

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Apnoeic oxygenation with nasal cannula oxygen at different flow rates in anaesthetised patients – a study protocol for a randomised-controlled trial

Therapy	Journal:	BMJ Open
Date Submitted by the Author:23-Jul-2018Complete List of Authors:Theiler, Lorenz; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Schneeberg, Fabian; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riedel, Thomas; Kantonsspital Graubunden Kaiser, Heiko; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riedel, Thomas; Kantonsspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Greif, Robert ; Inselspital Universitatsspital Bern, Anaesthesiology and PAir Therapy	Manuscript ID	bmjopen-2018-025442
Complete List of Authors: Theiler, Lorenz; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Schneeberg, Fabian; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riedel, Thomas; Kantonsspital Graubunden Kaiser, Heiko; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Greif, Robert ; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Greif, Robert ; Inselspital Universitatsspital Bern, Anaesthesiology and PAir Therapy Heiko; Inselspital Universitatsspital Bern, Anaesthesiology and PAir	Article Type:	Protocol
Schmerztherapie Schneeberg, Fabian; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riedel, Thomas; Kantonsspital Graubunden Kaiser, Heiko; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Greif, Robert ; Inselspital Universitatsspital Bern, Anaesthesiology and PAir Therapy	Date Submitted by the Author:	23-Jul-2018
Keywords: apnoeic oxygenation, general anaesthesia, hypercapnia, nasal cannula	Complete List of Authors:	Schmerztherapie Schneeberg, Fabian; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riedel, Thomas; Kantonsspital Graubunden Kaiser, Heiko; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Greif, Robert ; Inselspital Universitatsspital Bern, Anaesthesiology and PAin
	Keywords:	apnoeic oxygenation, general anaesthesia, hypercapnia, nasal cannula

SCHOLARONE[™] Manuscripts

2 3 4	1	Apnoeic oxygenation with nasal cannula oxygen at different flow rates
5 6 7	2	in anaesthetised patients – a study protocol for a randomised-
8 9 10	3	controlled trial
11 12 13	4	
14 15 16	5	Lorenz Theiler ¹
17 18	6	Fabian Schneeberg ¹
19 20 21	7	Thomas Riedel ²
22 23	8	Heiko Kaiser ¹
24 25 26	9	Robert Greif ⁴
27 28 29	10	1 Department of Anaesthesiology and Pain Therapy, Bern University Hospital, University
30 31	11	of Bern, Bern, Switzerland
32 33	12	2 Department of Paediatrics, Kantonsspital Graubünden, Chur, Switzerland
34 35 26	13	
36 37 38	14	Short title: Physiology Regarding Apnoeic Oxygenation (PHARAO) using nasal cannula
39 40	15	therapy at different flow rates
41 42 43	16	
44 45	17	Corresponding author: Fabian Schneeberg, Department of Anaesthesiology and Pain
46 47	18	Therapy Inselspital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
48 49	19	fabian.schneeberg@gmail.com; 0041 77 424 44 12
50 51 52	20 21	Key Words: apnoeic oxygenation, general anaesthesia, hypercapnia, nasal cannula
52 53 54	22	Word count: 3324
55 56 57 58	23	Word count abstract: 303
59 60		1 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ABSTRACT

Introduction

Approve oxygenation using nasal high-flow oxygen delivery systems with heated and humidified oxygen has recently gained popularity in the anaesthesia community. It has been shown to allow a prolonged approved time of up to 65 minutes as CO_2 increase was far slower compared to previously reported data from CO₂ increase during apnoea. A ventilatory exchange due to the high nasal oxygen flow was proposed explaining that phenomenon. However, recent studies in children did not show any difference in CO_2 clearance comparing high-flow to low-flow oxygen. To investigate this ventilatory exchange in adults, we plan this study comparing different oxygen flow rates and the increase of CO₂ during appoea. We hypothesise that CO₂ clearance is non-inferior when N.C. applying low oxygen flow rates.

Methods and analysis

In this single-centre, single-blinded, randomized-controlled trial we randomly assign 100 patients planned for elective surgery to either control (oxygen 70l/min, airway opened by laryngoscopy) or one of three intervention groups: oxygen 70l/min, or 10l/min, or 2l/min, all with jaw thrust to secure airway patency. After anaesthesia induction and neuromuscular blockage, either one of the interventions or the control will be applied according to randomisation. Throughout the apnoea period, we will measure the increase of transcutaneous pCO_2 (tcpCO₂) until any one of the following criteria is met: time = 15 minutes, SpO₂ < 92%, tcpCO₂ > 10.67kPa, art. pH < 7.1, K^+ > 6.0 mmol/l. Primary outcome is the mean $tcpCO_2$ increase in kPa/min.

2	
3	
4	
5	
6	
3 4 5 6 7 8	
8	
9	
10	
11	
12	
13	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20 21 22 23 24 25 26 27 28 29	
28	
29	
30	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

60

Ethics and dissemination 46

After Cantonal Ethic Committee of Bern approval (ID 2018-00293, 22.03.2018) all study 47 participants will provide written informed consent. Patients vulnerable towards hypoxia 48 49 or hypercarbia are excluded. Study results will be published in a peer-reviewed journal and presented at national and international conferences. 50

Trial registration 51

This study was registered on www.clinicaltrials.gov (NCT03478774) and the Swiss Trial v. _861). 52

Registry KOFAM (SNCTP000002861). 53

STRENGHTS AND LIMITATIONS OF THIS STUDY

56	 Extensive measurements and rigorous study design on comparable groups
57	allows analysis of the physiologic response to apnoeic oxygenation and
58	increasing CO_2 over time to assess a possible ventilatory effect of nasal oxygen
59	delivery.
60	 Randomised, direct comparison of different nasal oxygen flow rates to
61	investigate their subsequent effect on CO₂ clearance over time in order to
62	determine the existence of a ventilatory effect.
63	 For this "proof of effect" study, we include an essentially healthy study
64	population, which limits the transfer of results to patients with compromised
65	lung function or other major health issues.
66	 Due to obvious differences in devices, anaesthetists cannot be blinded but it is
67	unlikely, that this will influence our primary outcome (CO $_2$ increase).
68	
	4

