Table S1. Ion channel structures analysed. Any auxiliary subunits, Fab fragments, ligands, ions, and/or water molecules present in a PDB entry were removed prior to molecular dynamics simulations. Large structures that were truncated to include only the transmembrane or pore domain for analysis are indicated by an asterisk (*) next to their PDB ID. Where available, the likely functional state of a channel structure as suggested upon its publication is noted. The height of the main energetic barrier to water (G_{water}) is recorded for each structure, with values coloured red (> 1 RT) or blue (≤ 1 RT).

Drotoin	מתמ	Mathad	Resolution	Proposed	Gwater		
FIOLEIII	FDD	Method	(Å)	functional state	(kJ mol ⁻¹)		
	(Cys-loop ree	ceptors				
5HT3R, M. musculus	4PIR	X-ray	3.5		42		
5HT3R, M. musculus	6BE1	cryo-EM	4.31	closed	44		
ELIC, E. chrysanthemi	2VL0	X-ray	3.3	closed	90		
ELIC, E. chrysanthemi	3RQW	X-ray	2.91	closed	79		
GABAAR, H. sapiens	4COF	X-ray	2.97	desensitised	1		
GABAAR, H. sapiens	6A96	cryo-EM	3.51	open	0		
GABAAR, H. sapiens	6D6T	cryo-EM	3.86	desensitised	2		
GABAAR, H. sapiens	6D6U	cryo-EM	3.92	desensitised	28		
GLIC, G. violaceus	2XQ7	X-ray	3.4	open	1		
GLIC, G. violaceus	3EHZ	X-ray	3.1	open	0		
GLIC, G. violaceus	4F8H	X-ray	2.99		0		
GLIC, G. violaceus	4HFI	X-ray	2.4	open	0		
GLIC, G. violaceus	4NPP	X-ray	3.35	open	1		
GLIC, G. violaceus	4QH5	X-ray	3	open	0		
GLIC, G. violaceus	5J0Z	X-ray	3.25	desensitised	1		
GLIC, G. violaceus	5L47	X-ray	3.3	closed	48		
GluCl, C. elegans	3RHW	X-ray	3.26	open	1		
GluCl, C. elegans	3RIF	X-ray	3.35	open	1		
GluCl, C. elegans	4TNV	X-ray	3.6	closed	12		
GlyR, D. rerio	3JAD	cryo-EM	3.9	closed	4.6		
GlyR, D. rerio	3JAE	cryo-EM	3.9	open	0		
	3JAF	cryo-EM	3.8	desensitised/	1		
GlyR, D. rerio				intermediate	1		
GlyR, H. sapiens	5CFB	X-ray	3.04	closed	23		
	5VDH	X-ray	2.85	desensitised/	24		
GlyR, H. sapiens				intermediate	24		
nAChR, T. marmorata	10ED	EM	4	closed	10		
nAChR, T. marmorata	2BG9	EM	4	closed	3.6		
nAChR, H. sapiens	5KXI	X-ray	3.94	desensitised	0		
Ionotropic glutamate receptors							
GluA, R. norvegicus	5WEK*	cryo-EM	4.6	closed	4		
GluA, R. norvegicus	5WEL*	cryo-EM	4.4	closed	7		
GluA, R. norvegicus	5WEO*	cryo-EM	4.2	open	1		
GluN, X. laevis	5UOW*	cryo-EM	4.5	open	1		
Purinergic receptors							
P2X3, H. sapiens	5SVJ	X-ray	2.98	closed	26		
P2X3, H. sapiens	5SVK	X-ray	2.77	open	0		
P2X3, H. sapiens	5SVL	X-ray	2.9	desensitised	23		
P2X4, D. rerio	3H9V	X-ray	3.1	closed	39		
P2X4, D. rerio	3I5D	X-ray	3.46	closed	43		

