074	204	Н	2.567804	-1.331091	4.813939
152	Н	-17.729815	-1.096405	2.058975	205	Н	1.893944	-2.182435	3.425045
153	С	-19.190325	-0.077815	0.846964	206	C.	3.098099	-3.424907	4.713280
154	н	-19,246933	0.403707	-0.143556	207	н	3,279771	-4.186138	3,934352
155	н	-19 388929	0 722052	1 570725	207	н ц	4 032060	-3 35531/	5 20/071
156	 C	-20 275762	-1 138356	0 053177	200	 C	1 965690	-3 802137	5 61/550
157	с ц	-20.2/3/03	-1 626615	1 9377/5	209	U U	1 200507	-3 1/7012	6 /1070/
1 5 0	п U	_20.20009	-1 020762	1.20//40	210	11 11	1 020764	-3 000000 -3.14/013	5 0200F1
150	п	-20.081824	-1.928/03	0.21100/	211	н	1.030/64	-3.922232	5.028051
123	С	-21.6/0715	-0.5/2611	U./50931	212	C	2.208540	-5.259346	6.232853

213	Η	2.394156	-5.989229	5.426609
214	Н	3.128324	-5.236862	6.840735
215	С	1.045986	-5.745750	7.083279
216	Н	0.884639	-5.050071	7.923250
217	Н	0.121241	-5.711022	6.480364
218	С	1.237567	-7.156115	7.617244
219	Н	2.163966	-7.203029	8.213416
220	Н	1.392285	-7.845750	6.769325
221	С	0.068965	-7.645388	8.457981
222	Н	-0.080003	-6.961564	9.309961
223	Н	-0.858334	-7.585811	7.862333
224	С	0.247055	-9.064545	8.974363
225	Н	1.179213	-9.125253	9.560225
226	Η	0.384850	-9.749452	8.121040
227	С	-0.915563	-9.547882	9.826865
228	Η	-1.849900	-9.483458	9.244304
229	Η	-1.049735	-8.866025	10.683090
230	С	-0.739451	-10.969599	10.339193
231	Η	0.196332	-11.032317	10.915938
232	Η	-0.610953	-11.649349	9.482621
233	С	-1.905353	-11.433227	11.195161
234	Η	-2.846117	-11.406993	10.629409
235	Η	-1.767159	-12.457964	11.559022
236	Η	-2.034070	-10.785109	12.072084

	Energy = -4642.04582043 Hartrees									
1	Pt	-3.020472	-3.593160	1.447847	54	С	1.917646	-3.016856	-0.528916	
2	С	-2.453559	-5.378089	2.007680	55	Pt	0.458826	-4.470731	-0.776867	
3	С	-3.332127	-6.448623	1.835464	56	С	-0.920208	-5.822376	-1.081095	
4	С	-1.182860	-5.533728	2.565857	57	С	-0.667048	-7.140912	-0.699207	
5	С	-2.917470	-7.727349	2.223513	58	С	-2.124823	-5.430664	-1.669345	
6	С	-0.770345	-6.813069	2.946807	59	С	-1.657438	-8.105538	-0.913417	
7	С	-1.643963	-7.892821	2.773910	60	С	-3.113602	-6.396678	-1.877020	
8	Н	-3.563508	-8.596167	2.097256	61	С	-2.865862	-7.721479	-1.500687	
9	Н	0.218876	-6.986874	3.371795	62	Н	-1.507352	-9.146423	-0.627019	
10	Н	-1.318728	-8.888311	3.068944	63	Н	-4.074919	-6.138647	-2.322771	
11	Ν	-1.117916	-3.178341	2.155794	64	Н	-3.638956	-8.469849	-1.662031	
12	С	-0.441612	-4.271741	2.643253	65	Ν	1.396392	-6.152849	-0.005109	
13	С	-0.525402	-1.976517	2.154507	66	С	0.648755	-7.304436	-0.077261	
14	С	0.839659	-4.122211	3.163605	67	С	2.607216	-6.180831	0.571203	
15	С	0.751816	-1.780117	2.657851	68	С	1.154040	-8.494191	0.440609	
16	Н	-1.108175	-1.159905	1.731499	69	С	3.148493	-7.338997	1.105270	
17	С	1.440038	-2.870260	3.176510	70	Н	3.139404	-5.232724	0.594469	
18	Н	1.356934	-4.994497	3.556317	71	С	2.407274	-8.514540	1.034839	
19	Н	1.190092	-0.786902	2.629713	72	Н	0.550463	-9.396476	0.381393	
20	Н	2.441430	-2.748438	3.581825	73	Н	4.133005	-7.311871	1.561488	
21	Ν	-4.691631	-4.704125	0.927654	74	Н	2.803058	-9.441232	1.442463	
22	С	-5.794278	-4.227838	0.331570	75	Ν	-1.029592	-3.305563	-1.619309	
23	С	-4.592851	-6.046935	1.207309	76	С	-2.170761	-3.994021	-1.957532	
24	С	-6.857764	-5.042323	-0.022354	77	С	-0.968730	-1.980793	-1.811651	
25	Н	-5.800266	-3.157238	0.140035	78	С	-3.248115	-3.318510	-2.521551	
26	С	-5.638584	-6.903745	0.873662	79	С	-2.019514	-1.264437	-2.363468	
27	С	-6.775622	-6.402814	0.256871	80	Н	-0.041128	-1.499292	-1.506828	
28	Н	-7.729651	-4.609569	-0.502674	81	С	-3.174372	-1.947153	-2.726840	
29	Н	-5.546819	-7.963604	1.097497	82	Η	-4.141206	-3.875872	-2.793010	
30	Н	-7.592604	-7.069964	-0.005847	83	Η	-1.924358	-0.190622	-2.494007	
31	С	-3.615468	-1.677916	0.914652	84	Η	-4.016076	-1.413977	-3.161928	
32	С	-3.925321	-0.517053	0.633876	85	0	7.338302	-0.487509	-0.425599	
33	С	-4.227764	0.836304	0.311186	86	0	3.762256	2.545984	0.190823	
34	С	-5.563377	1.255790	0.199587	87	С	7.847204	-1.805496	-0.597920	
35	С	-3.180314	1.765117	0.109319	88	Η	7.524809	-2.442574	0.241928	
36	С	-5.851929	2.582650	-0.109654	89	Η	7.444810	-2.245347	-1.524696	
37	Н	-6.350484	0.526287	0.361154	90	С	9.352316	-1.716354	-0.654320	
38	С	-3.504336	3.114616	-0.188369	91	Н	9.713787	-1.216362	0.256192	
39	С	-4.824123	3.518914	-0.300883	92	Η	9.643441	-1.078033	-1.501376	
40	Н	-5.094783	4.543370	-0.538475	93	С	9.997055	-3.087245	-0.785432	
41	С	-1.819590	1.386607	0.155575	94	Н	9.700668	-3.715708	0.069995	
42	С	-0.624082	1.130325	0.132063	95	Н	9.609029	-3.595035	-1.683163	
43	С	0.705235	0.843401	0.073349	96	С	11.514289	-3.018279	-0.858843	
44	С	1.897778	0.584161	-0.002512	97	Н	11.897803	-2.485942	0.027045	
45	С	3.272061	0.273031	-0.101772	98	Н	11.810411	-2.408288	-1.727876	
46	C	3./04110	-1.060744	-0.309625	99	C	11 000700	-4.384708	-0.949873	
4/	C	4.243636	1.303880	-U.UIU619	101	н ,,	11 700007	-4.990093	-U.U/5/87	
48	C	5.0/4422	-1.346595	-0.415966	100	Н	12 001005	-4.922092	-1.830850	
49	c	0.09308/	_0 315701	-0.131192	102	U H	14 076412	-4.312/13	-1.029098	
50	U U	5 370357	-0.313/01 _2 376110	-0.5294/2	104	п	13 002716	-3.710504	-U.100/80	
50	п v	J.J/030/	-2.3/0119	-0.0750/0	105	п	1/ 250202	-5.719004	-1.00//1/	
52	п С	0.JJJJJJ	-2 115104	-0 427685	105	ц	14 060101	-6 262/07	_0 200027	
55	Ų	2.104100	2.110104	0.42/000	100	11	11.000104	0.20099/	0.209921	

Table S4. Cartesian coordinates of the optimized ground-state geometry of the closed form of 1 in dichloromethane

107	Н	13,974368	-6.232498	-1,965847	160	Н	-22.043568	2,271392	-2.561643
108	C	15 876045	-5 601071	-1 173939	161	н	-22 942558	1 265647	-1 415252
100	н	16 258808	-5 038092	-0 306444	162	н	-22 259630	2 812137	-0 891741
110	ц	16 166200	-5 016122	-2 062444	162	C	-2 637160	5 207047	-0 669915
111	C II	16 549663	6 062075	1 002444	164		2.037100	5.257547	0.000515
110		16 257650	-0.903975	-1.225410	165	п	-3.290911	5.770007	1 652541
112	п	16.257650	-7.548755	-0.336944	100	п	-3.120797	5.30/00/	-1.652541
113	н	10.10/894	-7.527588	-2.093352	100	C	-1.263707	5.923803	-0.669419
114	C	18.065196	-6.884153	-1.301328	167	н	-0.839489	5.828321	0.341118
115	н	18.357298	-6.300833	-2.190505	168	н	-0.612609	5.33/68/	-1.334187
116	н	18.445582	-6.31858/	-0.434327	169	С	-1.256949	/.38149/	-1.096914
11/	С	18./41/69	-8.246021	-1.348802	170	н	-1.569544	7.463127	-2.150187
118	Н	18.445602	-8.827766	-0.462127	171	Н	-1.997587	7.951207	-0.512682
119	Η	18.363663	-8.807398	-2.217209	172	С	0.119129	8.003150	-0.914292
120	С	20.255796	-8.145464	-1.418309	173	Н	0.375148	7.988102	0.158196
121	Η	20.733306	-9.131384	-1.456355	174	Η	0.872869	7.368509	-1.409742
122	Η	20.573761	-7.589161	-2.310015	175	С	0.239487	9.424036	-1.439201
123	Η	20.657039	-7.616203	-0.543923	176	Η	-0.569128	10.044185	-1.018344
124	0	-7.100735	3.072132	-0.248711	177	Η	0.086990	9.429027	-2.530904
125	0	-2.446434	3.926061	-0.345946	178	С	1.581760	10.055005	-1.104071
126	С	-8.201380	2.183831	-0.091765	179	Н	1.691912	10.095963	-0.006679
127	Н	-8.104578	1.341587	-0.795877	180	Н	2.396417	9.401267	-1.462088
128	Н	-8.203868	1.767601	0.928744	181	С	1.768815	11.450374	-1.677045
129	С	-9.469850	2.954897	-0.361878	182	Н	0.919888	12.086176	-1.375397
130	Н	-9.420703	3.377376	-1.376321	183	Н	1.735012	11.405102	-2.778113
131	Н	-9.532183	3.805042	0.332964	184	С	3.066749	12.103685	-1.230080
132	С	-10.698539	2.069673	-0.222706	185	Н	3.078968	12.157908	-0.127444
133	Н	-10.594664	1.193310	-0.883130	186	Н	3.918993	11.457235	-1.504495
134	Н	-10.750085	1.670239	0.803072	187	С	3.279738	13.496744	-1.800588
135	С	-11.996199	2.791343	-0.550903	188	Н	2.402759	14.123096	-1.566721
136	Н	-11.944401	3.183718	-1.579786	189	Н	3.325203	13.442148	-2.900953
137	Н	-12.103298	3.672310	0.102796	190	С	4.533524	14.173872	-1.270113
138	С	-13.220957	1.901161	-0.410072	191	Н	4.475844	14.232224	-0.168623
139	Н	-13.096521	1.008767	-1.045822	192	Н	5.413117	13.543612	-1.488248
140	Н	-13.282344	1.525498	0.624733	193	С	4.760188	15.568759	-1.832927
141	С	-14.523250	2.597534	-0.772822	194	Н	3.859617	16.178145	-1.660397
142	Н	-14.461497	2.970090	-1.808817	195	Н	4.876463	15.505326	-2.925789
143	Н	-14.651036	3.491103	-0.139664	196	С	5.968128	16.256517	-1.220214
144	С	-15.741910	1.698533	-0.632205	197	Н	6.137424	17.251975	-1.646783
145	Н	-15.605127	0.799627	-1.256217	198	Н	5.840161	16.379186	-0.134872
146	Н	-15.809126	1.334348	0.406433	199	Н	6.882922	15.668711	-1.378378
147	С	-17.046784	2.380537	-1.012867	200	С	4.685882	3.629136	0.211378
148	Н	-16.978976	2.744578	-2.051542	201	Н	5.210457	3.683335	-0.756803
149	н	-17.186589	3.278877	-0.388918	202	н	5.444562	3.458430	0.991898
150	С	-18.260998	1.475059	-0.874604	203	С	3,939464	4.911913	0.489680
151	н	-18 117027	0 574706	-1 494908	204	н	3 115951	5 024665	-0 230529
152	н	-18 330918	1 114183	0 165055	205	н	3 482751	4 854187	1 488534
153	С	-19.567322	2.149874	-1.262574	206	C	4.887524	6.100965	0.407291
154	н	-19 497905	2.512061	-2 301922	200	ч	5 795252	5 882202	0 002002
155	н	-19 714277	3 049362	-0 641632	202	н	5 227345	6 223568	-0 633672
156	с С	-20 780219	1 241122	-1 127017	200	C	4 203397	7 409437	0.000072
157	ч	-20 847510	1.271122 0 880005	-0 088734	209	ц	3 353657	7 62/00/	0.200303
158	н	-20 630519	0 343610	-1 747082	211	н ц	4 018002	7 299797	1 96795/
150	C	-22 076/00	1 929490	_1 510600	210	11 C	5 256050	,.299191 0 577010	1.20/204
1 7 2	C	22.0/0409	1.727490	T.0T0020	414	\sim	5.250050	0.01/012	0.110403