69 INTRODUCTION

Apnoeic oxygenation was first scientifically described by F. Volhard in 1908.¹ He sufficiently oxygenated paralysed dogs through a glass tube placed in the trachea without ventilation or respiratory movements. This only worked when 100% oxygen was provided, which was later confirmed by others.²⁻⁴ In 2015, Patel et al. applied the same principle to high-flow nasal oxygenation (HFNO), but administered heated, humidified oxygen through nasal cannulas at very high flow rates up to 70 l/min in adults. The study group observed a lower-than-expected rise of CO₂ using this method. This allowed extension in appoea time of patients who underwent general anaesthesia, even if they had difficult airways.⁵ A new term for this oxygen delivery technique was thus created by the study authors: THRIVE – transnasal humidified rapid-insufflation ventilatory exchange. The ventilatory effect is thought to happen by turbulences caused by the high-flow oxygen combined with the open mouth. These turbulences are believed to continue down through the trachea into the alveoli, which ultimately leads to a wash out of CO₂. Thereafter, several studies described prolonged apnoea time without desaturation up to 65 minutes during continuous laryngoscopy or bronchoscopy⁵⁷, or for laryngeal or tracheal surgery, where a tracheal tube would block the surgical field.⁸

However, the physiologic effects of HFNO remain insufficiently understood. Especially
the ventilatory effect has not yet been proven with sufficient data. Rising CO₂ levels are
the time limitation for HFNO, as they result in effects such as marked acidosis, increased
blood pressure, increased heart rate and increased cerebral blood flow.⁹⁻¹¹ During the last
century, PaCO₂ increase in apnoeic patients has been repeatedly studied. According to
that literature, PaCO₂ increases rapidly during the first minute of apnoea (1.6-1.73 kPa),
while afterwards a linear increase of about 0.4-0.67 kPa/min sets in.^{4 11-13} This physiologic

> CO_2 increase is faster than the one described using HFNO, which is only about 0.15-0.24 kPa/min.

> Recently, two studies showed that apnoeic oxygenation using low flow rates in children is equal to HFNO^{14 15} without difference regarding CO₂ increase. Given this new evidence, it seems possible that nasal oxygen flow rate has little to no impact on CO_2 clearance in adults as well.

Therefore, we will compare different nasal flow rates of 100% oxygen (70 l/min, 10 l/min and 2 l/min) with HFNO (70l/min). Furthermore, we will apply continuous laryngoscopy to HFNO and compare it to normal jaw thrust in the intervention groups in order to determine how mouth opening influences CO₂ clearance.

We hypothesise that any of our intervention groups (70 l/min, 10 l/min and 2 l/min, all with jaw thrust) is non-inferior to the control group (HFNO with oxygen 70 l/min using continuous laryngoscopy).

BMJ Open

107 METHODS AND ANALYSIS

This study was approved by the Cantonal Ethics Committee of Bern (ID 2018-00293) and is
registered on www.clinicaltrials.gov (NCT03478774) as well as on the Swiss Trial Registry
KOFAM (SNCTP000002861).

Aims

Our primary aim is to better understand possible ventilatory effects during apnoeic oxygenation using nasal cannulas at different flow rates. Our secondary aim is to demonstrate the physiologic effects of increased CO₂ levels on human physiology during general anaesthesia.

116 Design

This is a single-centre, single-blinded, prospective, randomised controlled trial at the Bern University Hospital, Bern, Switzerland. After the study participant has enrolled in the study by signing the informed consent, he or she will be randomised using a computer-generated sequence. Once general anaesthesia is induced, and mask ventilation is possible, the sealed envelope will be opened and oxygen flow will be provided according to randomisation. Therefore, the participant is blinded towards his or her group allocation, but anaesthesiologists cannot be blinded, because devices clearly differ from each other. Once randomised, the participant will stay in the allocated group for analysis, even if another intervention is applied (intention-to-treat).

126 Study population

Possible participants will be screened for eligibility during their preoperative interview as
well as checking the surgical schedule. We will include adults (> 18 years of age), who will

2		
3 4	129	undergo elective surgery requiring general anaesthesia, with an American Society of
5 6	130	Anesthesiologists (ASA) physical health status I-III, $SpO_2 \ge 96\%$ breathing room air, and
7 8	131	who provide written informed consent in German.
9 10	132	Because we intent to study the impact of apnoeic oxygenation on accumulation of CO2,
11 12 13	133	we will exclude all patients who – through their underlying condition – could bias or
14 15	134	influence the normal physiologic response. Also, for patient safety reasons we will
16 17	135	exclude patients that might be harmed due to study related effects or measurements.
18 19 20	136	Specifically, we exclude:
21 22	137	• Patients with risk factors for difficult airway (indication for flexible optic
23 24 25	138	intubation, high risk of regurgitation or expected difficult mask ventilation);
26 27	139	• Vulnerability towards hypoxaemia (known coronary heart disease, peripheral
28 29	140	occlusive arterial disease, known stenosis of the carotid or vertebral arteries,
30 31 32	141	anaemia or pregnancy);
33 34	142	• Vulnerability towards hypercarbia (pulmonary arterial hypertension, increased
35 36	143	intracranial pressure, intracranial surgery or hyperkalaemia);
37 38 39	144	 Obstructive sleep apnoea, nasal obstruction, body-mass index < 16 kg/m2 or > 35
40		
41 42	145	kg/m2 or known, suspected cervical spine instability, neuromuscular disorder,
43 44	146	absent power of judgement, limited knowledge of German language, allergies
45 46	147	towards any of the used agents.
47 48 49	148	In order to further reduce potential bias, we will stratify randomisation according to
50 51	149	body-mass index (BMI) into three groups (16-25 kg/m ² , 25-30 kg/m ² and 30-35 kg/m ²) and
52 53	150	according to smoker status into four groups (non-smokers, non-daily smokers, daily
54 55	151	smokers < 40 years of age, daily smokers > 40 years of age).
56 57 58		
58 59 60		8 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

BMJ Open

Participants will be randomized in a 1:1:1:1 ratio (25 patients per group) using a computergenerated sequence which will be executed by a study nurse.