P2X4, D. rerio	4DW0	X-ray	2.9	closed	36		
P2X4, D. rerio	4DW1	X-ray	2.8	open	0		
P2X7, G. gallus	5XW6	X-ray	3.1	closed	56		
Transient recentor notential (TRP) channels							
NOMPC, D. melanogaster	5VKQ*	cryo-EM	3.55	closed	11		
PKD2, H. sapiens	5K47	cryo-EM	4.22	closed	10		
PKD2, H. sapiens	5MKE	cryo-EM	4.3	open	1		
PKD2, H. sapiens	5MKF	cryo-EM	4.2	closed	13		
PKD2, H. sapiens	5T4D	cryo-EM	3	closed	32		
PKD2, H. sapiens	6D1W	cryo-EM	3.54	open	15		
PKD2L1, M. musculus	5Z1W	cryo-EM	3.38	open	29		
TRPA1, H. sapiens	3J9P	cryo-EM	4.24	closed	76		
TRPM2, N. vectensis	6CO7	cryo-EM	3.07	closed	44		
TRMP4, M. musculus	6BCL	cryo-EM	3.54	closed	9		
TRMP4, M. musculus	6BCQ	cryo-EM	3.25	closed	10		
TRMP4, H. sapiens	6BQR	cryo-EM	3.2	closed	8		
TRPML1, H. sapiens	5WJ5	cryo-EM	3.72	closed	27		
TRPML1, H. sapiens	5WJ9	cryo-EM	3.49	open	1		
TRPML1, M. musculus	5WPV	cryo-EM	3.59	closed	9		
TRPML3, C. jacchus	5W3S	cryo-EM	2.94	closed	7		
TRPML3, H. sapiens	6AYE	cryo-EM	4.06	closed	16		
TRPML3, H. sapiens	6AYF	cryo-EM	3.62	open	0		
TRPML3, H. sapiens	6AYG	cryo-EM	4.65	closed	10		
TRPV1, R. norvegicus	3J5P	cryo-EM	3.28	closed	9		
TRPV1, R. norvegicus	3J5O	cryo-EM	3.8	open	4.9		
TRPV1, R. norvegicus	3J5R	cryo-EM	4.2	closed	5.2		
TRPV1, R. norvegicus	5IRX	cryo-EM	2.95	open	1		
TRPV1, R. norvegicus	5IRZ	cryo-EM	3.28	closed	8		
TRPV1, R. norvegicus	5IS0	cryo-EM	3.43	closed	9		
TRPV2, O. cuniculus	5AN8	cryo-EM	3.8	desensitised	67		
TRPV2, O. cuniculus	6BWJ	X-ray	3.1	closed	73		
TRPV2, R. norvegicus	5HI9	cryo-EM	4.4	open	38		
TRPV4, X. tropicalis	6BBJ	cryo-EM	3.8	closed	40		
TRPV5, O. cuniculus	6B5V	cryo-EM	4.8	closed	21		
TRPV6, R. norvegicus	5IWK	X-ray	3.25	closed	32		
TRPV6, R. norvegicus	5IWP	X-ray	3.65	closed	21		
TRPV6, R. norvegicus	5WO6	X-ray	3.31		20		
TRPV6, H. sapiens	6BO8	cryo-EM	3.6	open	1		
TRPV6, H. sapiens	6BOB	cryo-EM	3.9	closed	37		
2TM family K ⁺ channels							
GsuK, G. sulfurreducens	4GX5	X-ray	3.7	closed	12		
K2P1.1, H. sapiens	3UKM	X-ray	3.4	open	0		
K2P2.1, M. musculus	5VKP	X-ray	2.8		0		
K2P4.1, H. sapiens	4WFE	X-ray	2.5	open	0		
K2P10.1, H. sapiens	4BW5	X-ray	3.2	open	1		
K2P10.1, H. sapiens	4XDL	X-ray	3.5	open	1		
KcsA, S. lividans	1K4C	X-ray	2		34		
KcsA, S. lividans	2ITD	X-ray	2.7		44		
KcsA, S. lividans	3EFF	X-ray	3.8	closed	49		