213 Н	6.240727	8.288753	1.153034	
214 Н	5.420967	8.773879	-0.324864	
215 C	4.803032	9.858672	1.431774	
216 Н	3.824843	10.171925	1.027625	
217 Н	4.637182	9.660946	2.503679	
218 C	5.805488	10.992195	1.277098	
219 Н	5.949038	11.210480	0.204511	
220 Н	6.789345	10.657112	1.646762	
221 C	5.410666	12.270673	1.999009	
222 Н	4.447568	12.635134	1.601281	
223 Н	5.231537	12.052299	3.064782	
224 C	6.456142	13.368099	1.875966	
225 Н	6.676681	13.543484	0.808539	
226 Н	7.402141	13.021316	2.324241	
227 C	6.041794	14.681658	2.518775	
228 Н	5.745479	14.505769	3.566403	
229 Н	5.137982	15.065493	2.013182	
230 C	7.132347	15.741440	2.474354	
231 Н	7.467185	15.869887	1.432439	
232 Н	8.011041	15.378140	3.029086	
233 C	6.677160	17.076347	3.037496	
234 Н	6.346516	16.974248	4.079698	
235 Н	7.475311	17.827364	3.015480	
236 Н	5.828933	17.477305	2.465979	

	Energy = -5944.48838658 Hartrees										
1	Pt	4.608124	2.604801	-0.470329	54	С	-6.601867	-5.386206	-0.866860		
2	С	4.845309	4.473266	-0.986428	55	С	-4.260941	-5.833378	-1.440552		
3	С	6.077785	5.083021	-0.747445	56	С	-6.932073	-6.708816	-1.167799		
4	С	3.773890	5.148343	-1.580561	57	С	-4.588267	-7.153827	-1.735944		
5	С	6.250214	6.420715	-1.106715	58	С	-5.918746	-7.571502	-1.592474		
6	С	3.941280	6.485293	-1.930451	59	Н	-7.951072	-7.080277	-1.077502		
7	С	5.178597	7.100109	-1.689877	60	Н	-3.840456	-7.870116	-2.076599		
8	Н	7.190806	6.943499	-0.938129	61	N	-6.842100	-3.124708	-0.146770		
9	Н	3.137059	7.069107	-2.378564	62	С	-7.484758	-4.308530	-0.405415		
10	Ν	2.737391	3.019494	-1.253065	63	С	-7.561572	-2.078017	0.283599		
11	С	2.580586	4.303439	-1.723697	64	С	-8.863155	-4.412371	-0.246432		
12	С	1.698880	2.178986	-1.313527	65	С	-8.931358	-2.137495	0.452703		
13	С	1.371664	4.704841	-2.268915	66	Н	-7.000260	-1.168127	0.481270		
14	С	0.472050	2.542684	-1.848460	67	С	-9.626222	-3.320297	0.169846		
15	Н	1.871420	1.180424	-0.916053	68	Н	-9.332859	-5.365823	-0.476414		
16	С	0.283084	3.827333	-2.357869	69	Н	-9.450353	-1.244030	0.789028		
17	Н	1.289441	5.723703	-2.643433	70	N	-2.959460	-3.851006	-1.139276		
18	Н	-0.321649	1.801516	-1.853064	71	С	-2.954013	-5.168735	-1.534484		
19	N	6.564709	2.916162	0.135073	72	С	-1.821328	-3.151392	-1.208979		
20	С	7.368261	2.026565	0.728910	73	С	-1.786580	-5.754508	-1.996936		
21	С	7.038333	4.186738	-0.094116	74	С	-0.634339	-3.696396	-1.675189		
22	C	8.659964	2.332859	1.128090	75	Н	-1.877746	-2.116134	-0.875744		
23	H	6.945329	1.036824	0.883297	76	C	-0.592817	-5.028067	-2.091326		
24	С	8.321242	4.535558	0.296417	77	Н	-1.821608	-6.798640	-2.301439		
25	C	9.170090	3.615485	0.920760	78	Н	0.244776	-3.058847	-1.702618		
26	H	9.248644	1.554427	1.602584	79	0	-5.189049	4.687420	0.638357		
27	Н	8.654866	5.554665	0.107668	80	0	-0.690639	3.312745	1.163503		
28	С	4.375279	0.602753	0.013745	81	С	-6.566485	4.396759	0.426026		
29	С	4.240584	-0.603288	0.234567	82	Н	-6.702666	3.930131	-0.563009		
30	C	4.080347	-2.001975	0.455747	83	Н	-6.916481	3.678623	1.185064		
31	С	5.207517	-2.829903	0.433010	84	С	-7.336859	5.690713	0.519465		
32	С	2.778704	-2.545134	0.672825	85	Н	-6.961804	6.389461	-0.242677		
33	С	5.059086	-4.206815	0.602381	86	Н	-7.140185	6.153666	1.497529		
34	Н	6.180002	-2.377762	0.265037	87	С	-8.830132	5.466814	0.338822		
35	С	2.661465	-3.947652	0.855126	88	Н	-9.016094	4.983678	-0.634077		
36	С	3.792924	-4.752757	0.813582	89	Н	-9.188631	4.757098	1.101962		
37	Н	3.684467	-5.825183	0.954691	90	С	-9.640198	6.750720	0.427627		
38	С	1.672196	-1.665234	0.633717	91	Н	-9.295716	7.456038	-0.346185		
39	С	0.738976	-0.875917	0.618639	92	Н	-9.440477	7.242402	1.393742		
40	С	-0.318751	-0.021121	0.624076	93	С	-11.135810	6.521532	0.277059		
41	С	-1.268068	0.749508	0.638052	94	Н	-11.334753	6.025226	-0.687199		
42	С	-2.305694	1.706540	0.653730	95	Н	-11.475624	5.815730	1.053046		
43	С	-3.651945	1.350643	0.404146	96	С	-11.956059	7.798945	0.365544		
44	С	-1.986729	3.066835	0.908204	97	Н	-11.625940	8.501495	-0.417470		
45	С	-4.647419	2.340339	0.395909	98	Н	-11.748768	8.300690	1.325226		
46	С	-2.976244	4.037587	0.888656	99	С	-13.452391	7.561542	0.233939		
47	С	-4.305960	3.669667	0.630765	100	Н	-13.659660	7.056259	-0.723960		
48	Н	-5.672836	2.042573	0.201963	101	Н	-13.780715	6.860530	1.019237		
49	Н	-2.761577	5.084942	1.078567	102	С	-14.277199	8.836187	0.320183		
50	С	-4.001112	-0.006901	0.152860	103	Н	-13.955063	9.534501	-0.470009		
51	С	-4.306784	-1.179972	-0.075259	104	Н	-14.064288	9.345417	1.274728		
52	Pt	-4.806891	-3.138076	-0.535602	105	С	-15.773951	8.594705	0.200901		
53	С	-5.273541	-4.976236	-0.997512	106	Н	-15.986615	8.080516	-0.751091		

Table S5. Cartesian coordinates of the optimized ground-state geometry of the open form of **3** in dichloromethane

