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I. MATERIALS AND METHODS

We use precision-made borosilicate glass capillary tubes with two different inner diameters

(d = 280, 750 µm). We wash the capillary tubes with isopropyl alcohol and ethanol, followed by

an ultrasonic cleaning step in a de-ionized water bath for one hour. The capillary tubes are then

dried using compressed nitrogen gas. We use glycerol (viscosity µ = 1.4 Pa.s) and 90% glycerol-

water mixture (viscosity µ = 0.2 Pa.s) as the liquid phase. Both liquids are partially wetting to

the tube with a contact angle of ≈ 25 degrees. The receding contact line speed is proportional to

the equilibrium contact angle cubed (∼ θ3eq) [1, 2]; therefore, to accelerate the pinch-off process,

we make the tubes less wetting to the liquid through heat-assisted chemical vapor deposition step

of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich, USA) in a vacuum oven, which

leads to a contact angle of ≈ 65◦.

The capillary tube is open to the atmosphere at the left end and is connected to a syringe

pump at the right end. The tube is initially filled with glycerol and then the glycerol is withdrawn

at a specified flow rate Q from the right end of the tube using a syringe pump (CETONI low

pressure pump neMESYS), leading to the air penetrating the tube from the left side. To achieve

refractive-index matching and an undistorted view of the displacement process, we house the

circular capillary tube inside a square tube (both tubes are made of borosilicate glass) and fill

the gap between the two with glycerol. When the capillary tube is filled with glycerol, light

goes through the system without any refraction (white color in Fig. 1 of the main text). When

air penetrates the tube, it leads to the refraction of light to the center of the tube; therefore air

appears in black color with a straight white line in the middle. The capillary tube is backlit with a

LED light source (120E, Veritas). Imaging is done from the front side using a high-speed camera

(Phantom Micro 320) at a typical frame-rate of 10–25 kfps. A 4X lens is mounted on the camera

leading to a resolution of 1.7 µm/pixel.
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II. LONG-WAVE MODEL FOR THE DEWETTING RIM

When glycerol is withdrawn from the tube at a high-enough flow rate (Q > Qc) [2], air pen-

etrates the tube from the left side leaving a film of the liquid on the walls. Since the liquid is

partially wetting to the tube (θeq ≈ 65◦) it starts dewetting from the tube wall, forming a growing

dewetting rim (Fig. 1). Initially, the flow in the film is mainly due to the receding of the con-

tact line, leading to the flow to be mainly parallel to the tube axis. This observation allows us to

describe the dynamics of the growing dewetting rim using a long-wave approximation [2]:
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where r̃(z̃, τ̃) is the radius of bubble neck,M(r̃) = 1− 16r̃2 + 48r̃4 − 64r̃4 ln 2r̃ is the mobility,

Π(r̃) = 6(1 − cos θeq)(δ
2/(1/2 − r̃)3)(1 − δ/(1/2 − r̃)) is the disjoining pressure with δ as the

precursor film thickness, and κ̃ = 1/r̃ − r̃z̃z̃ is the curvature. Here, all length scales are non-

dimensionalized by the tube diameter d, and the dimensionless time to the pinch-off is defined as

τ̃ = τ/t∗, where τ = (t0−t) is the time to the pinch-off with t0 as the breakup time and t∗ = µd/γ

is the visco-capillary time scale.

Near the point of pinch-off, we postulate that the shape of the profile becomes self-similar:

R̃(ξ) = r̃(z̃, τ̃)/τ̃α, and ξ = (z̃− z̃0)/τ̃β . We can neglect the disjoining pressure in the vicinity of

the singularity, which is far away from the contact line. Substituting this ansatz back into Eq. (1),

we recover Eq. (1) of the main text:
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where prime indicates differentiation. For all the terms to balance in time we need to have α =

β = 1/5, which leads to R̃(ξ) = r̃(z̃, τ̃)/τ̃ 1/5, and ξ = (z̃ − z̃0)/τ̃ 1/5. The equation governing the

dewetting rim in the early self-similar regime is therefore the following:
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which represents the balance of viscous forces on the left-hand side with the surface tension forces

on the right-hand side.
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FIG. 1. Schematics of the dewetting rim: as the contact line recedes from the tube wall, liquid accumulates

behind it and the rim keeps growing. The dynamics of this growing rim can be described using a long-wave

approximation (Eq. (1)). The film thickness downstream of the rim is set by the Taylor–Bretherton scaling

hf/(d/2) = 1.34Ca2/3f /(1+1.34×2.5Ca2/3f ), where Caf = µUf/γ with Uf as the air finger velocity[3–6].