KcsA, S. lividans	3FB5	X-ray	2.8	partially open	0	
KcsA, S. lividans	3PJS	X-ray	3.8	open	0	
KcsA, S. lividans	4UUJ	X-ray	2.4	closed	24	
Kir2.2, G. gallus	3JYC	X-ray	3.11	closed	20	
Kir2.2, G. gallus	3SPC	X-ray	2.45	closed	28	
Kir2.2, G. gallus	3SPI	X-ray	3.31	closed	37	
Kir3.2, M. musculus	3SYA	X-ray	2.98	closed	3.1	
Kir3.2, M. musculus	3SYO	X-ray	3.54	closed	0	
Kir6.2, R. norvegicus	6BAA	cryo-EM	3.63	closed	29	
Kir6.2, H. sapiens	6C3O	cryo-EM	3.9		37	
KirBac1.1,	233/11	V rov	2.65	alasad	1.4	
B. pseudomallei		A-lay	5.05	ciosed	14	
KirBac1.3/Kir3.1, M.	2015	X-ray	2.2	closed	27	
musculus/B. xenovornas	2010	X-lay	2.2	ciosed	21	
KirBac3.1,	2WI H	X-ray	3 28	closed	45	
M. magnetotacticum	2 W L11	2X-1dy	5.20	closed		
KirBac3.1,	2WLI	X-ray	3 09	closed	10	
M. magnetotacticum	2 11 11	M-lay	5.07	ciosed	10	
KirBac3.1,	2WLI	X-ray	26	closed	7	
M. magnetotacticum	2 11 L3	X luy	2.0	closed	,	
MthK,	1LNO	X-ray	33	onen	0	
M. thermautotrophicus	ILINQ	7 Tuy	5.5	open	v	
NaK, B. cereus	2AHY	X-ray	2.4	closed	20	
NaK, B. cereus	3E86	X-ray	1.6	open	0	
NaK/NavSulP,	3VOU	X-rav	3.2	closed	59	
B. mycoides/S. pontiacus						
	4TM	l or 6TM K	⁺ channels	1 1	00	
KCNQI, X. laevis	5VMS	cryo-EM	3.7	closed	89	
Kv1.2, R. norvegicus	2A/9	X-ray	2.9	open	0	
Kv1.2, R. norvegicus	2K9K	X-ray	2.4	open	0	
Kv1.2, R. norvegicus	3LUT	X-ray	2.9	open	0	
Kv10.1, R. norvegicus	5K/L*	cryo-EM	3.78	closed	17	
Kv11.1, H. sapiens	5VAI*	cryo-EM	3.7	open	0	
KvAp, A. pernix	IORQ	X-ray	3.2	open	0	
KvLm,	4H33	X-ray	3.1	closed	14	
L. monocytogenes						
KVLm,	4H37	X-ray	3.35	closed	11	
L. monocytogenes	2000	V	2 1	-11	22	
MIOKI, M. lott	3BEH	A-ray	3.1	closed		
MIOKI, M. lott	0EUI	cryo-EM	4.5	open	0	
Slo1, A. californica	51J0 5TU	cryo-EM	3.5	open	0	
Slo1, A. californica	51JI 51J70	cryo-EM	3.8		0	
Slo2.2, G. gallus	50/0	cryo-EM	3.76	open	0	
Slo2.2, G. gallus	<u> </u>	cryo-EM	3.76	closed	0	
Other members of the voltage-gated ion channel (VGIC) superfamily						
Cav1.1, O. cuniculus		cryo-EM	3.6	closed	80	
CavAb, A. butzleri	4IVIVM	A-ray	3.20		/	
CavAb, A. butzleri	JKLB	л-ray	2.1		21	
C a lagara	5H3O	cryo-EM	3.5	open	1	
Lik (ONC)	51/40		4.2	-	22	
LIIK (UNG),	3 V 4 S	cryo-EM	4.2	ciosed		