107	Н	-16.096257	7.900400	0.994619	160	С	-0.657890	-5.174427	1.812307
108	С	-16.599179	9.869351	0.280289	161	Н	-0.798639	-5.670956	0.837735
109	н	-16 382315	10 387889	1 229082	162	н	-0 264963	-5 935530	2 501963
110	и Ц	-16 281649	10.561295	-0 517536	163	C	-1 992597	-4 632971	2 302547
111	C	-19 007427	0 629557	0.170252	164	с ц	_1 070023	-4 211469	2.302347
110		-10.09/42/	9.028557	0.170332	104	п	-1.879933	-4.211400	1 (5(2))7
112	н	-18.310788	9.102669	-0.773140	105	н	-2.304088	-3.792312	1.656327
113	н	-18.413890	8.945367	0.973699	100	C	-3.091///	-5.681805	2.297720
114	С	-18.904040	10.913889	0.238316	167	Н	-3.175517	-6.105457	1.280839
115	Н	-19.981786	10.727977	0.164744	168	Н	-2.811145	-6.523517	2.952243
116	Н	-18.723875	11.444518	1.182633	169	С	-4.445695	-5.131664	2.713531
117	Н	-18.629399	11.596545	-0.576643	170	Η	-4.678309	-4.250141	2.087174
118	0	6.075869	-5.089474	0.589042	171	Η	-4.398463	-4.766376	3.752841
119	0	1.505706	-4.631871	1.011886	172	С	-5.565710	-6.147916	2.572012
120	С	7.406510	-4.609226	0.428012	173	Η	-5.596245	-6.501551	1.526461
121	Н	7.505656	-4.092699	-0.540429	174	Н	-5.341875	-7.037036	3.184994
122	Н	7.640301	-3.881032	1.221324	175	С	-6.934145	-5.606114	2.950902
123	С	8.328117	-5.801334	0.503514	176	Н	-7.135065	-4.682503	2.377613
124	Н	8.045668	-6.519797	-0.279908	177	Н	-6.933291	-5.307460	4.012272
125	Н	8.171189	-6.308894	1.466696	178	С	-8.053096	-6.603698	2.700559
126	С	9.790835	-5.415048	0.352516	179	Н	-8.087425	-6.839079	1.621459
127	Н	9.942563	-4.904058	-0.611977	180	Н	-7.818229	-7.554742	3.206592
128	Н	10.062690	-4.683227	1.130316	181	С	-9.418599	-6.114565	3.152175
129	С	10.716885	-6.617994	0.442433	182	Н	-9.630526	-5.144769	2.667380
130	Н	10.439723	-7.348600	-0.335141	183	н	-9.398116	-5.909910	4.235243
131	н	10.554329	-7.129398	1.405438	184	С	-10.539372	-7.092354	2.838285
132	С	12.189509	-6.267137	0.302100	185	н	-10.575097	-7.264557	1.747574
133	н	12 356547	-5 760091	-0 662581	186	н	-10 306994	-8 074935	3 281120
13/	и Ц	12.050047	-5 535796	1 078738	197	C	-11 906233	-6 631750	3 323275
125	C	12.000000	-7 491707	0 401147	100	с ц	-12 006211	-5 600150	2 959459
126		12 017657	- / . 401 / 9/	0.401147	100	п	11 005057	-5.009139	4 401501
100	п	12.01/03/	-0.211011	-0.376061	109	п	-11.895057	-0.560927	4.421551
137	н	12.924593	-7.989256	1.364463	190	C	-13.02/2/0	-7.549762	2.868/34
138	C	14.577310	-7.150937	0.268558	191	н	-14.004455	-7.224412	3.243845
139	Н	14.755299	-6.645661	-0.695196	192	Н	-13.086729	-7.580610	1.771944
140	Н	14.861055	-6.422546	1.046219	193	Н	-12.864185	-8.578687	3.215690
141	С	15.473828	-8.374956	0.371419	194	С	-0.250821	4.655598	1.327235
142	Н	15.188504	-9.101942	-0.407062	195	Η	-0.826672	5.151265	2.124701
143	Н	15.290771	-8.880860	1.333976	196	Η	-0.421331	5.215657	0.391004
144	С	16.955518	-8.057351	0.244246	197	С	1.217554	4.612729	1.671884
145	Н	17.140441	-7.551217	-0.717795	198	Η	1.342918	4.161708	2.666998
146	Н	17.243064	-7.332917	1.024245	199	Η	1.729319	3.945740	0.960757
147	С	17.842738	-9.288004	0.346295	200	С	1.861541	5.989061	1.629134
148	Н	17.555132	-10.011671	-0.434584	201	Η	1.819918	6.373637	0.594439
149	Н	17.655198	-9.795678	1.307183	202	Η	1.284479	6.700303	2.242591
150	С	19.327380	-8.979649	0.222784	203	С	3.308487	5.959628	2.093616
151	Н	19.614433	-8.261486	1.006376	204	Н	3.349066	5.662025	3.154153
152	Н	19.512570	-8.469641	-0.735273	205	Н	3.842890	5.168576	1.537076
153	С	20.193166	-10.223852	0.320815	206	С	4.041156	7.276969	1.895683
154	Н	19.944425	-10.941165	-0.472421	207	Н	3.956169	7.576883	0.837191
155	Н	21.260738	-9.990917	0.233443	208	Н	3.551009	8.075505	2.476408
156	Н	20.043467	-10.735311	1.280918	209	С	5.513502	7.185745	2.265138
157	С	0.346367	-4.065484	1.625247	210	Н	5.620817	7.004919	3.346936
158	Н	-0.089628	-3.295083	0.979834	211	Н	5.938742	6.295404	1.770080
159	Н	0.623779	-3.593359	2.580474	212	C	6.333092	8.400569	1.857016
						-	-	· · · · · · •	

213	Н	6.016556	9.286636	2.430477	266	С	0.666805	-5.694797	-2.623943
214	Н	6.122837	8.636513	0.800030	267	С	-11.581475	-2.880770	1.665516
215	С	7.827595	8.174582	2.021751	268	Н	-11.297015	-1.839068	1.853365
216	Н	8.067266	8.002005	3.084268	269	Н	-12.674256	-2.942943	1.749129
217	Н	8.095551	7.236111	1.504663	270	Н	-11.145489	-3.499238	2.461002
218	С	8.695182	9.295335	1.472291	271	С	-11.721916	-2.420161	-0.788376
219	Н	8.493973	10.229405	2.021631	272	Н	-11.392683	-1.384393	-0.642514
220	Н	8.408250	9.494308	0.425546	273	Н	-11.421958	-2.733703	-1.796563
221	С	10.180345	8.972992	1.533105	274	Н	-12.818590	-2.434379	-0.740369
222	Н	10.369572	8.037716	0.976153	275	С	-11.702427	-4.760792	0.037601
223	Н	10.469469	8.759332	2.576184	276	Н	-11.295106	-5.493098	0.746701
224	С	11.073060	10.070882	0.975977	277	Н	-12.792113	-4.746178	0.165667
225	Н	10.905801	10.998652	1.544302	278	Н	-11.495446	-5.114784	-0.980314
226	Н	10.769885	10.292557	-0.058961	279	С	1.059442	-6.835736	-1.677951
227	С	12.544930	9.697282	1.013905	280	Н	0.273894	-7.598113	-1.605102
228	Н	12.734647	8.785331	0.431618	281	Н	1.968581	-7.326815	-2.048979
229	Н	13.182646	10.489499	0.605182	282	Н	1.262025	-6.451506	-0.670106
230	Н	12.876705	9.501773	2.042176	283	С	1.834552	-4.717557	-2.724518
231	С	5.295338	8.547920	-2.036388	284	Н	1.614056	-3.884589	-3.404461
232	С	-6.221251	-8.996385	-1.922846	285	Н	2.110283	-4.302202	-1.746490
233	F	6.514151	9.046880	-1.792345	286	Н	2.714058	-5.242831	-3.116227
234	F	5.024309	8.780732	-3.330426	287	С	0.386726	-6.260072	-4.021007
235	F	4.421346	9.292652	-1.334051	288	Н	1.295980	-6.732093	-4.414842
236	F	-7.509950	-9.309159	-1.749180	289	Н	-0.402522	-7.020922	-4.011222
237	F	-5.913678	-9.287245	-3.198599	290	Н	0.088129	-5.466748	-4.718152
238	F	-5.503650	-9.844387	-1.166837					
239	С	10.559969	4.041622	1.371163					
240	С	11.391207	2.859785	1.862360					
241	Н	10.943098	2.375946	2.739120					
242	Н	11.526271	2.102543	1.079295					
243	Н	12.386272	3.213864	2.157977					
244	С	10.400224	5.042567	2.522217					
245	Н	11.386671	5.394815	2.852142					
246	Н	9.812295	5.919259	2.222278					
247	Н	9.898586	4.578718	3.381186					
248	С	11.305267	4.708777	0.210336					
249	Н	11.416564	4.021384	-0.637852					
250	Н	10.799186	5.612459	-0.149443					
251	Н	12.309359	5.005474	0.539819					
252	С	-1.008077	4.271984	-3.031900					
253	С	-2.099958	3.208762	-2.943094					
254	Н	-2.351488	2.964310	-1.901463					
255	Н	-3.010896	3.584490	-3.424916					
256	Н	-1.814291	2.282064	-3.456546					
257	С	-0.700001	4.534515	-4.512003					
258	Н	0.038671	5.334685	-4.643061					
259	Н	-0.312780	3.630988	-5.000264					
260	Н	-1.617532	4.835675	-5.034011					
261	С	-1.533948	5.557488	-2.385695					
262	Н	-2.417146	5.908280	-2.934801					
263	Н	-1.839210	5.377819	-1.346165					
264	Н	-0.795666	6.368196	-2.393910					
265	С	-11.144034	-3.360711	0.277372					

	Energy = -5944.50391589 Hartrees									
1	Pt	-2.588530	-2.552894	1.164861	54	С	-0.204323	-5.971161	-1.415358	
2	С	-1.998857	-4.379903	1.516334	55	С	-1.743026	-4.203051	-2.137492	
3	С	-2.873361	-5.431646	1.227446	56	С	-1.191662	-6.925128	-1.647669	
4	С	-0.702904	-4.587075	1.995404	57	С	-2.735465	-5.157353	-2.364005	
5	С	-2.433385	-6.738427	1.417410	58	С	-2.440993	-6.503169	-2.120459	
6	С	-0.259351	-5.896703	2.182974	59	Н	-1.025150	-7.984499	-1.453518	
7	С	-1.133023	-6.950152	1.892955	60	Н	-3.728180	-4.877899	-2.715234	
8	Н	-3.062637	-7.596984	1.182470	61	Ν	1.863873	-5.008108	-0.721981	
9	Н	0.748637	-6.115647	2.533558	62	С	1.144445	-6.165622	-0.870384	
10	Ν	-0.670439	-2.202647	1.848450	63	С	3.103641	-5.076168	-0.214677	
11	С	0.036905	-3.331889	2.189375	64	С	1.693883	-7.389944	-0.500401	
12	С	-0.077725	-1.009471	1.957001	65	С	3.686627	-6.269638	0.164292	
13	С	1.334054	-3.224127	2.666373	66	Н	3.625361	-4.126462	-0.116284	
14	С	1.219022	-0.859369	2.424336	67	С	2.983969	-7.473703	0.022923	
15	Н	-0.675534	-0.152285	1.652169	68	Н	1.084800	-8.280932	-0.625603	
16	С	1.960790	-1.979116	2.800588	69	Н	4.697602	-6.249015	0.563437	
17	Н	1.863042	-4.138308	2.931027	70	Ν	-0.679630	-2.071040	-1.931824	
18	Н	1.631906	0.143915	2.469856	71	С	-1.823979	-2.743971	-2.293129	
19	Ν	-4.268910	-3.609809	0.577868	72	С	-0.658307	-0.737394	-2.021851	
20	С	-5.401810	-3.091388	0.080538	73	С	-2.923962	-2.046817	-2.766798	
21	С	-4.157077	-4.971565	0.686761	74	С	-1.739915	-0.001703	-2.483355	
22	С	-6.460673	-3.877301	-0.331601	75	Н	0.265959	-0.254201	-1.709532	
23	Н	-5.435712	-2.005623	0.019968	76	С	-2.910658	-0.650961	-2.876128	
24	С	-5.200546	-5.800323	0.286310	77	Н	-3.808240	-2.614402	-3.052179	
25	С	-6.382293	-5.273202	-0.233086	78	Н	-1.646275	1.079711	-2.513332	
26	Н	-7.348538	-3.386644	-0.722949	79	0	7.731414	0.513726	-0.079516	
27	Н	-5.065202	-6.873847	0.385174	80	0	4.195420	3.642278	0.193267	
28	С	-3.186123	-0.601922	0.811355	81	С	8.218707	-0.816859	-0.214384	
29	С	-3.479028	0.578468	0.606161	82	Н	7.766011	-1.459227	0.559466	
30	С	-3.801539	1.942113	0.357286	83	Н	7.931504	-1.224751	-1.196976	
31	С	-5.146492	2.342611	0.297164	84	С	9.719814	-0.772492	-0.069644	
32	С	-2.773001	2.893205	0.158612	85	Н	9.970844	-0.310447	0.896430	
33	С	-5.463830	3.673550	0.040249	86	Н	10.133792	-0.116754	-0.849684	
34	Н	-5.917291	1.593984	0.451593	87	С	10.345119	-2.155437	-0.163465	
35	С	-3.125813	4.249371	-0.069942	88	Н	9.935554	-2.799871	0.631257	
36	С	-4.455493	4.631732	-0.143644	89	Н	10.057215	-2.628731	-1.116089	
37	Н	-4.750330	5.658538	-0.337304	90	С	11.861609	-2.119120	-0.055296	
38	С	-1.408066	2.528304	0.148052	91	Н	12.147895	-1.619234	0.884589	
39	С	-0.214324	2.271299	0.082161	92	Н	12.268867	-1.491844	-0.865112	
40	С	1.112324	1.979967	-0.009380	93	С	12.505664	-3.495395	-0.109504	
41	С	2.302298	1.712892	-0.097974	94	Н	12.111320	-4.116721	0.711662	
42	С	3.674713	1.384626	-0.161586	95	Н	12.207653	-4.004015	-1.041243	
43	С	4.093934	0.051239	-0.395181	96	С	14.023204	-3.447153	-0.023473	
44	С	4.659253	2.387669	0.036462	97	Н	14.319627	-2.920636	0.898939	
45	С	5.460258	-0.271009	-0.374138	98	Н	14.416004	-2.838553	-0.854855	
46	С	6.005365	2.056759	0.056995	99	С	14.677472	-4.819655	-0.050779	
47	С	6.401675	0.725601	-0.136451	100	Н	14.294716	-5.424215	0.788280	
48	Н	5.752878	-1.301529	-0.550605	101	Н	14.374234	-5.352334	-0.967393	
49	Н	6.779173	2.798737	0.225349	102	С	16.195446	-4.761141	0.019989	
50	С	3.135898	-0.970082	-0.648846	103	Н	16.497585	-4.217316	0.930470	
51	С	2.300274	-1.849607	-0.871472	104	Н	16.577042	-4.164710	-0.825372	
52	Pt	0.859226	-3.282903	-1.266032	105	С	16.856856	-6.130498	0.009397	
53	С	-0.499618	-4.626677	-1.662437	106	Н	16.482472	-6.724116	0.859991	