This relationship combined with the conservation of mass: Q = π(d/2− hf )2Uf determine both the finger

velocity and the film thickness.

This type of ordinary differential equations typically leads to an infinite family of solutions,

where only one is found to be stable [7, 8]. To obtain the self-similar solution of the ODE, we

solve the original partial differential equation (1) numerically and extract the self-similar solution

from the late-time solution of the PDE very close to the point of pinch-off. The self-similar

solution obtained using this technique is shown as the dashed line in Fig. 3(b) of the main text,

and shows an excellent agreement with the experimental data at the early-time self-similar regime,

where the long-wave model is valid.
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III. CROSSOVER TIME

To estimate the crossover time between the two regimes, we compare their corresponding ra-

dial velocities. In the early-time regime, the growth rate of the dewetting rim is proportional to

the velocity of the receding contact line, i.e. dr0/dτ ∼ ucl ∼ (γ/µ)θ3eq, which is nearly constant

for a given wettability [1, 2]. In the late-time regime, the bubble neck close to the point of sin-

gularity can be approximated as an axisymmetric cylinder, and the flow in the viscous fluid can

be approximated as radial. The normal viscous stress generated by the radial flow is balanced

by surface tension, leading to dr0/dt = −γ/(2µ)(1 − 2r0/rc) [9], where rc ≈ rc(t = 0)) is

the axial radius of curvature. The radius of the neck can therefore be approximated as r0(t) =

r00[1 − rc/(2r00)]eγt/(µrc) + rc/(2r00) where r00 = r0(t = 0), leading to dr0/dτ ∼ (γ/µ)e−τ/t
∗

as the radial velocity in the late-time regime [9]. Note that very close to the point of pinch-off,

we have r0 � rc, leading to dr0/dτ = γ/(2µ), which is the familiar linear scaling in time [10].

Equating the two radial velocities corresponding to the early and late-time regimes we obtain an

estimate of the crossover time τc ∼ t∗ = µd/γ, indicating that the visco-capillary time scale sets

the point of transition between the two regimes.
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IV. SELF-SIMILARITY OF THE BUBBLE NECK IN A LARGE QUIESCENT TANK

Here, we briefly review how to determine the value of the exponent β in the second self-similar

regime [11]. In the late-time self-similar regime, we can approximate the bubble neck as a cylinder,

which effectively acts as a sink sucking the liquid radially towards the tube center. The normal

viscous stress jump across the air-liquid cylindrical interface is balanced by the surface tension,

leading to ∂r/∂t = −γ/(2µ). Therefore, the neck profile is simply translated in time without

changing its shape. We postulate the neck profile becomes self-similar, following a scaling ansatz

R̃(ξ) = r̃(z̃, τ̃)/τ̃α, and ξ = (z̃− z̃0)/τ̃β . Substituting this ansatz back into the governing equation

for the neck profile, we obtain:

−ατ̃α−1R̃ + βτ̃α−1ξR̃′ = −1, (4)

where prime indicates differentiation. For all the terms to balance in time we need to have α = 1.

The value of the exponent β, however, cannot be determined from dimensional analysis, indicating

that the self-similarity is of the second kind [12].

The solution of Eq. (4) is described by R̃ = 1 + aξ̃1/β , in which a is a constant of integration

that depends on the outer solution away from the singularity. Close to the pinch-off time, the neck

profile away from the singularity becomes effectively frozen in time, which leads to a constraint on

the behavior of the self-similar solution: r̃(z̃ → z̃0 ± ε, τ̃ → ε) = τ̃αR̃((z̃ − z̃0)/τ̃β) = const, and

therefore we need to have R̃(ξ → ±∞) ∼ ξα/β . The regularity condition also implies that 1/β

must be a positive even integer, and a > 0. We can therefore have a discrete family of solutions

for β, i.e. βi = 1/(2i) with i = 1, 2, .... This is similar to the breakup of a drop, where also an

infinite family of solutions is obtained [7, 8].