154 Sample size

Patel et al. showed an increase of only 0.15 kPa/min with a flow rate of 70L O2/min and maximal mouth opening⁵. However, end-tidal CO₂ was measured, not transcutaneous $tcpCO_2$. Gustafson et al. measured both, $tcpCO_2$ as well as arterial pCO_2 , and found a CO_2 -increase of 0.24 kPa/min, with a standard deviation of 0.05 kPa, which was almost twice as high as the tcpCO₂ value.⁶ Using a non-inferiority design, a difference of means of 0.04 kPa/min, a standard deviation of 0.05 kPa/min, an alpha of 0.025 (one-sided) with a power of 80%, revealed a necessary sample size of 22 patients per group. We will include 25 patients in each group (100 patients in total) to account for possible drop outs. A difference of means of 0.04 kPa/min CO₂ increase would still only result in an absolute difference of 1.2 kPa CO₂ after 30 minutes of apnoea time. We defined this as measurable, but still clinically acceptable and therefore non-inferior, because the normal range of standard arterial pCO₂ is 1.3 kPa (4.7-6.0 kPa).¹⁶

Procedure

Once written informed consent is obtained and pregnancy is excluded in female patients by a pregnancy test, we will extract demographic data from the hospital information system. This includes data collected through routine patients' workflow: age, sex, weight, height, BMI, airway risk factors (Mallampati score, mouth opening, thyromental distance, reduced neck movement, retrognathia, and dental status) underlying diseases, smoking habits, ASA physical health status and indication for surgery.

On the day of surgery, we will place an arterial cannula into the radial artery under local anaesthesia and draw arterial blood gases from the awake study participant breathing room air as a baseline measurement. We will install 1) standard anaesthesia monitoring: EKG, pulse oximetry, invasive blood pressure, end-tidal O₂, end-tidal CO₂, train of four (TOF), Narcotrend[®] EEG (Narcotrend[®], Hannover, Germany), and 2) study related monitoring: cardiac output (LiDCO, LiDCO Ltd, London, UK), thoracic electric impedance tomography (EIT; using PulmoVista[®] 500, by Dräger, Lübeck, Germany), bilateral near-infrared spectroscopy (NIRS; using Niro-200NX, Hamamatsu, Tokyo, Japan) and transcutaneous pCO₂ und pO_2 (tcpO₂) measurement (both via TCM5, Radiometer, Thalwil, Switzerland). After that, we will start bag-mask pre-oxygenation until end-tidal O_2 has reached 90%. Patients will receive a fentanyl bolus of $2\mu g/kg$, and induction of anaesthesia will begin using a target-controlled infusion (TCI, Schnider model using syramed[®] µSP6000, Arcomed AG, Regensdorf, Switzerland) for propofol with a target concentration of 3.0 µg/ml and TCI for remifentanil (Minto model using syramed[®] µSP6000, Arcomed AG, Regensdorf, Switzerland) with a target concentration of 2.0 ng/ml. We will administer rocuronium 0.9mg/kg to achieve neuromuscular blockage. After induction, general anaesthesia will be confirmed by absent end-tidal CO₂ readings, unconsciousness and Narcotrend[®]-values in the target range of 40 to 60 under bag-mask ventilation.

Once mask ventilation with a tidal volume of 6ml/kg and a respiratory rate of 12/min is
successful, the previously sealed envelope containing the randomisation will be opened
and the intervention will be prepared according to group allocation.

196 For safety reasons the experiment will be discontinued if mask ventilation is impossible197 even after full neuromuscular blockage and placement of an oropharyngeal tube. The

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 23

 BMJ Open

anaesthetist in charge would then intubate the trachea and no study-relatedmeasurements would take place.

For all patients who show a cardiovascular reaction (increase of heart rate and blood
pressure) to the study procedure (laryngoscopy or jaw thrust), we will titrate remifentanil
to effect. Once steady state has set in, we will no longer interfere with remifentanil.
Whenever Narcotrend[®] values rise above our target range, propofol will be increased. We
will not correct dropping Narcotrend[®] values as this is likely to be caused by increasing
CO₂ and therefore an effect we want to measure.

206 When complete neuromuscular blockage has been confirmed by TOF = 0, we will stop 207 mask ventilation and start the apnoea time. Arterial blood gas will be drawn and analysed 208 at start of apnoea.

If assigned to the control group, the study participant will receive high-flow humidified oxygen at 70I/min via Optiflow™ (Fisher&Paykel, Auckland, NewZealand) throughout the apnoea period while the glottis will be visualised by videolaryngoscopy (MacGrath[™] MAC, Medtronic, Dublin, Ireland), thus assuring airway patency. If assigned to one of the intervention groups, we will apply jaw thrust and one of the following flow rates: 1) highflow humidified oxygen at 70l/min via Optiflow™; 2) medium-flow humidified oxygen at 10l/min (Carbamed digiflow, Switzerland; Aquapak[®] Hudson RCI[®], Teleflex[®], Wayne, Pennsylvania, USA; O2Star[™] nasal cannula curved, Dräger, Lübeck, Germany); or 3) low-flow humidified oxygen at 2l/min (Carbamed digiflow, Switzerland; Aquapak[®] Hudson RCI[®], Teleflex[®], Wayne, Pennsylvania, USA; O2Star[™] nasal cannula curved, Dräger, Lübeck, Germany).