Table S6. Cartesian coordinates of the optimized ground-state geometry of the closed form of **3** in dichloromethane

107 H 16.046933 -0.098997 160 C -1.00180 7.180990 -0.075544 108 H 18.74875 -0.046450 0.06203 163 H -0.24606 0.23522 6.774654 -0.778378 110 H 18.64211 -5.10384 0.971457 163 H -1.022153 8.94400 -1.224241 112 H 18.70564 -8.01575 0.022559 165 H -1.05112 9.03706 0.324240 113 H 20.557167 -7.34481 0.120480 168 H 1.06973 8.93921 -0.197069 115 H 20.557167 -7.34481 0.120490 167 H -0.26737 1.32586 0.324778 115 H 20.587167 -7.34481 0.120566 172 H 1.325863 0.324778 116 H 20.58357 5.09229 -0.19976 172 C 1.36687 11.611351 0.71766 120 <th></th>										
100 c 18.37467 -6.064853 0.069023 16.1 H -0.644053 6.32577 0.33374 110 H 18.662171 -5.510384 0.971457 163 C -1.022515 8.600778 -0.226457 111 C 19.061264 -7.43473 0.066651 164 H -1.276298 8.949102 -1.281481 113 H 18.779262 -7.38663 -0.323521 166 C 0.162242 9.393190 0.328420 114 C 20.597447 -6.732741 -0.743500 168 H 1.049973 8.533321 -0.197069 115 H 21.027678 -6.31672 1.02517 170 H -0.208037 1.025261 1.080973 1.02563 1.027733 -1.55806 115 H 21.08357 5.092929 -0.33726 173 H 1.160131 1.552861 1.077165 112 K -7.761050 2.426973 0.312289 1.027758 1	107	Η	16.549953	-6.678447	-0.896997	160	С	-1.000180	7.180990	-0.075544
100 H 18,74318 -5,47660 -0.78328 162 H -0.252923 6,774654 -0.728478 110 H 18,60217 -552334 0.06451 163 C -1.052173 8,609178 -0.226473 111 R 18,670646 -8,01577 0.02553 165 H -1.052173 8,09102 -1.281413 113 H 18,779664 -7.36863 0.020422 1.333390 0.226423 113 H 21.02778 -8.33451 0.122821 166 C 0.164630 0.83920 0.000555 117 H 20.89143 -6.92241 -0.043056 11.7 H 0.226061 11.05280 1.02373 0.324778 118<0 -6.723108 3.147704 -0.043071 H H -0.65085 11.0114 0.458075 121 H -7.721950 2.75271 1.12157 175 C 1.420597 13.052841 0.021389 122 H <	108	С	18.374875	-6.064895	0.069023	161	Η	-0.644058	6.925878	0.933574
110 H 18.6217 -5.2384 0.071457 163 C -1.026379 8.690778 -0.26467 111 C 19.041626 -7.432473 0.066451 166 H -1.276399 8.949102 -1.281481 113 H 18.739262 -7.98663 -0.130352 166 C 0.162242 9.333190 0.284242 115 H 21.027878 -8.33451 0.122823 168 H 1.049973 8.939221 -0.19769 116 H 20.950447 -6.792741 -0.743500 168 C 0.168480 10.89302 0.010555 117 H 20.851163 -6.16271 1.022517 170 H 0.168480 11.61351 0.71766 118 0 -6.723108 4.147044 -0.013722 1.3<16610	109	Η	18.749318	-5.476620	-0.785367	162	Η	-0.259232	6.774654	-0.778878
111 c 19.04122 -7.43243 0.06461 164 H -1.272629 8.949102 -1.28141 112 H 18.670664 -8.013757 0.925559 165 H -1.962172 9.07069 0.334240 114 C 20.55716 -7.34681 0.120400 167 H 0.267133 9.23366 1.531128 115 H 20.059147 -6.73104 4.147044 -0.743500 169 C 0.168450 10.889302 0.000555 117 H 20.89163 -6.92741 -0.743500 1.77 H -0.730637 11.32564 0.70766 120 C -7.80481 2.440997 -0.63104 1.74 H 2.26052 11.1014 0.483289 122 H -7.745084 2.732671 1.12397 175 K 1.420597 13.07875 0.312389 122 K -7.01625 2.142097 13.07875 0.312389 0.2208622 12.718610 13.52564<	110	Н	18.682171	-5.510384	0.971457	163	С	-1.092515	8.690778	-0.226457
112 H 18.670864 -0.01277 0.02255 165 H -1.922172 9.070769 0.034240 113 H 18.729626 -7.986663 -0.030352 166 C 0.162242 9.03108 0.129623 115 H 21.02777 -8.33451 0.122823 166 H 0.049373 8.93322 -0.037065 116 H 20.059147 -6.161672 1.023517 17.7 H 0.026805 11.05733 -1.05510 117 H 20.891163 -6.016672 1.023517 17.7 H 0.226806 11.06733 -1.05513 0.701766 120 - -7.781080 2.44997 -0.61121 17.112197 17.5 C 1.440971 3.152564 -0.731855 121 H -7.751808 2.17287 0.631239 1.151653 1.51653 122 H -9.041223 4.151264 -0.631743 2.18655 1.52584 -0.737865 122 H <td>111</td> <td>С</td> <td>19.041626</td> <td>-7.432473</td> <td>0.068451</td> <td>164</td> <td>Н</td> <td>-1.276299</td> <td>8.949102</td> <td>-1.281481</td>	111	С	19.041626	-7.432473	0.068451	164	Н	-1.276299	8.949102	-1.281481
113 H 18.729626 -7.986663 -0.833321 166 C 0.162424 9.39310 0.128123 114 C 20.557167 -7.344581 0.120400 167 H 0.267133 9.213866 1.351128 115 H 20.557167 -6.732108 0.128231 168 F 1.049979 8.333921 -0.032757 116 O -6.722108 4.147044 -0.045686 171 H -0.226906 1.067533 -1.08588 119 O -2.083375 5.02229 -0.19776 172 C 1.366897 11.4325861 0.70776 121 H -7.763044 2.449997 -0.63104 74 H 2.260052 1.101014 0.448075 122 H -7.7721950 2.752671 1.121957 77 C 1.420957 13.078875 0.32289 123 H -9.061224 4.517964 0.214777 H 1.649459 13.152544 -0.753865 124 H -0.123747 2.566184 1.202665 181 C	112	Η	18.670864	-8.015757	0.925559	165	Н	-1.962172	9.070769	0.334240
114 C 20.551147 -7.344581 0.122480 167 H 0.66133 9.21366 1.351282 115 H 21.027678 -6.332441 -0.723500 169 C 0.164450 1.889302 0.000555 117 H 20.595447 -6.732741 -0.731500 11.322683 0.324788 118 0 -6.72310 4.147044 -0.046866 171 H 0.226906 11.067533 -1.06580 120 C -7.804481 3.242737 0.137252 173 H 1.66910 11.332587 0.312389 122 H -7.721850 2.752671 1.121357 175 C 1.460591 13.55764 -0.753665 123 H -9.061232 4.01704 0.800725 178 C 2.426744 13.85057 1.15163 124 H -9.041232 4.017044 0.800725 178 C 2.426744 13.85067 1.51663 125 H -9.041232 4.017044 0.202465 180 H 3.05764 1.737186	113	Н	18.729626	-7.986663	-0.830352	166	С	0.162242	9.393190	0.268429
115 B 21.027078 -6.334451 0.122023 168 B 1.043979 8.33322 -0.197065 116 B 20.950447 -6.752741 -0.73300 169 C 0.168450 10.889322 -0.197065 118 0 -6.723108 4.147044 -0.045666 171 B 0.228906 11.067533 -1.05808 119 0 -2.08357 5.092929 -0.19776 172 C 1.306807 11.613551 0.70176 120 C -7.760444 2.442997 -0.631014 174 B 2.260052 11.10114 0.48307 122 B -7.761094 2.445977 1.0643131 13.558714 0.400214 124 B -9.08123 4.817364 0.802757 B 1.643131 13.558714 0.400214 124 B -9.08123 4.817364 0.821797 B 1.182083 1.52844 0.73386 125 C -1.612823 3.12718	114	С	20.557167	-7.344581	0.120480	167	Н	0.267133	9.213866	1.351128
116 H 20.950447 -6.792741 -0.743500 169 C 0.166440 10.832602 0.000555 117 H 20.891163 -6.81672 1.023517 170 H -0.790837 11.322663 0.322778 118 0 -2.080357 5.092929 -0.19976 172 C 1.306687 11.613551 0.701766 120 C -7.804481 3.24073 0.137252 173 H 1.166910 11.53556 0.312387 121 H -7.711950 2.752671 1.121957 175 C 1.420597 13.078875 0.312389 122 K -7.9041625 4.021457 0.041275 176 H 0.431301 13.55564 -0.475386 122 K -9.081232 4.817084 0.800725 178 C 1.426744 13.850057 1.151663 126 C -10.302678 3.817718 0.2324744 13.298546 0.128717 12.118752 13.91403 <td>115</td> <td>Н</td> <td>21.027878</td> <td>-8.334451</td> <td>0.122823</td> <td>168</td> <td>Н</td> <td>1.049979</td> <td>8.933921</td> <td>-0.197069</td>	115	Н	21.027878	-8.334451	0.122823	168	Н	1.049979	8.933921	-0.197069
117 H 20.83163 -6.816672 1.023517 170 H -0.790337 11.325863 0.324778 118 0 -6.723108 4.147044 -0.045666 171 H 0.226906 11.067333 -1.095808 120 C -7.804481 3.240273 0.137252 173 H 1.166910 11.532560 1.792450 121 H -7.763044 2.449997 -0.631014 174 H 2.26052 11.010140 0.48957 122 H -7.721950 2.752671 1.021377 H 1.64959 13.558714 0.400214 124 H -9.06123 4.817084 0.800725 178 C 2.426744 13.816103 2.209822 127 H -10.230747 2.35713 -0.235868 180 H 2.426744 13.348610 1.074855 128 H -10.213747 2.35713 -0.253864 181 C 2.89945 1.171749 129	116	Н	20.950447	-6.792741	-0.743500	169	С	0.168450	10.889302	0.000555
118 0 -6.723108 4.147044 -0.045666 171 H 0.226906 11.667533 -1.085808 119 0 -2.088375 5.02229 -0.199776 172 C 1.306687 11.667533 -1.085808 121 H -7.763044 2.449997 -0.631014 174 H 2.260052 11.101014 0.485075 122 H -7.721950 2.752671 1.12157 176 H 0.431301 13.55874 0.400214 123 C -9.091623 4.021457 0.001275 178 C 2.426744 13.850057 1.15163 126 H -9.031232 4.817084 0.202450 180 H 3.405762 13.341661 1.007455 127 H -10.213747 2.56184 1.202665 181 C 2.89045 15.29846 0.718700 130 H -11.716438 4.425000 0.714940 183 H 2.935722 15.399391	117	Н	20.891163	-6.816672	1.023517	170	Н	-0.790837	11.325863	0.324778
119 0 -2.088357 5.092929 -0.199776 172 C 1.306887 11.613551 0.701766 120 C -7.804481 3.240273 0.137252 173 H 1.166910 11.53250 1.792450 121 H -7.721950 2.752671 1.121957 175 C 1.420597 13.078875 0.312389 123 C -9.0912625 4.021457 0.041275 176 H 0.431301 13.55564 -0.04022 124 H -9.0412231 4.519566 -0.937960 177 H 1.64959 13.151661 1.151663 125 H -0.021374 2.481708 0.800726 13.34161 1.107465 128 H -10.213747 2.59464 0.718777 129 C -11.618263 3.093864 0.216461 182 H 1.602574 15.39983 -0.353461 130 H -11.216263 3.093864 0.216461 182 H 1.602574 </td <td>118</td> <td>0</td> <td>-6.723108</td> <td>4.147044</td> <td>-0.045686</td> <td>171</td> <td>Н</td> <td>0.226906</td> <td>11.067533</td> <td>-1.085808</td>	118	0	-6.723108	4.147044	-0.045686	171	Н	0.226906	11.067533	-1.085808
120 C -7.804481 3.240273 0.137252 173 H 1.166910 11.532580 1.792450 121 H -7.763044 2.449997 -0.631014 174 H 2.26052 11.10114 0.468057 123 C -9.091625 4.021457 0.041275 176 H 0.431301 13.558714 0.400214 124 H -9.081232 4.617084 0.800725 178 C 2.464744 13.850057 1.51663 125 H -9.081232 4.617084 0.224120 179 H 2.18752 13.341661 1.107465 128 H -10.213747 2.596184 1.202665 181 C 2.589045 15.29846 0.718100 130 H -11.716438 4.425000 -0.744410 183 H 2.039722 15.329486 0.738764 132 C -12.832513 3.004664 0.432565 185 H 3.205601 16.033396 2.441651 <td>119</td> <td>0</td> <td>-2.088357</td> <td>5.092929</td> <td>-0.199776</td> <td>172</td> <td>С</td> <td>1.306887</td> <td>11.613551</td> <td>0.701766</td>	119	0	-2.088357	5.092929	-0.199776	172	С	1.306887	11.613551	0.701766
121 H -7,763084 2.449997 -0.631014 174 H 2.260052 11.101014 0.485075 122 H -7,721950 2.752671 1.121957 175 C 1.420597 13.078875 0.312389 123 C -9.091625 4.519566 -0.93768 177 H 1.649595 13.152564 -0.753865 125 H -9.042324 4.817084 0.800725 178 C 2.426744 13.850057 1.151663 126 C -10.320758 2.345713 -0.535686 181 C 2.489045 15.298546 0.718717 129 C -11.618263 3.893864 0.216461 182 H 1.602574 15.791909 0.138900 130 H -11.716438 4.425000 -0.744410 183 H 2.939722 1.586913 131 H -12.78219 2.3108 -0.332060 186 H 4.538157 15.599952 1.586913	120	С	-7.804481	3.240273	0.137252	173	Н	1.166910	11.532580	1.792450
122 H -7.721950 2.752671 1.121957 175 C 1.420597 13.078875 0.312389 123 C -9.091625 4.021457 0.041275 176 H 0.431301 13.558714 0.040214 124 H -9.081232 4.817084 0.800725 177 H 1.694959 13.315264 -0.753865 126 C -10.305224 3.127182 0.241209 179 H 2.18752 13.341661 1.107465 128 H -10.230758 2.345713 -0.535688 180 H 3.405726 13.341661 1.107465 128 H -10.213747 2.395184 1.202665 181 C 2.589045 15.529836 0.718171 129 C -11.612638 4.425000 -0.744410 183 H 2.939722 15.329838 -0.327544 131 H -11.56639 4.67647 0.92453 186 H 4.538157 15.599952 1.589913	121	Н	-7.763084	2.449997	-0.631014	174	Н	2.260052	11.101014	0.485075
123 C -9.091625 4.021457 0.041275 176 H 0.431301 13.558714 0.400214 124 H -9.081232 4.017084 0.800725 177 H 1.634959 13.152564 -0.753865 125 H -9.081232 4.017084 0.241209 179 H 2.426744 13.801613 2.208924 127 H -10.320758 2.345713 -0.535688 180 H 3.405726 13.341861 1.107465 128 H -10.23747 2.596144 1.202665 181 C 2.589045 15.289846 0.713900 130 H -11.716438 4.425000 -0.744410 183 H 2.939722 15.329836 -0.237544 131 H -12.852151 3.04064 0.432565 185 H 3.205601 16.028915 1.589931 133 H -12.85010 2.631743 0.46252 188 H 2.716508 18.03020 1.181693	122	Н	-7.721950	2.752671	1.121957	175	С	1.420597	13.078875	0.312389
124 H -9.142231 4.519566 -0.937968 177 H 1.694959 13.152564 -0.753865 125 H -9.081232 4.817084 0.800725 178 C 2.426744 13.850057 1.151663 126 C -10.305224 3.127182 0.241209 179 H 2.186726 13.341861 1.107465 127 H -10.213747 2.596184 1.202665 181 C 2.589045 15.298546 0.718910 130 H -11.716438 4.425000 -0.744410 183 H 2.939722 15.329838 -0.32754 131 H -12.865010 2.231108 -0.333060 186 H 4.538157 15.599952 1.586913 134 H -12.718219 2.459518 1.344675 189 H 4.036489 17.571895 0.113723 135 C -14.166848 3.768278 0.446252 188 H 2.715081 18.030320 1.	123	С	-9.091625	4.021457	0.041275	176	Н	0.431301	13.558714	0.400214
125 H -9.081232 4.817084 0.800725 178 C 2.426744 13.850057 1.151663 126 C -10.305224 3.127182 0.241209 179 H 2.118752 13.816103 2.209892 127 H -10.220758 2.345713 -0.535688 180 H 3.405726 13.341861 1.107465 128 H -10.213747 2.596184 1.202665 15.298546 0.718717 129 C -11.61828 3.893864 0.216461 182 H 1.602574 15.791909 0.718900 130 H -11.716438 4.425000 -0.744410 183 H 2.939722 15.329838 -0.327544 133 H -12.865010 2.231108 -0.333060 186 H 3.205601 16.605339 2.6461651 134 H -12.718219 2.459518 1.384587 187 C 3.702463 17.540671 1.164082 135 C -14.146848 3.768278 0.446252 188 H 2.716508 <t< td=""><td>124</td><td>Н</td><td>-9.142231</td><td>4.519566</td><td>-0.937968</td><td>177</td><td>Н</td><td>1.694959</td><td>13.152564</td><td>-0.753865</td></t<>	124	Н	-9.142231	4.519566	-0.937968	177	Н	1.694959	13.152564	-0.753865
126 C -10.305224 3.127182 0.241209 179 H 2.118752 13.816103 2.209892 127 H -10.320758 2.345713 -0.535688 180 H 3.405726 13.341861 1.107465 128 H -10.213747 2.596184 1.202665 181 C 2.580945 15.298546 0.718970 129 C -11.618263 3.893864 0.216461 182 H 1.602574 15.791999 0.718900 130 H -11.596199 4.676467 0.992453 184 C 3.548150 16.089515 1.593991 132 C -12.832151 3.004064 0.432565 185 H 3.205601 16.69335 2.641651 133 H -12.832151 3.004064 0.432565 185 H 3.205601 15.67061 1.64082 135 C -14.146848 3.76278 0.446252 188 H 2.716508 18.030320 1.18158	125	Н	-9.081232	4.817084	0.800725	178	С	2.426744	13.850057	1.151663