To find out which one of these solutions is selected, we need to address the stability of these

solutions. Briefly, we use a change of variables T = − ln τ̃ , rewriting the equation governing

the self-similar profile as RT = R − βξR′ − 1, which is a dynamical system representation

of the original equation, for which the original self-similar solution will be a fixed point. We

can therefore perturb the self-similar solution as R̃(ξ, T ) = R̄(ξ) + εenTP (ξ), where n is the

eigenvalue and P is the eigenfunction. The stability analysis [11] shows that the stable solution is
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described by β = 1/2, i.e. R̃(ξ) = 1 + aξ2. This implies that the neck profile can be described as

r̃(z̃, τ̃) = τ̃(1 + a[(z̃ − z̃0)/τ̃ 1/2]2) = τ̃ + a(z̃ − z̃0)2, which is a parabola that is simply translated

in time.
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V. EVOLUTION OF THE LATERAL LENGTH SCALE IN TIME

In Fig. 3 of the main text, we showed that using the lateral length scale ζ =
√
r0rc extracted

from the experimental data (d = 750 µm, µ = 1.4 Pa.s, and Ca = 0.008), we can collapse the

neck profiles during its entire time evolution onto a single parabola. To extract the axial length

scale ζ , we fit a parabola to the neck profile in the vicinity of the minimum neck radius. Another

technique recently developed by Wagoner et al. [13] extracts the axial length scale of the neck from

the calculation of the pinch-off zone volume. The pinch-off zone is defined as the region between

the minimum neck radius, r0, and r = αr0 with 1 < α < 2. Fig. 2 shows that the neck volume

at early times follows the scaling τ̃ 3/5 and at late times follows the scaling τ̃ 5/2. The neck volume

scales as r20ζ , and we know that r̃0 ∼ τ̃ 1/5 at early times and r̃0 ∼ τ̃ at late times. Therefore, the

evolution of the neck volume in time indicates that ζ̃ ∼ τ̃ 1/5 at early times and ζ̃ ∼ τ̃ 1/2 at late

times. Therefore, calculating the axial length scale using the new technique further confirms our

results.

10-2 10-1 100 101 102

10-6

10-4

10-2

⌧̃

⌧̃3/5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⌧̃2.5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ṽ
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FIG. 2. The evolution of the volume of the pinching zone as a function of time to the pinch off, showing

two distinct scalings in time at early and late time regimes. The squares and circles represent the neck half

volume to the left and right of the minimum neck radius. Here, we have taken the pinch-off zone to be the

region between the minimum neck radius, r0, and r = αr0 with α = 1.3. We have further confirmed that

the scalings are insensitive to the value of α by repeating this procedure in the range 1.1 < α < 1.7.
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In Fig. 3 we present the lateral length scale evolution data corresponding to all the 12 experi-

ments. We find that, indeed, scaling the lateral length scale with the tube diameter and the time

scale with the visco-capillary time collapses the data corresponding to all the experiments. The

scaling of ζ̃ =
√
r̃cr̃0 ∼ τ̃ 1/2 in the late-time regime indicates that the axial radius of curvature

in the second regime becomes time-independent. The asymptotic value of the axial curvature is

therefore set by the first self-similar regime at the point of crossover between the two regimes,

where ζ̃ ≈ 0.13, leading to r̃cf ≡ r̃c(τ̃ → 0) ≈ 0.07, making this asymptotic curvature universal,

in contrast to the non-universal case of bubble breakup in an unbounded reservoir [10].
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FIG. 3. The evolution of the lateral length scale of the bubble neck (ζ =
√
r0rc) in time: (a) dimensional,

and (b) non-dimensional. Data from 12 different experiments are shown: light blue symbols correspond to

d = 750 µm and µ = 1.4 Pa.s; the cyan symbols correspond to d = 280 µm and µ = 1.4 Pa.s; the dark

blue symbols correspond to d = 750 µm and µ = 0.2 Pa.s. Each color represents data corresponding to 4

different flow rates with Ca = µU/γ ∈ [0.008, 0.02], where U = 4Q/(πd2) and Q is the liquid flow rate.

While changing the flow rate does not influence the evolution of the lateral length scale (ζ̃), changing µ or

d shifts the curves.
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VI. CAPTIONS OF SUPPLEMENTARY MOVIES

• Movie S1: Evolution of the dewetting rim and the ultimate breakup of the bubble in a

capillary tube with the diameter d = 280 µm, and Ca = 0.016. The imaging is done at

20 kfps.

• Movie S2: Motion of a microbubble in the vicinity of the bubble neck. The microbubble

here acts as a tracer, showing the flow direction, which is axially-dominant at early times

and crosses over to a radially-dominant flow at late times.
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