Supplementary information

Table S-1. Sequences of the qPCR primers.

 Table S-2. Identities of LPCs in mice. The relative abundance of LPCs were decreased in

 TAA-induced mice whereas recovered by NME.

Table S-3. Identities of acylcarnitines in mice. The relative abundance of acylcarnitines were increased in TAA-induced mice whereas recovered by NME.

Figure. S-1. NME recovered the lysophosphatidylcholines (A) and acylcarnitines (B) metabolism in mouse liver of TAA-induced toxicity. *p < 0.05 as compared to control group, **p < 0.01 as compared to control group, **p < 0.001 as compared to control group, *p < 0.05 as compared to control group, *p < 0.05 as compared to TAA treated group, *p < 0.01 as compared to TAA treated group, *p < 0.01 as compared to TAA treated group, *p < 0.01 as compared to TAA treated group.

Figure. S-2. Tandem MS spectrum of authentic compounds. (A) 18:0-LPC. (B) 18:1-LPC. (C) 16:0-carnitine. (D) 18:0-carnitine.

Figure. S-3. (A) Hydrogen peroxide (H₂O₂) content in plasma. (B) Relative GSH abundance in plasma. H₂O₂ content and the relative GSH abundance were slightly recovered by NME without significant difference. *p < 0.05 as compared to control group.

Gene Forward (5' to 3') Reverse (5' to 3') CTGGGTCATCTTTTCACGGT Actb TGTTACCAACTGGGACGACA Nrf2 TTGGCAGGAGCTATTTTCC GAACAGCGGTAGTATCAGC Sod ATGAAAGCGGTGTGCGTG TGCTGGCCTTCAGTTAATCC Nqo1 TTTCTGTGGCTTCCAGGTCT CATCCTTCCAGGATCTGCAT GGCGATGTTCTTGAGACTCTGC TTCCTTCGATCATGTAACTCCCATA Gclc GclmGCCACCAGATTTGACTGCCTTT CAGGGATGCTTTCTTGAAGAGCTT Gsta2 TTATGTCCCCCAGACCAAAG CCTGTTGCCCACAAGGTAGT CCTGACCACCTCAACATAGGG Gsta4 AGACCACGGAGAGGCT Gstm3 CCCCAACTTTGACCGAAGC GGTGTCCATAACTTGGTTCTCCA Gpx1 TGGACTGGTGGTGCTCG CGTCACTGGGTGTTGGC Gpx2 GGGCTGTGCTGATTGAGA CGGACATACTTGAGGCTGTT GGCTTCCCTTCCAACC AATTTCTGCTCTTTCTCCC Gpx3 Cox2 TGACCCCCAAGGCTCAAATAT TGAACCCAGGTCCTCGCTTA GCAAACCCAAGGTCTACGTTCA GAGCACGCTGAGTACCTCATTG Inos Tnfα CCACCACGCTCTTCTGTCTAC AGGGTCTGGGCCATAGAACT Il6 TGATGCACTTGCAGAAAACA ACCAGAGGAAATTTTCAATAGGC TCGAGGGCGAGAGAAGTTTA AAAAGAATGTCCCGGCTCTC Enpp2 Lypla1 CCTTCACGGATTGGGAGATA GGGGCATGTGGACAGATGTA Lpcat1 CACGAGCTGCGACTGAGC ATGAAAGCAGCGAACAGGAG Lpcat2 ACCTGTTTCCGATGTCCTGA CCAGGCCGATCACATACTCT Lpcat3 AGCCTTAACAAGTTGGCGAC ATGCCGGTAAAACAGAGCC Lpcat4 GAGTTACACCTCTCCGGCCT GGCCAGAGGAGAAAGAGGAC Pcyt1a AGCCCTATGTCAGGGTGACT GGCATGACCAGAGTGAAACA Pcyt1b ATAGAGCACACATGCCCACA GGCAACGGTCAGTTTTTCAT AAAGTGCTCTTGCGGCTCTA Chka GACCTCTCTGCAAGAATGGC Chkb GCAGAGGTTCAGAAGGGTGA CCCCAGAAAAAGTGAGATGC Ppara CCCAAGGGAGGAATAGCTTCT CTCTGCGATGCGGTTCCAA TCTTCACTGAGTTCCGATGGG ACGCCAGAGATGCCTTTTCC Cpt1b Cpt2 CAGCACAGCATCGTACCCA TCCCAATGCCGTTCTCAAAAT Acot1 ATGGCAGCAGCTCCAGACTT CCCAACCTCCAAACCATCAT Acox1 CCGCCACCTTCAATCCAGAG CAAGTTCTCGATTTCTCGACGG CCAGGAACTGCATTGGGAAA GACCCTGGTAGGATCTGGCA Cyp4a10 GGAGAGCCCTGGATACCAAC CAACCCAGGTCCTTCCTAAA Tgfb

Table S-1. Sequences of the qPCR primers.