HCN1, H. sapiens 5U6O cryo-EM 3.5 closed	28
Hv1. M. musculus 3WKV X-ray 3.45 closed	32
InsP3R1, <i>R. norvegicus</i> 3JAV* cryo-EM 4.7 closed	47
Nav1.4, E. electricus 5XSY crvo-EM 4 open	28
NavAb, A. butzleri 4EKW X-ray 3.21 closed	19
NavAb, A. butzleri 4MW8 X-ray 3.26	2.5
NavAb <i>A butzleri</i> 5EK0 X-ray 3.53 closed	90
NavAb <i>A butzleri</i> 5VB2 X-ray 3.2 closed	119
NavAb A butzleri 5VB8 X-ray 2.85 open	6
NavAel <i>A chrlichii</i> <u>4I TO</u> X-ray <u>3.46</u> closed	85
NavMm M marinus 4CBC X-ray 2.66 open	25
NavMm M marinus AOXS X-ray 2.00 open	23
Navivini, M. martinas 40AS A-lay 2.8 open	41
Navias, 1. umericana SAONI Cryo-ENI 5.8 Closed	58
Navkii, K. IIII/ID114 4DXW A-lay 5.05 Closed DxD1 O curriculus 21911* cruc EM 2.9 closed	
RyR1, O. cuniculus SJ8H Cryo-ENI S.8 Closed DxD1, O. cuniculus STD0* error EM 4.4 elaged	0
RyR1, <i>O. cuniculus</i> 51B0 ⁺ cryo-ENI 4.4 closed	<u>ð</u>
$\frac{\text{RyR2, S. Scroja}}{\text{DerD2, Scroja}} = \frac{5004*}{\text{SCO4*}} = \frac{\text{EM}}{\text{Cryo-EM}} = \frac{4.4}{2}$	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
TPC1, A. thaliana SDQQ X-ray 2.8/ closed	39
TPC1, M. musculus 6C9A cryo-EM 3.2 open	2
TPC1, M. musculus 6C96 cryo-EM 3.4 closed	56
Other cation channels	1
ASIC1, G. gallus 20TS X-ray 1.9 desensitised	23
(-like)	
ASIC1. G. gallus 3S3W X-ray 2.6 desensitised	21
(-like)	
ASIC1, G. gallus 4NTW X-ray 2.07 open	1
ASIC1, G. gallus 4NTY X-ray 2.65 open	0
ASIC1, G. gallus 4NYK X-ray 3 desensitised	17
ASIC1, G. gallus 5WKU X-ray 2.95 closed	38
ExbB/ExbD, E. coli 5SV0 X-ray 2.6	0
ExbB/ExbD, E. coli 5SV1 X-ray 3.5	0
M2, Influenza A 3BKD X-ray 2.05 closed	4.6
M2, Influenza A 4QKC X-ray 1.1	6
M2, Influenza A 5JOO X-ray 1.41	5.9
M2, Influenza A 5TTC X-ray 1.4	5.9
M2, Influenza A 5UM1 X-ray 1.45	6
M2, Influenza B 2KIX aq NMR (NMR) closed	5.4
MCU, C. elegans 5ID3 aq NMR (NMR) closed	87
MgtE, <i>T. thermophilus</i> 2ZY9 X-ray 2.94 closed	69
MgtE, <i>T. thermophilus</i> 4U9N X-ray 2.2 closed	56
MscL, M. tuberculosis 20AR X-ray 3.5 closed	46
Maal S gurgers 21170 V row 2.92 closed/	0
INISCE, S. aureus SHZQ A-ray S.82 intermediate	U
Mapl M gostivourne AV71 V A 1 closed/	0
NISCL, M. aceuvorans 4Y/J A-ray 4.1 intermediate	U
MscL, M. acetivorans 4Y7K X-ray 3.5 closed	81
MscS, E. coli 2OAU X-ray 3.7 open	15
MscS, E. coli 2VV5 X-ray 3.45 open	0
NNT, T. thermophilus 5UNI X-ray 2.2	71

Orai, D. melanogaster	4HKR	X-ray	3.35	closed	8
Piezo1, M. musculus	6BPZ	cryo-EM	3.8	closed	37
TMEM175, C. minutus	5VRE	X-ray	3.30		45
TRIC, C. elegans	5EGI	X-ray	3.3		7
TRIC, C. elegans	5EIK	X-ray	2.3		12
TRIC, S. acidocaldarius	5WUC	X-ray	1.6	closed	71
TRIC, S. acidocaldarius	5WUE	X-ray	2.4	open	0
TRIC, C. psychrerythraea	5WUF	X-ray	2.40		2.4
YetJ, B. subtilis	4PGR	X-ray	1.95	closed	29
YetJ, B. subtilis	4PGS	X-ray	2.5	open	4.3
YetJ, B. subtilis	4PGU	X-ray	3.40	closed	58
	0	ther anion c	channels		
BEST1, G. gallus	4RDQ	X-ray	2.85	open	76
KpBest, K. pneumoniae	4WD8	X-ray	2.3	closed	71
CFTR, H. sapiens	5UAK	cryo-EM	3.87	closed	15
CFTR, D. rerio	5UAR	cryo-EM	3.73	closed	58
CFTR, D. rerio	5W81	cryo-EM	3.37	closed	38
CLC-K, B. taurus	5TQQ	cryo-EM	3.76		43
TehA, H. influenzae	3M71	X-ray	1.2	closed	52
TehA, H. influenzae	4YCR	X-ray	2.3		29
TMEM16A, <i>M. musculus</i>	50YB	cryo-EM	3.75	closed	9
TMEM16A, <i>M. musculus</i>	50YG	cryo-EM	4.06	closed	32
TMEM16A, <i>M. musculus</i>	6BGI	cryo-EM	3.8	closed	26
TMEM16A, <i>M. musculus</i>	6BGJ	cryo-EM	3.8	closed	6