During jaw thrust, upper airway patency will be visually confirmed by a nasopharyngeal
 fiberscope (EF-N slim, Acutronic, Hirzel, Switzerland).¹⁷ Only if the airway is obstructed,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

we will insert an oropharyngeal airway tube (Guedel airway, Intersurgical[®], Workingham, Berkshire, UK). We will not assess the degree of opening, as this would not have any direct consequences for the study.

During apnoea time, we will continuously measure invasive arterial blood pressure, pulse oximetry and EKG as part of standard monitoring. Furthermore, we will continuously measure $tcpCO_2$, $tcpO_2$ by applying a probe to the patient's chest, two fingers below the clavicle; depth of anaesthesia (Narcotrend[®]); bilateral brain oxygenation (NIRS); cardiac output by pulse contour analysis; and ventilation distribution changes by thoracic electrical impedance tomography. For this, resulting potential differences are measured, and impedance distribution sampled at 30 Hz will be calculated by an automated linearized Newton-Raphson reconstruction algorithm¹⁸. Relative change in end-expiratory lung impedance (EELI) and measures of ventilation inhomogeneity such as the global inhomogeneity index (GI) will be calculated as described previously, using customised software (Matlab R2013a, The MathWorks Inc., Nattick, MA, USA).^{19 20}

Furthermore, we will take arterial blood samples at the onset of apnoea, one minute after apnoea, and thereafter every two minutes to perform blood gas analysis (total of max. 10 measurements). These blood samples will be analysed for PaO₂, SaO₂, PaCO₂, pH, bicarbonate and potassium.

During the induction of anaesthesia, potential hypotension due to the anaesthetic drugs
will be counteracted with a continuous infusion of norepinephrine. Thereafter, steady
state will set in and any change in blood pressure is due to the vasoactive effect of CO₂.
As we want to measure these effects we will no longer interfere with blood pressure,
except for persisting hypotension.

Page 13 of 23

1 2

BMJ Open

3			
4			
5			
6			
7			
8			
9			
1	0		
1	1		
1	2		
1	3		
1	4		
1	5		
1	6		
1	7		
	8		
1	9		
2	0		
2	1		
2	2		
2	3		
	4		
2	5		
2	6		
2	7		
2	8		
2	9		
3	012345678		
3	1		
3	2		
3	3		
3	4		
3	5		
3	6		
3	7		
3	8		
3	9		
4	0		
4	1		
	2		
	3		
	4		
4	5		
	6		
4			
	8		
	9		
	0		
5	1		
5	2		
5	3		
5	4		
5	5		
5	6		
5	7		
5	8		
5	9		

60

The experiment will end when any of the following criteria is met: SpO₂ <92%, $p_{tc}CO_2$ 245 246 >10.67 kPa, pH <7.1, K^+ >6.0 mmol/l, t = 15 minutes. Thereafter the trachea will be intubated according to the decision of the attending anaesthetists. With that the pre-247 surgical part of the study will end. 248

Study participants will either be visited on the first postoperative day or contacted by 249 phone to ask about the quality of recovery.²¹ This includes ability to breathe easily, feeling 250 rested, being able to enjoy food, getting support from hospital doctors and nurses as well 251 as any pain, nausea and vomiting, feeling worried or anxious, or feeling sad or depressed. 252 Furthermore, we ask specifically for pain localised in the patient's throat, mandibular 253 254 joint, or head; nasal dryness; lip injuries; dental damages; other injuries; or any other discomfort or complication. For assessing the severity of complications, we will use a 255 (modified) visual analogue scale (VAS), where o is no pain (or discomfort), and 10 is 256 257 maximum pain (or discomfort). We will also assess all injuries obtained during airway management and the study period. After this interview, no further data will be acquired, 258 and the study ends. 259

Objectives 260

261 Primary objective

Our primary objective is to measure the increase of mean transcutaneous CO₂ over time 262 in kPa/min and to determine the influence of nasal oxygen flow rate (70l/min, 10l/min and 263 2l/min) and the presence of an open mouth (jaw thrust vs. continuous laryngoscopy). 264 265 Secondary outcomes are: lowest O₂ saturation; changes in end-expiratory lung 266 impedance, which will help quantify the degree of atelectasis after intubation; changes in cerebral perfusion using NIRS, and influence of increasing CO₂ on cardiac output and 267 268 systemic blood pressure.

269 Statistical plan

Distribution of data will be checked for normality using qq-plots and the Shapiro-Wilks analysis using Stata (StataCorp LLC, College Station, Texas, USA). Normal distributed data will be presented as means and standard deviation, otherwise median and interguartile range will be used. Proportions will be presented as numbers and percentage. Analytical statistics uses Mann-Whitney u-test and Student's t-test, according distribution, or ANOVA and Kruskal-Wallis for multiple group comparisons. Each of the groups will a-priory be compared to the control group independently, therefore no correction for multiple comparisons will have to be used. Other multiple comparisons and any subgroup-analyses will be performed using appropriate correction factors. Proportions will be compared by Chi-square test or Fisher's exact test. As sensitivity analyses, we will do regression analyses, using mixed effects linear regressions. All statistical analyses will be performed on an intention-to-treat basis. A p < 0.05 will be considered as statistically significant.

- **Patient involvement**
- 284 No patients or patient representatives were involved in the design of this trial.