127 H -10.320756 2.345713 -0.535688 10 H 3.405726 13.341661 1.107465 128 H -10.213747 2.596184 1.202665 181 C 2.589045 15.298546 0.718910 130 H -11.716438 4.425000 -0.744410 183 H 2.939722 15.329838 -0.327544 131 H -11.56199 4.67647 0.992453 184 C 3.548150 16.09515 1.539391 132 C -12.832151 3.004064 0.432565 185 H 3.205601 16.053396 2.641651 133 H -12.865010 2.231108 -0.353060 186 H 4.538157 15.599952 1.586913 134 H -14.267189 4.309407 -0.556651 189 H 4.036489 17.571895 0.113723 137 H -14.166848 3.768278 0.446252 188 H 2.716508 18.30518 2.036591 138 C -15.357051 2.877273 0.679252 1	126	С	-10.305224	3,127182	0.241209	179	Н	2.118752	13.816103	2.209892
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	127	н	-10.320758	2.345713	-0.535688	180	н	3.405726	13.341861	1.107465
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128	н	-10.213747	2.596184	1.202665	181	С	2.589045	15.298546	0.718717
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129	С	-11.618263	3.893864	0.216461	182	н	1,602574	15.791909	0.718900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	н	-11.716438	4,425000	-0.744410	183	н	2,939722	15.329838	-0.327544
122 C -12.832151 3.004064 0.432565 185 H 3.205601 16.05336 2.641651 133 H -12.865010 2.231108 -0.353060 186 H 4.538157 15.599952 1.586913 134 H -12.718219 2.459518 1.384587 187 C 3.702463 17.540671 1.164082 135 C -14.146848 3.768278 0.446252 188 H 2.716508 18.030320 1.181589 136 H -14.267189 4.309407 -0.506851 189 H 4.036489 17.571895 0.113723 137 H -14.108977 4.544044 1.228939 190 C 4.678784 18.310518 2.036591 138 C -15.357051 2.877273 0.679252 191 H 4.781361 19.354732 1.718153 139 H -15.401711 2.106667 -0.108226 192 H 4.353122 18.315144 3.005406 140 H -15.228137 2.329362 1.627506 <td< td=""><td>131</td><td>н</td><td>-11.596199</td><td>4.676467</td><td>0.992453</td><td>184</td><td>C</td><td>3.548150</td><td>16.089515</td><td>1.593991</td></td<>	131	н	-11.596199	4.676467	0.992453	184	C	3.548150	16.089515	1.593991
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	132	C	-12 832151	3 004064	0 432565	185	н	3 205601	16 053396	2 641651
134 H -12.718219 2.459518 1.384587 187 C 3.702463 17.540671 1.164082 135 C -14.146848 3.768278 0.446252 188 H 2.716508 18.030320 1.181589 136 H -14.267189 4.309407 -0.506851 189 H 4.036489 17.571895 0.113723 137 H -14.108977 4.544044 1.228939 190 C 4.678784 18.310518 2.036591 138 C -15.357051 2.877273 0.679252 191 H 4.781361 19.354732 1.718153 139 H -15.401711 2.106667 -0.108226 192 H 4.353122 18.315144 3.085406 140 H -15.228137 2.329362 1.627506 193 H 5.678287 17.854633 2.010585 141 C -16.672358 3.639847 0.714920 194 C 5.140016 4.708677 0.199394 142 H -16.806155 4.184676 -0.234341 <td< td=""><td>133</td><td>н</td><td>-12 865010</td><td>2 231108</td><td>-0 353060</td><td>186</td><td>н</td><td>4 538157</td><td>15 599952</td><td>1 586913</td></td<>	133	н	-12 865010	2 231108	-0 353060	186	н	4 538157	15 599952	1 586913
135 C -14.146848 3.768278 0.446252 188 H 2.716508 18.030320 1.181689 136 H -14.267189 4.309407 -0.506851 189 H 4.036489 17.571895 0.113723 137 H -14.108977 4.544044 1.228939 190 C 4.678784 18.310518 2.036591 138 C -15.357051 2.877273 0.679252 191 H 4.353122 18.315144 3.085406 140 H -15.228137 2.329362 1.627506 193 H 5.678287 17.854633 2.010585 141 C -16.672358 3.639847 0.714920 194 C 5.140016 4.708677 0.196399 142 H -16.624626 4.412753 1.499966 196 H 5.773197 4.645484 1.006627 144 C -17.879023 2.747183 0.960058 197 C 4.399014 6.024023 0.149918 145 H -16.624626 4.412753 1.996453 199	134	н	-12.718219	2.459518	1.384587	187	C	3.702463	17.540671	1,164082
136H -14.267189 4.309407 -0.506851 189 H 4.036489 17.571895 0.113723 137H -14.108977 4.544044 1.228939 190 C 4.678784 18.310518 2.036591 138C -15.357051 2.877273 0.679252 191 H 4.781361 19.354732 1.718153 139H -15.401711 2.106667 -0.108226 192 H 4.353122 18.315144 3.085406 140H -15.228137 2.329362 1.627506 193 H 5.678287 17.854633 2.010585 141C -16.672358 3.639847 0.714920 194 C 5.140016 4.708677 0.196399 142H -16.624626 4.412753 1.499966 196 H 5.773197 4.645484 1.006627 143H -16.624626 4.412753 1.499966 197 C 4.399014 6.024023 0.149918 145H -17.739948 2.198496 1.906453 199 H 3.86701 6.001452 -0.687711 146H -17.739948 2.198496 1.906453 199 H 3.807308 6.153424 1.067600 147C -19.194840 3.507865 1.008978 200 C 5.378330 7.175775 -0.227078 148H -19.338291 4.054880 0.62215 201 H 6.118901 7.159638	135	С	-14.146848	3.768278	0.446252	188	Н	2.716508	18.030320	1.181589
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	136	Н	-14.267189	4.309407	-0.506851	189	Н	4.036489	17.571895	0.113723
138C -15.357051 2.877273 0.679252 191 H 4.781361 19.354732 1.718153 139H -15.401711 2.106667 -0.108226 192 H 4.353122 18.315144 3.085406 140H -15.228137 2.329362 1.627506 193 H 5.678287 17.854633 2.010585 141C -16.672358 3.639847 0.714920 194 C 5.140016 4.708677 0.196939 142H -16.626266 4.412753 1.499966 196 H 5.773197 4.645484 1.096627 144C -17.879023 2.747183 0.96058 197 C 4.399014 6.024023 0.149918 145H -17.930669 1.977194 0.172352 198 H 3.668701 6.001452 -0.687711 146H -17.739948 2.198496 1.906453 199 H 3.807308 6.153424 1.067660 147C -19.194840 3.507865 1.008978 200 C 5.378330 7.17575 -0.027078 148H -19.338291 4.054880 0.062215 201 H 6.118901 7.159638 0.789118 149H -19.142649 4.279424 1.795256 202 H 5.952009 7.014473 -0.954460 150C -20.399717 2.613713 1.261641 203 C 4.729672 8.550958	137	Н	-14.108977	4.544044	1.228939	190	С	4.678784	18.310518	2.036591
139 H -15.401711 2.106667 -0.108226 192 H 4.353122 18.315144 3.085406 140 H -15.228137 2.329362 1.627506 193 H 5.678287 17.854633 2.010585 141 C -16.672358 3.639847 0.714920 194 C 5.140016 4.708677 0.196939 142 H -16.806155 4.184676 -0.234341 195 H 5.798657 4.613244 -0.681545 144 C -17.879023 2.747183 0.960058 197 C 4.399014 6.024023 0.149918 145 H -17.7390669 1.977194 0.172352 198 H 3.686701 6.001452 -0.687711 146 H -17.739948 2.198496 1.906453 199 H 3.807308 6.153424 1.067660 147 C -19.194840 3.507865 1.008978 200 C 5.378330 7.175775 -0.027078 148 H -19.338291 4.054880 0.062215 2	138	С	-15.357051	2.877273	0.679252	191	н	4.781361	19.354732	1.718153
140 H -15.228137 2.329362 1.627506 193 H 5.678287 17.854633 2.010585 141 C -16.672358 3.639847 0.714920 194 C 5.140016 4.708677 0.196939 142 H -16.624626 4.184676 -0.234341 195 H 5.798657 4.613244 -0.681545 144 C -17.879023 2.747183 0.960058 197 C 4.399014 6.024023 0.149918 144 H -17.739048 2.198496 1.906453 199 H 3.686701 6.01452 -0.687711 146 H -17.739948 2.198496 1.906453 199 H 3.807308 6.153424 1.067660 147 C -19.194840 3.507865 1.008978 200 C 5.378330 7.175775 -0.027078 148 H -19.338291 4.054880 0.062215 201 H 6.118901 7.159638 0.789118 149 H -19.142649 4.279424 1.795256 202 </td <td>139</td> <td>н</td> <td>-15,401711</td> <td>2.106667</td> <td>-0.108226</td> <td>192</td> <td>н</td> <td>4.353122</td> <td>18.315144</td> <td>3.085406</td>	139	н	-15,401711	2.106667	-0.108226	192	н	4.353122	18.315144	3.085406
14011 <t< td=""><td>140</td><td>н</td><td>-15 228137</td><td>2 329362</td><td>1 627506</td><td>193</td><td>н</td><td>5 678287</td><td>17 854633</td><td>2 010585</td></t<>	140	н	-15 228137	2 329362	1 627506	193	н	5 678287	17 854633	2 010585
1410100.012000.0130000.011200100.0110000.01100000.0110000142H-16.8061554.184676-0.234341195H5.7986574.613244-0.681545143H-16.6246264.4127531.499966196H5.7731974.6454841.096627144C-17.8790232.7471830.960058197C4.3990146.0240230.149918145H-17.9306691.9771940.172352198H3.6867016.001452-0.687711146H-17.7399482.1984961.906453199H3.8073086.1534241.067660147C-19.1948403.5078651.008978200C5.3783307.175775-0.027078148H-19.3382914.0548800.062215201H6.1189017.1596380.789118149H-19.1426494.2794241.795256202H5.9520097.014473-0.954460150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813	141	C	-16 672358	3 639847	0 714920	194	C	5 140016	4 708677	0 196939
142110.00013341.040700.23441103151.7503741.012440.001343143H-16.6246264.4127531.499966196H5.7731974.6454841.096627144C-17.8790232.7471830.960058197C4.3990146.0240230.149918145H-17.7399482.1984961.906453199H3.6867016.001452-0.687711146H-17.7399482.1984961.906453199H3.8073086.1534241.067660147C-19.1948403.5078651.008978200C5.3783307.175775-0.027078148H-19.3382914.0548800.062215201H6.1189017.1596380.789118149H-19.1426494.2794241.795256202H5.9520097.014473-0.954460150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.388731.315742206C5.7410859.642156-0.403813154H-21.6832114.1433552.113237209C5.16886311.051059-0.413756 </td <td>1/2</td> <td>ц</td> <td>-16 806155</td> <td>1 184676</td> <td>-0 234341</td> <td>195</td> <td>с ц</td> <td>5 798657</td> <td>4.700077</td> <td>-0 681545</td>	1/2	ц	-16 806155	1 184676	-0 234341	195	с ц	5 798657	4.700077	-0 681545
1431100.240204.4427331.49500015015.7731574.034041.050027144c-17.8790232.7471830.960058197c4.3990146.0240230.149918145H-17.9306691.9771940.172352198H3.6867016.001452-0.687711146H-17.7399482.1984961.906453199H3.8073086.1534241.067660147C-19.1948403.5078651.008978200C5.3783307.175775-0.027078148H-19.3382914.0548800.062215201H6.1189017.1596380.789118149H-19.1426494.2794241.795256202H5.9520097.014473-0.954460150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785 </td <td>1/3</td> <td>и П</td> <td>-16 624626</td> <td>4.12753</td> <td>1 /00066</td> <td>196</td> <td>и Ц</td> <td>5.750057</td> <td>4.015244</td> <td>1 096627</td>	1/3	и П	-16 624626	4.12753	1 /00066	196	и Ц	5.750057	4.015244	1 096627
144C17.0130232.7411030.1300301137C11330140.10240230.113310145H-17.9306691.9771940.172352198H3.6867016.001452-0.687711146H-17.7399482.1984961.906453199H3.8073086.1534241.067660147C-19.1948403.5078651.008978200C5.3783307.175775-0.027078148H-19.3382914.0548800.062215201H6.1189017.1596380.789118149H-19.1426494.2794241.795256202H5.9520097.014473-0.954460150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.6832114.1433552.113237209C5.16886311.051059-0.413756155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785155H-22.5645892.7351661.502072210H4.28135311.088084-1.06	144	C	-17 879023	2 747183	0 960058	197	C	4 399014	6 024023	0 149918
143H11.55000511.57715401.17252130H5100070101.0011201.00112146H-17.7399482.1984961.906453199H3.8073086.1534241.067660147C-19.1948403.5078651.008978200C5.3783307.175775-0.027078148H-19.3382914.0548800.062215201H6.1189017.1596380.789118149H-19.1426494.2794241.795256202H5.9520097.014473-0.954460150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069	145	н	-17 930669	1 977194	0.172352	198	н	3 686701	6 001452	-0 687711
14011 <t< td=""><td>146</td><td>н</td><td>-17 739948</td><td>2 198496</td><td>1 906453</td><td>199</td><td>н</td><td>3 807308</td><td>6 153424</td><td>1 067660</td></t<>	146	н	-17 739948	2 198496	1 906453	199	н	3 807308	6 153424	1 067660
11701170117000148H-19.3382914.0548800.062215201H6.1189017.1596380.789118149H-19.1426494.2794241.795256202H5.9520097.014473-0.954460150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	147	C	-19 194840	3 507865	1 008978	200	C	5 378330	7 175775	-0 027078
11011	148	н	-19.338291	4.054880	0.062215	201	н	6,118901	7.159638	0.789118
150C-20.3997172.6137131.261641203C4.7296728.550958-0.085008151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	149	Н	-19.142649	4.279424	1.795256	202	н	5,952009	7.014473	-0.954460
151H-20.2512622.0660802.205250204H3.9373888.553231-0.851775152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	150	С	-20.399717	2.613713	1.261641	203	С	4.729672	8.550958	-0.085008
152H-20.4528221.8466300.473531205H4.2275868.7683960.872326153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	151	Н	-20.251262	2.066080	2.205250	204	Н	3.937388	8.553231	-0.851775
153C-21.7046483.3888731.315742206C5.7410859.642156-0.403813154H-21.8891333.9185060.371758207H6.5699529.5952860.321735155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	152	Н	-20.452822	1.846630	0.473531	205	Н	4.227586	8.768396	0.872326
154 H -21.889133 3.918506 0.371758 207 H 6.569952 9.595286 0.321735 155 H -22.564589 2.735166 1.502004 208 H 6.193965 9.430516 -1.386785 156 H -21.683211 4.143355 2.113237 209 C 5.168863 11.051059 -0.413756 157 C -2.325004 6.492801 -0.296702 210 H 4.281353 11.088084 -1.069110 158 H -3.051944 6.805073 0.469231 211 H 4.808506 11.310940 0.596644 159 H -2.751989 6.733732 -1.283948 212 C 6.178660 12.089795 -0.879067	153	С	-21.704648	3.388873	1.315742	206	С	5.741085	9.642156	-0.403813
155H-22.5645892.7351661.502004208H6.1939659.430516-1.386785156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	154	Н	-21.889133	3.918506	0.371758	207	Н	6.569952	9.595286	0.321735
156H-21.6832114.1433552.113237209C5.16886311.051059-0.413756157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	155	Н	-22.564589	2.735166	1.502004	208	Н	6.193965	9.430516	-1.386785
157C-2.3250046.492801-0.296702210H4.28135311.088084-1.069110158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	156	Н	-21.683211	4.143355	2.113237	209	С	5.168863	11.051059	-0.413756
158H-3.0519446.8050730.469231211H4.80850611.3109400.596644159H-2.7519896.733732-1.283948212C6.17866012.089795-0.879067	157	С	-2.325004	6.492801	-0.296702	210	Н	4.281353	11.088084	-1.069110
159 н -2.751989 6.733732 -1.283948 212 С 6.178660 12.089795 -0.879067	158	Н	-3.051944	6.805073	0.469231	211	Н	4.808506	11.310940	0.596644
	159	Н	-2.751989	6.733732	-1.283948	212	С	6.178660	12.089795	-0.879067