Figure S1. Average pore radius, hydrophobicity, and water free energy profiles derived from 3 x 30 ns MD simulations of water in the TRPV4 ion channel (PDB ID 6BBJ). The one-standard-deviation range is represented by the lighter-coloured band.

Figure S2. Water free energy profiles derived from different intervals of one 90 ns MD simulation of water in the TRPV4 ion channel (PDB ID 6BBJ), sampling every 0.5 ns. The one-standard-deviation range is represented by the lighter-coloured band.

Figure S3. De-wetting of the hydrophobic gate region of the TRPV4 ion channel (PDB ID 6BBJ) in a 30 ns MD simulation. Water molecules are shown as blue spheres, with the protein in a surface representation.

Figure S4. Distribution of resolution of ~860 ion channel structures determined by X-ray crystallography or cryo-electron microscopy in the PDB. ~20 NMR structures have been excluded from this analysis.

Figure S5. Distribution of local water density values for the dataset of all channel simulation, where the arrow indicates the density of bulk liquid water, at 33 water molecules nm⁻³.

Figure S6. Local free energy as a function of hydrophobicity and pore radius, averaged over all occurrences of pore-lining side chains in the simulated channel structures. Alternative hydrophobicity scales are employed, each linearly normalized such that their respective positions of 0 hydrophobicity are unshifted and the largest absolute value amongst amino acids is equal to 1 (relative) unit, with more positive values indicating greater hydrophobicity. The scales compared are from: (1), (2), (3), (4), (5), and (6).

Figure S7. Local free energy as a function of hydrophobicity and pore radius, averaged over all occurrences of pore-lining side chains in (A) all simulated channel structures or subsets of simulated structures with resolution better than (B) 4.5 Å or (C) 4.0 Å.

Figure S8. SVM classification of all pore-lining residues in a training set of simulated ion channel structures, using (A) a polynomial kernel or (B) a linear kernel. Both SVM models were trained using repeated 10-fold cross-validation. The resultant classification lines were used to predict simulation outcomes for a testing set of ~40 structures via calculation of sum-of-shortest-distances scores, with the respective ROC (receiver operating characteristics) curves shown on the right.

Figure S9. Water free energy profiles derived from triplicate 30 ns MD simulations of water of two recent structures of (**A**) the TRPV3 channel in a non-conductive (sensitized) conformation (PDB ID: 6MHS) and (**B**) the CRAC channel Orai in an open conformation (due to a H206A gain-of-function mutation; PDB ID: 6BBF).

Figure S10. (A) Local radius, hydrophobicity, and water free energy at the main energy barrier or putative hydrophobic gate region of three selected ion channel structures, and (B) their water free energy profiles derived from 30 ns and 500 ns MD simulations, during which positional restraints were applied to each protein backbone whilst allowing for side chain flexibility.

SI References

- 1. Wimley CW, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. *Nature Struct Biol* 3:842-848.
- 2. Monera OD, et al. (1995) Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic alpha-helix *J Pept Sci* 1:319-329.
- 3. Hessa T, et al. (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon *Nature* 433:377-381.
- 4. Zhu CQ, et al. (2016) Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network *Proc Natl Acad Sci USA* 113:12946-12951.
- 5. Moon CP, Fleming KG (2011) Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers *Proc Natl Acad Sci USA* 108:10174-10177.
- 6. Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. *J Mol Biol* 157:105-132.