1 ว **BMJ** Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11 12	
13 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
27 28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 55	
55 56	
50 57	
58	
59	
60	

286 ETHICS AND DISSEMINATION

287 This study will be conducted in accordance with the ICH GCP Note for Guidance on Good 288 Clinical Practise and local regulations with approval of the Cantonal Ethics Committee Bern, following the Swiss law for human research.²² The ethics committee already 289 approved our study (ID 2018-00293), including the safety end points. A drop in O_2 -290 291 saturation < 92% allows for timely securing the airway without risk of hypoxic damages of 292 the study participants. Furthermore, prior publications suggest it to be very likely that all groups maintain stable O_2 -saturation throughout the maximum approved time of 15 293 minutes.^{23 24} Rising CO₂ levels could lead to acidosis; therefore, patients vulnerable to 294 hypercarbia are excluded preliminarily (see section study population). As routinely stated 295 in the protocol for the ethics committee, the study can be terminated prematurely if new 296 297 evidence suggesting severe disadvantage or increased morbidity will arise during the 298 study period.

All study data will be directly recorded in the CRF, which should also be considered being

300 source data. These data will be transferred into the departmental research

301 documentation system – LabKey (LabKey Software, Seattle, WA, USA, version 14.3). All

302 study data will be archived for a minimum of 10 years after study termination or

303 premature termination of the clinical trial.

304 Data will be transferred into a secure, web-based data integration platform and 305 controlled independently by two members of the study team. Additionally, data are 306 double-checked by comparing the screening records with the digital anaesthesia 307 documenting system of the hospital.

308 A study nurse otherwise not involved in the study will be in charge of data monitoring 309 and auditing after every 20 patients.

Important modifications to the protocol will have to reported to the ethics committee.

Both, the principal investigator and sponsor investigator will have access to the final trial

data set. Other researchers may be granted access to the dataset to answer scientific

questions.

Results will be presented at national and international scientific meetings and will be published in a peer-reviewed medical journal.

Informed Consent

In order to be eligible for the study, all patients have to sign an ethics committee approved informed consent form. All potential risks and benefits will be thoroughly explained by study personnel and the patient will be given enough time to consider his or her study participation.

Page 17 of 23

BMJ Open

DISCUSSION

Humidified high-flow nasal oxygenation is a widely used therapy in intensive care for both adults and paediatric spontaneously breathing patients. The new use in patients under general anaesthesia has revitalized the old concept of apnoeic oxygenation. Its use in anaesthesiology spreads from oxygenating an awake patient, to pre-oxygenation, as well as to apnoeic oxygenation during rapid-sequence intubation (RSI), or during micro laryngoscopy, and bronchoscopy. More and more applications for humidified HFNO or THRIVE are emerging and they show great potential.

However, there is only limited evidence explaining physiologic changes during HFNO, especially the proposed mechanism of CO_2 elimination by a ventilatory effect in anaesthetised patients. It remains unknown how different flow rates affect CO₂ clearance and if a minimal flow rate (of 2l/min) is able to maintain oxygenation over 15 minutes. There are a few studies suggesting lower flow rates could also be effective.^{23 24} However, no prospective study compared high flow to low flow so far; and it has not yet been determined how flow rate influences CO₂ clearance. As high CO₂ levels have a multitude of effects, such as pulmonic arterial vasoconstriction, acidosis, and hyperkalaemia, a better understanding of CO₂ clearance could lead to the definition of contraindications or safety measurements for humified HFNO/THRIVE, especially for longer apnoea periods (e.g. during micro laryngoscopy).

341 It is not known, if changes of thoracic electric impedance tomography in anaesthetised 342 patients are similar to those in awake patients.²⁵ For example, it is already known that 343 end-expiratory lung impedance (EELI) is increased in awake patients. This is probably due 344 to a higher pharyngeal pressure observed in patients with HFNO who breath 345 spontaneously. The effect has never been evaluated in anaesthetised patients.^{26 27}

Also, haemodynamic changes during apnoeic oxygenation and under increasing $PaCO_2$ have not yet been investigated rigorously. We only found studies describing increased PaCO₂ and its influence on cardiac output and brain perfusion in awake patients and healthy volunteers^{9 10 28}. It is very likely that anaesthetised patients have a different reaction due to the vasodilatory effect of most anaesthetic drugs, which could very easily overweigh the vasoconstrictive effects of increased CO₂ levels.

Overall, knowledge of the underlying physiological mechanisms during HFNO in anaesthetised patients is still very limited. This study investigates under rigorously controlled circumstances the concept of humidified HFNO on prolonged apnoea time, presumably without desaturation. With our findings, we hope to improve airway management safety as this study enables the medical community to better understand the physiology behind apnoeic oxygenation and the influence of different nasal flow rates on CO₂ clearance. Our study's extensive setup also allows us to measure the effects of increased CO₂ on cerebral perfusion and cardiac output.

If low-flow oxygen administration with standard nasal cannula is non-inferior compared to high-flow humidified HFNO, it could have direct clinical impact. Oxygen and standard nasal cannula are ubiquitously available and it will be hard to argue against apnoeic oxygenation during routine intubation. Especially for rapid sequence intubation (RSI) and other emergency airway procedures, apnoeic oxygenation may be – and perhaps should be – performed using a standard nasal cannula at a low flow rate.²⁹ For patients at risk of desaturation, this has the potential to reduce complication of hypoxia and therefore will improve patient safety with little additional resources.

368 Due to the design of this trial, we will not be able to determine the influence of 369 pathophysiologic alterations of patients' underlying diseases, as we exclude severely ill

Page 19 of 23

1 2

BMJ Open

2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
59	
60	

patients from this study for safety reasons. Furthermore, although we include 100 patients in this trial, we may still end up with an uneven distribution of risk factors. To minimize this bias, we stratify according to BMI and smoking status, as we assume these factors to be the most influential on our primary outcome.