213	Η	6.483886	11.857105	-1.912749	266	С	-3.936448	1.598943	-3.413692
214	Η	7.094991	12.006968	-0.271350	267	С	-3.100162	1.903136	-4.055917
215	С	5.662260	13.517843	-0.815583	268	Η	-4.842290	2.080551	-3.802482
216	Η	4.709882	13.590677	-1.369720	269	Н	-3.759012	1.992842	-2.403877
217	Η	5.418844	13.771929	0.230477	270	Η	-5.349026	-0.250669	-2.541328
218	С	6.644404	14.541720	-1.363206	271	С	-5.607865	-1.316002	-2.591329
219	Н	6.876565	14.301657	-2.414049	272	Н	-5.158997	0.007945	-1.491048
220	Н	7.599471	14.459239	-0.818115	273	Η	-6.221201	0.320925	-2.886049
221	С	6.132065	15.969979	-1.270793	274	Η	-4.392189	-0.373865	-4.851635
222	Н	5.899227	16.206543	-0.217726	275	С	-3.538152	-0.143913	-5.501622
223	Н	5.173441	16.050417	-1.812474	276	Η	-4.584460	-1.451974	-4.912088
224	С	7.103607	17.006276	-1.814615	277	Н	-5.272158	0.145456	-5.253183
225	Н	7.332884	16.771521	-2.865568	278	Н	3.633907	-8.788712	0.429194
226	Н	8.058559	16.926375	-1.272506	279	С	4.903803	-8.990265	-0.406235
227	С	6.567017	18.423328	-1.707167	280	Н	5.633784	-8.187213	-0.248142
228	Н	6.365710	18.691229	-0.660785	281	Н	5.383842	-9.937174	-0.127660
229	Н	7.271574	19.161854	-2.107108	282	Н	4.671016	-9.031207	-1.477922
230	Н	5.624034	18.532062	-2.259847	283	С	4.008247	-8.727635	1.915087
231	С	-0.696118	-8.368500	2.046381	284	Н	4.467194	-9.676998	2.219642
232	С	-3.467548	-7.562480	-2.345544	285	Н	4.728559	-7.928928	2.128101
233	F	-4.663635	-7.066279	-2.688868	286	Н	3.123033	-8.564051	2.541703
234	F	-3.105316	-8.420073	-3.312840	287	С	2.711753	-9.984003	0.206469
235	F	-3.661257	-8.314662	-1.242673	288	Н	1.790724	-9.908631	0.797089
236	F	-1.437886	-9.034835	2.944764	289	Н	2.438728	-10.098506	-0.850463
237	F	0.582411	-8.482091	2.429466	290	Н	3.228451	-10.901315	0.513812
238	F	-0.816512	-9.055967	0.891335					
239	С	3.382998	-1.892606	3.338117					
240	С	3.899339	-0.456252	3.372021					
241	Н	3.292364	0.181871	4.026865					
242	Н	4.924296	-0.449441	3.763210					
243	Н	3.923300	-0.002095	2.372022					
244	С	3.404927	-2.451024	4.766155					
245	Н	2.745689	-1.873010	5.426530					
246	Н	3.087986	-3.500301	4.804122					
247	Н	4.423681	-2.395305	5.171555					
248	С	4.314671	-2.724687	2.448263					
249	Н	4.060218	-3.792230	2.470134					
250	Н	4.265227	-2.380781	1.406085					
251	Н	5.350797	-2.621986	2.798004					
252	С	-7.556158	-6.137148	-0.670279					
253	С	-8.768477	-5.789073	0.201699					
254	Н	-9.056800	-4.735552	0.105844					
255	Н	-9.629433	-6.400740	-0.097608					
256	Н	-8.562268	-5.989391	1.260938					
257	С	-7.265857	-7.628348	-0.525138					
258	Н	-6.417515	-7.943257	-1.145187					
259	Н	-7.058810	-7.906383	0.516234					
260	Н	-8.143643	-8.200805	-0.848494					
261	С	-7.879972	-5.843366	-2.139635					
262	Н	-8.724507	-6.464916	-2.463582					
263	Н	-8.158653	-4.795534	-2.301915					
264	Н	-7.023915	-6.072658	-2.786163					
265	С	-4.131575	0.084825	-3.411757					