Table S-2. Identities of LPCs in mice. The relative abundance of LPCs were decreased inTAA-induced mice whereas recovered by NME.

No.	Observed	Rt	Putative ion	Formula	Mass error	Idontification
	m/z	(min)	form	rormula	(ppm)	Identification
1	496.3395	10.79	[M+H]	$C_{24}H_{50}NO_7P$	-0.35	16:0-LPC
2	494.3248	9.92	[M+H]	$C_{24}H_{48}NO_7P$	1.46	16:1-LPC
3	510.3552	11.44	[M+H]	$C_{25}H_{52}NO_7P$	-0.34	17:0-LPC
4	524.3713	12.13	[M+H]	$C_{26}H_{54}NO_7P$	0.48	18:0-LPC
5	522.3568	11.13	[M+H]	$C_{26}H_{52}NO_7P$	2.68	18:1-LPC
6	520.3403	10.33	[M+H]	$C_{26}H_{50}NO_7P$	1.06	18:2-LPC
7	538.3885	12.87	[M+H]	$C_{27}H_{56}NO_7P$	3.37	19:0-LPC
8	550.3875	12.40	[M+H]	$C_{28}H_{56}NO_7P$	1.50	20:1-LPC
9	548.3711	11.48	[M+H]	$C_{28}H_{54}NO_7P$	0.10	20:2-LPC
10	546.3554	10.80	[M+H]	$C_{28}H_{52}NO_7P$	0.04	20:3-LPC
11	544.3395	10.36	[M+H]	$C_{28}H_{50}NO_7P$	-0.45	20:4-LPC

 Table S-3. Identities of acylcarnitines in mice. The relative abundance of acylcarnitines

 were increased in TAA-induced mice whereas recovered by NME.

No.	Observed	Rt	Putative ion	Formula	Mass error	Identification
	m/z	(min)	form		(ppm)	
1	246.1695	4.04	[M+H]	$C_{12}H_{23}NO_4 \\$	-1.53	5:0-carnitine
2	260.1854	4.97	[M+H]	$C_{13}H_{25}NO_4$	-0.68	6:0-carnitine
3	288.2173	6.26	[M+H]	$C_{15}H_{29}NO_4$	1.47	8:0-carnitine
4	316.2482	7.31	[M+H]	$C_{17}H_{33}NO_4$	0.08	10:0-carnitine
5	344.2803	8.26	[M+H]	$C_{19}H_{37}NO_4$	2.39	12:0-carnitine
6	372.3109	9.18	[M+H]	$C_{21}H_{41}NO_4 \\$	0.33	14:0-carnitine
7	400.3421	10.10	[M+H]	$C_{23}H_{45}NO_4$	0.06	16:0-carnitine
8	428.3755	10.98	[M+H]	$C_{25}H_{49}NO_4$	4.96	18:0-carnitine
9	456.4051	12.02	[M+H]	$C_{27}H_{53}NO_4$	1.10	20:0-carnitine
10	370.2977	8.70	[M+H]	$C_{21}H_{39}NO_4$	7.09	14:1-carnitine
11	398.3269	9.48	[M+H]	$C_{23}H_{43}NO_4$	1.32	16:1-carnitine
12	426.3578	10.31	[M+H]	$C_{25}H_{47}NO_4$	0.29	18:1-carnitine
13	454.3901	11.12	[M+H]	$C_{27}H_{51}NO_4$	2.25	20:1-carnitine

Figure. S-1. NME recovered the lysophosphatidylcholines (A) and acylcarnitines (B) metabolism in mouse liver of TAA-induced toxicity. *p < 0.05 as compared to control group, **p < 0.01 as compared to control group, **p < 0.001 as compared to control group, *p < 0.05 as compared to TAA-treated group, *mp < 0.01 as compared to TAA-treated group, *mp < 0.01 as compared to TAA-treated group, *mp < 0.01 as compared to TAA-treated group, *mp < 0.001 as compared to TAA-treated group.

Figure. S-2. Tandem MS spectrum of authentic compounds. (A) 18:0-LPC. (B) 18:1-LPC. (C) 16:0-carnitine. (D) 18:0-carnitine.

Figure. S-3. (A) Hydrogen peroxide (H₂O₂) content in plasma. (B) Relative GSH abundance in plasma. H₂O₂ content and the relative GSH abundance were slightly recovered by NME without significant difference. *p < 0.05 as compared to control group.