Provided all groups have a similar CO₂ clearance, the inclusion of 100 patients will provide
a solid foundation to detect even smaller haemodynamic, thoracic EIT, or EEG changes.
Nevertheless, all results are to be considered for anaesthetised patients using propofol
and remifentanil. We do not know how other anaesthetic drugs would potentially
interfere with patients' physiology.

All this leads us to the conclusion that this study will be able to provide highly interesting results and urgently needed evidence on physiologic changes during HFNO and CO_2 increase in adult patients during apnoeic oxygenation. We will find an answer to our question, if the application of nasal oxygen at 70l/min, 10l/min or 2l/min using jaw thrust is non-inferior compared to nasal oxygen at 70l/min using continuous laryngoscopy in regard to CO_2 clearance in anaesthetised patients.

385

AUTHOR CONTRIBUTIONS

RG and LT conceived the study. RG, LT, FS, HK, and TR wrote the study protocol. RG, LT, FS and HK developed the practical approach to measurement and recruitment. LT designed the statistical analysis plan for the protocol. All authors critically reviewed this manuscript and agree to its final form.

FUNDING STATEMENT

This research is funded by a departmental research grant assigned to LT. For this study, Fisher & Paykel (Auckland, New Zealand) provide all necessary breathing circuits and nasal cannulas without costs. Fisher & Paykel are neither involved in the design nor have they any influence on the data analysis and the presentation of results or their publication nor do the study authors have any financial or any other collaborations with Fisher & Paykel.

COMPETING INTERESTS

None declared.