			E	nergy = -4641.9	9579016 [,]	1 Har	trees		
1	Pt	3.671448	3.390323	-0.874539	54	С	-4.024170	-2.138761	-0.588695
2	С	3.427858	5.288124	-1.273955	55	Pt	-3.665803	-4.107758	-1.113475
3	С	4.469987	6.172881	-0.989146	56	С	-3.224394	-5.956099	-1.569441
4	С	2.208970	5.713482	-1.807116	57	С	-4.125409	-6.965853	-1.226783
5	С	4.286676	7.534513	-1.248984	58	С	-1.985790	-6.225543	-2.156203
6	С	2.029227	7.076264	-2.064772	59	С	-3.773613	-8.295719	-1.476859
7	С	3.070316	7.967798	-1.786140	60	С	-1.636787	-7.557248	-2.402190
8	Н	5.070689	8.262438	-1.037721	61	С	-2.534291	-8.573501	-2.060356
9	Н	1.094320	7.456715	-2.475544	62	Н	-4.442619	-9.115819	-1.216987
10	Н	2.928178	9.027342	-1.986668	63	Н	-0.678338	-7.819020	-2.849553
11	Ν	1.746825	3.372891	-1.643476	64	Н	-2.258566	-9.607980	-2.250530
12	С	1.259823	4.612589	-1.992030	65	Ν	-5.356591	-5.085353	-0.411015
13	С	0.962305	2.292849	-1.761569	66	С	-5.341941	-6.447687	-0.597968
14	С	-0.047568	4.739961	-2.450412	67	С	-6.419706	-4.506091	0.166207
15	С	-0.342365	2.370128	-2.224050	68	С	-6.428779	-7.218104	-0.195631
16	Н	1.409463	1.347175	-1.460600	69	С	-7.525790	-5.231237	0.581175
17	С	-0.855711	3.615682	-2.567203	70	Н	-6.361348	-3.427341	0.286631
18	Н	-0.424282	5.726854	-2.708660	71	С	-7.528407	-6.610103	0.393749
19	Н	-0.938612	1.464005	-2.292792	72	Н	-6.401020	-8.293988	-0.353114
20	Н	-1.880683	3.712978	-2.917236	73	Н	-8.363256	-4.717123	1.042141
21	Ν	5.491484	4.146926	-0.234087	74	Н	-8.381197	-7.209405	0.705381
22	С	6.488191	3.437293	0.314577	75	Ν	-1.816118	-3.844759	-2.015918
23	С	5.631257	5.505460	-0.396466	76	С	-1.203636	-5.011802	-2.409653
24	С	7.673202	4.022123	0.730638	77	С	-1.200467	-2.670594	-2.214290
25	Н	6.307688	2.369829	0.412726	78	С	0.062364	-4.970827	-2.984500
26	С	6.804625	6.136181	0.004599	79	С	0.054263	-2.579873	-2.797272
27	С	7.831533	5.394391	0.571241	80	Н	-1.742526	-1.790162	-1.874398
28	Н	8.450329	3.405245	1.170500	81	С	0.697941	-3.751722	-3.178414
29	Н	6.902384	7.210048	-0.134644	82	Н	0.544686	-5.901105	-3.273359
30	Н	8.748678	5.884813	0.886884	83	Н	0.514117	-1.604274	-2.929536
31	С	3.928504	1.370724	-0.492041	84	Н	1.691050	-3.717691	-3.619370
32	С	4.063709	0.151266	-0.334434	85	0	-6.227089	3.424500	0.205994
33	С	4.172438	-1.256449	-0.227528	86	0	-1.549004	2.992943	0.769810
34	С	5.427441	-1.872357	-0.281278	87	С	-7.520452	2.875004	-0.020346
35	С	2.963821	-2.055646	-0.130012	88	Н	-7.552122	2.393881	-1.011438
36	С	5.527174	-3.261029	-0.279588	89	Н	-7.732683	2.099623	0.733284
37	Н	6.308230	-1.241554	-0.353916	90	С	-8.526418	3.995953	0.067240
38	С	3.113607	-3.491222	-0.151205	91	Н	-8.268426	4.769912	-0.670415
39	С	4.366310	-4.055946	-0.222296	92	Н	-8.452065	4.466615	1.058544
40	Н	4.460435	-5.138828	-0.217649	93	С	-9.943704	3.498609	-0.170476
41	С	1.748419	-1.425038	-0.052585	94	Н	-10.006564	3.026133	-1.164113
42	С	0.655664	-0.814079	0.077618	95	Н	-10.182270	2.705692	0.556801
43	С	-0.500036	-0.208766	0.190394	96	С	-10.983592	4.603262	-0.069577
44	С	-1.613838	0.384600	0.250052	97	Н	-10.742973	5.399577	-0.792859
45	С	-2.785706	1.074451	0.253856	98	Η	-10.922257	5.072494	0.926004
46	С	-4.069605	0.443074	-0.005832	99	С	-12.402112	4.111995	-0.310750
47	С	-2.768611	2.503210	0.501503	100	Н	-12.464045	3.649126	-1.309557
48	С	-5.234571	1.224113	-0.013031	101	Н	-12.637429	3.308753	0.407010
49	С	-3.923034	3.238254	0.457148	102	С	-13.447087	5.210638	-0.197422
50	С	-5.165105	2.594575	0.206361	103	Η	-13.209827	6.016393	-0.911778
51	Н	-6.181625	0.732890	-0.215058	104	Η	-13.386874	5.670130	0.803109
52	Н	-3.931893	4.310238	0.630477	105	С	-14.865612	4.720814	-0.442672
53	С	-4.099820	-0.937050	-0.299028	106	Н	-14.927920	4.268054	-1.446162