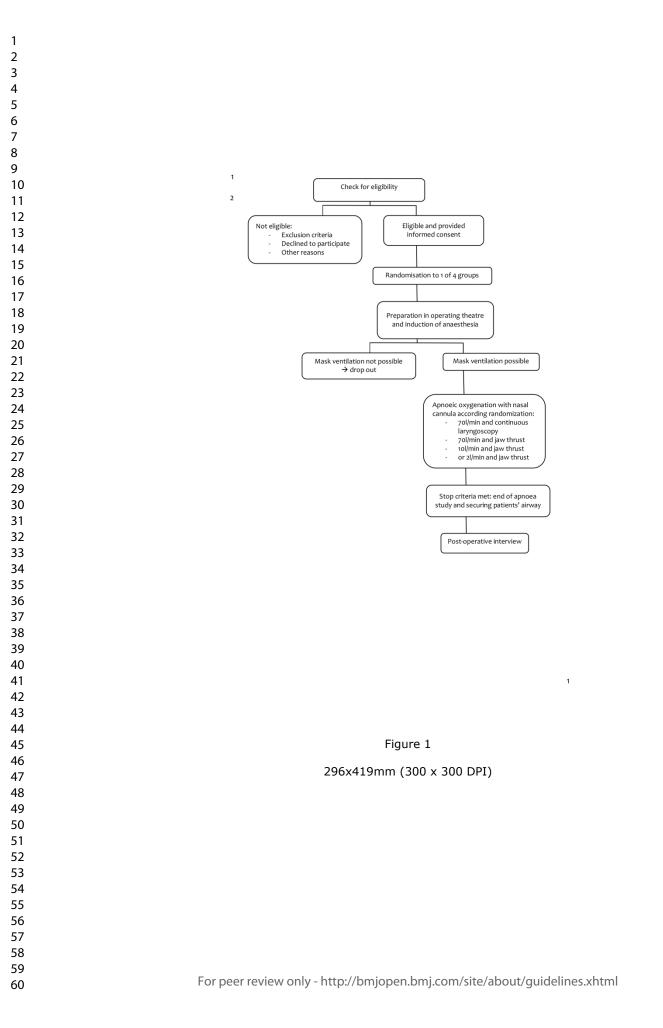

FIGURE LEGENDS

Figure 1: Study flow chart

REFERENCES

5		
6	403	1. Volhard F. Über künstliche Atmung durch Ventilation der Trachea und eine einfache
7	404	Vorrichtung zur rhythmischen künstlichen Atmung. Münchener Medizinische
8	405	Wochenschrift 1908;55(5)
9	406	2. Meltzer SJ, Auer J. Continuous Respiration without Respiratory Movements. J Exp Med
10	407	1909;11(4):622-5.
11 12	408	3. Bartlett RG, Jr., Brubach HF, Specht H. Demonstration of aventilatory mass flow during
12 13	409	ventilation and apnea in man. J Appl Physiol 1959;14(1):97-101. doi:
14	410	10.1152/jappl.1959.14.1.97
15		4. Eger El, Severinghaus JW. The rate of rise of PaCO2 in the apneic anesthetized patient.
16	411	
17	412	Anesthesiology 1961;22:419-25.
18	413	5. Patel A, Nouraei SA. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange
19	414	(THRIVE): a physiological method of increasing apnoea time in patients with
20	415	difficult airways. Anaesthesia 2015;70(3):323-9. doi: 10.1111/anae.12923
21	416	6. Gustafsson IM, Lodenius A, Tunelli J, et al. Apnoeic oxygenation in adults under general
22	417	anaesthesia using Transnasal Humidified Rapid-Insufflation Ventilatory Exchange
23	418	(THRIVE) - a physiological study. Br J Anaesth 2017;118(4):610-17. doi:
24	419	10.1093/bja/aex036
25	420	7. Lyons C, Callaghan M. Apnoeic oxygenation with high-flow nasal oxygen for laryngeal
26	421	surgery: a case series. Anaesthesia 2017;72(11):1379-87. doi: 10.1111/anae.14036
27	422	8. Riva T, Seiler S, Stucki F, et al. High-flow nasal cannula therapy and apnea time in
28	423	laryngeal surgery. Paediatr Anaesth 2016;26(12):1206-08. doi: 10.1111/pan.12992
29 30		9. Bain AR, Ainslie PN, Hoiland RL, et al. Cerebral oxidative metabolism is decreased with
31	424	
32	425	extreme apnoea in humans; impact of hypercapnia. J Physiol 2016;594(18):5317-28.
33	426	doi: 10.1113/JP272404
34	427	10. Sechzer PH, Egbert LD, Linde HW, et al. Effect of carbon dioxide inhalation on arterial
35	428	pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal
36	429	man. J Appl Physiol 1960;15:454-8. doi: 10.1152/jappl.1960.15.3.454
37	430	11. Frumin MJ, Epstein RM, Cohen G. Apneic oxygenation in man. Anesthesiology
38	431	1959;20:789-98.
39	432	12. Holmdahl MH. Pulmonary uptake of oxygen, acid-base metabolism, and circulation
40	433	during prolonged apnoea. Acta Chir Scand Suppl 1956;212:1-128.
41	434	13. Stock MC, Schisler JQ, McSweeney TD. The PaCO2 rate of rise in anesthetized patients
42	435	with airway obstruction. J Clin Anesth 1989;1(5):328-32.
43 44	436	14. Riva T, Pedersen TH, Seiler S, et al. Transnasal humidified rapid insufflation ventilatory
44	437	exchange for oxygenation of children during apnoea: a prospective randomised
46	438	controlled trial. Br J Anaesth 2018;120(3):592-99. doi: 10.1016/j.bja.2017.12.017
47		
48	439	15. Humphreys S, Lee-Archer P, Reyne G, et al. Transnasal humidified rapid-insufflation
49	440	ventilatory exchange (THRIVE) in children: a randomized controlled trial. Br J
50	441	Anaesth 2017;118(2):232-38. doi: 10.1093/bja/aew401
51	442	16. M. Habben FA. Blutgasanalyse [Web Page]. 2018 [Available from:
52	443	http://flexikon.doccheck.com/de/Blutgasanalyse accessed 19.1. 2018.
53	444	17. Uzun L, Ugur MB, Altunkaya H, et al. Effectiveness of the jaw-thrust maneuver in
54	445	opening the airway: a flexible fiberoptic endoscopic study. ORL J Otorhinolaryngol
55	446	Relat Spec 2005;67(1):39-44. doi: 10.1159/000084304
56		
57		
58 59		21
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
50		

1		
2		
3	447	18. Yorkey TJ, Webster JG, Tompkins WJ. Comparing reconstruction algorithms for
4	448	electrical impedance tomography. IEEE transactions on bio-medical engineering
5	449	1987;34(11):843-52.
6	450	19. Schnidrig S, Casaulta C, Schibler A, et al. Influence of end-expiratory level and tidal
7	451	volume on gravitational ventilation distribution during tidal breathing in healthy
8		adults. European journal of applied physiology 2013;113(3):591-8.
9	452	
10	453	20. Wettstein M, Radlinger L, Riedel T. Effect of different breathing aids on ventilation
11	454	distribution in adults with cystic fibrosis. PloS one 2014;9(9):e106591.
12 13	455	21. Myles PS, Boney O, Botti M, et al. Systematic review and consensus definitions for the
13 14	456	Standardised Endpoints in Perioperative Medicine (StEP) initiative: patient
15	457	comfort. British Journal of Anaesthesia 2018;120(4):705-11. doi:
16	458	10.1016/j.bja.2017.12.037
17	459	22. Bundesverfassung der Schweizerischen Eidgenossenschaft, Artikel 118b, 2010.
18	460	23. Teller LE, Alexander CM, Frumin MJ, et al. Pharyngeal insufflation of oxygen prevents
19	461	arterial desaturation during apnea. Anesthesiology 1988;69(6):980-2.
20	462	24. Heard A, Toner AJ, Evans JR, et al. Apneic Oxygenation During Prolonged
21	463	Laryngoscopy in Obese Patients: A Randomized, Controlled Trial of Buccal RAE
22	464	Tube Oxygen Administration. Anesth Analg 2017;124(4):1162-67. doi:
23	465	10.1213/ANE.00000000001564
24 25	466	25. Parke RL, Bloch A, McGuinness SP. Effect of Very-High-Flow Nasal Therapy on Airway
25 26	467	Pressure and End-Expiratory Lung Impedance in Healthy Volunteers. <i>Respiratory</i>
20	468	Care 2015;60(10):1397-403. doi: 10.4187/respcare.04028
28	469	26. Groves N, Tobin A. High flow nasal oxygen generates positive airway pressure in adult
29	-	volunteers. Aust Crit Care 2007;20(4):126-31. doi: 10.1016/j.aucc.2007.08.001
30	470	
31	471	27. Parke R, McGuinness S, Eccleston M. Nasal high-flow therapy delivers low level
32	472	positive airway pressure. Br J Anaesth 2009;103(6):886-90. doi: 10.1093/bja/aep280
33	473	28. Price HL. Effects of carbon dioxide on the cardiovascular system. Anesthesiology
34	474	1960;21:652-63.
35	475	29. Weingart SD, Levitan RM. Preoxygenation and prevention of desaturation during
36 37	476	emergency airway management. Ann Emerg Med 2012;59(3):165-75 e1. doi:
38	477	10.1016/j.annemergmed.2011.10.002
39	478	
40		
41		
42		
43		
44		
45		
46		
47 48		
48 49		
49 50		
51		
52		
53		
54		
55		
56		
57		
58 50		22

BMJ Open

Apnoeic oxygenation with nasal cannula oxygen at different flow rates in anaesthetised patients – a study protocol for a non-inferiority randomised-controlled trial