Table S7. Cartesian coordinates of the optimized T_1 geometry of the open form of **1** in dichloromethane

107	Η	-15.100122	3.909909	0.266808	160	Н	21.617317	-6.503875	-0.050747
108	С	-15.911320	5.817564	-0.317684	161	Η	22.573500	-5.256096	0.763475
109	Н	-15.673802	6.631167	-1.023078	162	Н	21.479439	-6.286503	1.698667
110	Н	-15.851225	6.266302	0.687772	163	С	0.888243	-4.117177	0.598703
111	С	-17.330236	5.331695	-0.568557	164	Н	0.198998	-3.487742	0.018647
112	Н	-17.392896	4.890474	-1.577184	165	Н	1.133558	-3.581943	1.528451
113	Н	-17.565816	4.513030	0.131649	166	С	0.230940	-5.442352	0.897732
114	С	-18.374364	6.428345	-0.431315	167	Н	0.065173	-5.979431	-0.050629
115	Н	-18.315806	6.864625	0.579838	168	Н	0.902321	-6.067245	1.504783
116	Н	-18.134923	7.250930	-1.125777	169	С	-1.095856	-5.223852	1.607748
117	С	-19.794766	5.949304	-0.690684	170	Н	-0.919429	-4.725575	2.574993
118	Н	-19.853210	5.522781	-1.704033	171	Н	-1.711800	-4.523550	1.013373
119	Н	-20.028954	5.122551	-0.002278	172	С	-1.893569	-6.497966	1.829010
120	С	-20.822824	7.056747	-0.536246	173	Н	-2.071730	-6.987031	0.855183
121	Н	-21.841728	6.703808	-0.733283	174	Н	-1.306239	-7.212363	2.429281
122	Н	-20.806660	7.471184	0.480423	175	С	-3.227630	-6.226356	2.505363
123	Н	-20.619080	7.884204	-1.228786	176	Н	-3.775532	-5.469268	1.915705
124	0	6.686821	-3.945001	-0.325000	177	Н	-3.051940	-5.767706	3.492798
125	0	2.079894	-4.361572	-0.153930	178	С	-4.104384	-7.457118	2.667543
126	С	7.909657	-3.215910	-0.334121	179	Н	-4.291874	-7.901468	1.673555
127	Н	7.974242	-2.606305	-1.250266	180	Н	-3.566993	-8.226959	3.245848
128	Н	7.940932	-2.528857	0.526699	181	С	-5.431929	-7.144239	3.339253
129	С	9.042038	-4.210332	-0.263381	182	Н	-5.926212	-6.323103	2.791053
130	Н	8.967917	-4.903117	-1.114357	183	Н	-5.246576	-6.757202	4.354843
131	Н	8.924439	-4.815538	0.647501	184	С	-6.380856	-8.328977	3.412337
132	С	10.399522	-3.524788	-0.260703	185	Н	-6.591755	-8.686146	2.389140
133	Н	10.522244	-2.942933	-1.188444	186	Н	-5.888422	-9.170013	3.927777
134	Н	10.440322	-2.793560	0.562989	187	С	-7.691163	-8.001669	4.111289
135	С	11.553128	-4.505639	-0.118974	188	Н	-8.148452	-7.117377	3.634562
136	Н	11.511342	-5.241723	-0.938462	189	Н	-7.485425	-7.703409	5.152406
137	Н	11.424730	-5.083551	0.810957	190	С	-8.687535	-9.149817	4.100445
138	С	12.916991	-3.833270	-0.109570	191	Н	-8.912183	-9.428613	3.056651
139	Н	13.054646	-3.269383	-1.046980	192	Н	-8.225526	-10.042146	4.554850
140	Н	12.948607	-3.084055	0.698881	193	С	-9.985468	-8.829286	4.826391
141	С	14.067618	-4.812191	0.066443	194	Н	-10.439206	-7.933033	4.375498
142	Н	14.037515	-5.561887	-0.741576	195	Н	-9.757456	-8.558093	5.868666
143	Н	13.925341	-5.375914	1.003406	196	С	-10.976040	-9.980497	4.796585
144	C	15.433334	-4.143185	0.084715	197	Н	-11.906013	-9.737212	5.323402
145	Н	15.581186	-3.586652	-0.855660	198	Н	-11.239723	-10.248386	3.764861
146	Н	15.458700	-3.387369	0.887304	199	Н	-10.553547	-10.877517	5.268357
147	С	16.581506	-5.121731	0.278626	200	С	-1.392781	4.391967	0.971750
148	Н	16.557854	-5.877303	-0.524182	201	Н	-2.081041	4.738320	1.759169
149	Н	16.430837	-5.678658	1.218376	202	Н	-1.650501	4.926156	0.039975
150	С	17.947592	-4.453528	0.303171	203	С	0.043597	4.635083	1.365522
151	Н	18.101441	-3.900963	-0.638638	2.0.4	Н	0.232092	4.164516	2.341528
152	н	17.968178	-3.694159	1.102569	2.0.5	Н	0.701970	4.127748	0.643122
153	C	19.094834	-5.430761	0.507943	206	C	0.386789	6.114607	1.418786
154	н	19.076436	-6.190890	-0.290885	2.07	Н	0.259769	6.553077	0.413241
155	Н	18.941134	-5.983324	1.449905	208	Н	-0.323199	6.644269	2.075373
156	С	20.461316	-4.762012	0.534976	209	C	1.809599	6.363442	1.894236
157	H	20.475576	-4.000638	1.330279	210	H	1.933090	5.957445	2.911466
158	Н	20.614990	-4.214832	-0.408033	211	Н	2.505362	5.794170	1.253222
159	С	21.595181	-5.750175	0.747467	212	C	2.202102	7.831860	1.875949

213 Н	2.026531	8.238114	0.865202			
214 н	1.543299	8.402343	2.551773			
215 C	3.653931	8.068603	2.258361			
216 Н	3.838654	7.678480	3.272850			
217 Н	4.301707	7.478775	1.585673			
218 C	4.064178	9.530959	2.192405			
219 Н	3.426801	10.122790	2.870175			
220 Н	3.864211	9.918630	1.178423			
221 C	5.525643	9.762435	2.542021			
222 н	5.731618	9.348418	3.542951			
223 Н	6.161539	9.189246	1.845671			
224 C	5.931948	11.227360	2.509649			
225 н	5.298046	11.795888	3.210153			
226 Н	5.722090	11.644400	1.510574			
227 C	7.394706	11.457286	2.855510			
228 н	8.031363	10.900476	2.147714			
229 н	7.607509	11.029341	3.849315			
230 C	7.793542	12.925450	2.844532			
231 Н	7.157749	13.476651	3.554473			
232 н	7.576499	13.351809	1.852906			
233 C	9.257115	13.139870	3.188973			
234 Н	9.911278	12.622536	2.474779			
235 Н	9.530892	14.201257	3.179292			
236 Н	9.489776	12.747203	4.187667			

References

- 1. M. Hosoyamada, *et al.*, Translating MOF chemistry into supramolecular chemistry: soluble coordination nanofibers showing efficient photon upconversion. *Chem. Comm.* **54**, 6828–6831 (2018).
- 2. C. Po, V.W.-W. Yam, A metallo-amphiphile with unusual memory behaviour: effect of temperature and structure on the self-assembly of triethylene glycol (TEG)–pendant platinum(ii) bzimpy complexes. *Chem. Sci.* **5**, 4868–4872 (2014).
- 3. K.W. Bentley, Z.A.d.l. Santos, M.J. Weiss, C. Wolf, Chirality sensing with stereodynamic biphenolate Zinc complexes. *Chirality* **27**, 700–707 (2015).
- 4. Y. Chen, *et al.*, Photoresponsive supramolecular organometallic nanosheets induced by Pt(II)...Pt(II) and C-H... π interactions. *Angew. Chem. Int. Ed.* **48**, 9909–9913 (2009).
- Y. Ai, *et al.*, Cyclometalated platinum(II) complexes of 1,3-bis(1-*n*-butylpyrazol-3-yl)benzenes: synthesis, characterization, electrochemical, photophysical, and gelation behavior studies. *Inorg. Chem.* 55, 11920–11929 (2016).
- 6. S. Fuse, S. Sugiyama, T. Takahashi, Rapid assembly of resorcylic acid lactone frameworks through sequential palladium-catalyzed coupling reactions. *Chem. Asian J.* **5**, 2459–2462 (2010).
- 7. Y. Ai, *et al.*, Solvent-induced and temperature-promoted aggregation of bipyridine platinum(II) triangular metallacycles and their near-infrared emissive behaviors. *Chem. Eur. J.* **24**, 11611–11618 (2018).
- 8. G. Zhang, *et al.*, Direct observation of reduction of Cu(II) to Cu(I) by terminal alkynes. *J. Am. Chem. Soc.* **136**, 924–926 (2014).
- 9. K. Chen, *et al.*, Computer-assisted design of ionic liquids for efficient synthesis of 3(2H)-furanones: a domino reaction triggered by CO₂. *J. Am. Chem. Soc.* **138**, 14198–14201 (2016).
- 10. L. Murphy, *et al.*, Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs. *Chem. Comm.* **48**, 5817–5819 (2012).
- 11. O.V. Dolomanov, *et al.*, *OLEX2*: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **42**, 339–341 (2009).
- 12. G.M. Sheldrick, A short history of SHELX. Acta. Cryst. A64, 112–122 (2008).
- 13. M.J. Frisch, et al., Gaussian 09 Revision D.01 Ed. (Gaussian, Inc., 2013).
- 14. Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **120**, 215–241 (2008).
- 15. Y. Zhao D.G. Truhlar, Density functionals with broad applicability in chemistry. *Acc. Chem. Res.* **41**, 157–167 (2008).
- 16. A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the

bulk dielectric constant and atomic surface tensions. J. Phy. Chem. B 113, 6378–6396 (2009).

- 17. D. Andrae, *et al.*, Energy-adjustedab initio pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta.* **77**, 123–141 (1990).
- M. Dolg, P. Pyykkö, N. Runeberg, Calculated structure and optical properties of Tl₂Pt(CN)₄. *Inorg Chem* 35, 7450–7451 (1996).
- W.J. Hehre, R. Ditchfield, J.A. Pople, Self-consistent molecular orbital methods. XII. further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phy. 56, 2257–2261 (1972).
- 20. J.D. Dill, J.A. Pople, Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. *J. Chem. Phy.* **62**, 2921–2923 (1975).
- 21. P.C. Hariharan, J.A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies. *Theor. Chim. Acta.* **28**, 213–222 (1973).
- 22. M.M. Francl, *et al.*, Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. *J. Chem. Phy.* **77**, 3654–3665 (1982).