Journal:	BMJ Open
Journal.	
Manuscript ID	bmjopen-2018-025442.R1
Article Type:	Protocol
Date Submitted by the Author:	05-Mar-2019
Complete List of Authors:	Theiler, Lorenz; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Schneeberg, Fabian; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riedel, Thomas; Kantonsspital Graubunden Kaiser, Heiko; Inselspital Bern Universitatsklinik fur Anasthesiologie und Schmerztherapie Riva, Thomas; Inselspital Bern Universitätsklinik für Anästhesiologie und Schmerztherapie Greif, Robert ; Inselspital Universitatsspital Bern, Anaesthesiology and PAin Therapy
Primary Subject Heading :	Anaesthesia
Secondary Subject Heading:	Anaesthesia
Keywords:	apnoeic oxygenation, general anaesthesia, hypercapnia, nasal cannula

SCHOLARONE[™] Manuscripts

1 2		
3 4 5	1	Apnoeic oxygenation with nasal cannula oxygen at different flow rates
6 7 8	2	in anaesthetised patients – a study protocol for a non-inferiority
9 10 11	3	randomised-controlled trial
12 13 14	4	
15 16 17	5	Lorenz Theiler ¹
18 19 20	6	Fabian Schneeberg ¹
21 22	7	Thomas Riedel ²
23 24 25	8	Heiko Kaiser ¹
26 27	9	Thomas Riva ¹
28 29 30	10	Robert Greif ¹
31 32 33	11	1 Department of Anaesthesiology and Pain Therapy, Bern University Hospital, University
34 35	12	of Bern, Bern, Switzerland
36 37 38	13	2 Department of Paediatrics, Kantonsspital Graubünden, Chur, Switzerland
39 40	14	
41 42 43	15	Short title: Physiology Regarding Apnoeic Oxygenation (PHARAO) using nasal cannula
44 45	16	therapy at different flow rates
46 47	17	
48 49 50	18	Corresponding author: Fabian Schneeberg, Department of Anaesthesiology and Pain
51 52	19	Therapy Inselspital Bern, Freiburgstrasse, 3010 Bern, Switzerland;
53 54 55	20	fabian.schneeberg@gmail.com; 0041 77 424 44 12
56 57	21 22	Key Words: apnoeic oxygenation, general anaesthesia, hypercapnia, nasal cannula
58 59 60	23	Word count: 4346

24 Word count abstract: 300

tor oper terrer only

BMJ Open

ABSTRACT

Introduction

Approve oxygenation using nasal high-flow oxygen delivery systems with heated and humidified oxygen has recently gained popularity in the anaesthesia community. It has been shown to allow a prolonged apnoea time of up to 65 minutes as CO₂ increase was far slower compared to previously reported data from CO₂ increase during appoea. A ventilatory exchange due to the high nasal oxygen flow was proposed explaining that phenomenon. However, recent studies in children did not show any difference in CO₂ clearance comparing high-flow to low-flow oxygen. To investigate this ventilatory exchange in adults, we plan this study comparing different oxygen flow rates and the increase of CO₂ during apnoea. We hypothesise that CO₂ clearance is non-inferior when 4. applying low oxygen flow rates.

Methods and analysis

In this single-centre, single-blinded, randomized-controlled trial we randomly assign 100 patients planned for elective surgery to either control (oxygen 70l/min, airway opened by laryngoscopy) or one of three intervention groups: oxygen 70l/min, or 10l/min, or 2l/min, all with jaw thrust to secure airway patency. After anaesthesia induction and neuromuscular blockage, either one of the interventions or the control will be applied according to randomisation. Throughout the apnoea period, we will measure the increase of transcutaneous pCO_2 (tcpCO₂) until any one of the following criteria is met: time = 15 minutes, $SpO_2 < 92\%$, $tcpCO_2 > 10.67$ kPa, art. pH < 7.1, K⁺ > 6.0 mmol/l. Primary outcome is the mean tcpCO₂ increase in kPa/min.

Ethics and dissemination

After Cantonal Ethic Committee of Bern approval (ID 2018-00293, 22.03.2018) all study participants will provide written informed consent. Patients vulnerable towards hypoxia or hypercarbia are excluded. Study results will be published in a peer-reviewed journal and presented at national and international conferences.

Trial registration

www.clinica. .oo2861). This study was registered on www.clinicaltrials.gov (NCT03478774) and the Swiss Trial

Registry KOFAM (SNCTP000002861).

1

BMJ Open

2		
3 4 5	56	S
6 7 8	57	
9 10	58	
11 12 13	59	
13 14 15	60	
16 17 18	61	
19 20	62	
21 22 23	63	
24 25	64	
26 27 28	65	
29 30	66	
31 32 33	67	
34 35	68	
36 37 38	69	
39 40		
41 42 43		
44 45		
46 47 48		
49 50		
51 52 53		
54 55		
56 57		
58 59 60		

TRENGHTS AND LIMITATIONS OF THIS STUDY

57	•	Extensive measurements and rigorous study design on comparable groups
58		allows analysis of the physiologic response to apnoeic oxygenation and
59		increasing CO_2 over time to assess a possible ventilatory effect of nasal oxygen
60		delivery.
61	•	Randomised, direct comparison of different nasal oxygen flow rates to
62		investigate their subsequent effect on CO_2 clearance over time in order to
63		determine the existence of a ventilatory effect.
64	•	For this "proof of effect" study, we include an essentially healthy study
65		population, which limits the transfer of results to patients with compromised
66		lung function or other major health issues.
67	•	Due to obvious differences in devices, anaesthetists cannot be blinded but it is
68		unlikely, that this will influence our primary outcome (CO $_2$ increase).
69		

70 INTRODUCTION

Approvide Approv oxygenated paralysed dogs through a glass tube placed in the trachea without ventilation or respiratory movements. This only worked when 100% oxygen was provided, which was later confirmed by others.²⁻⁴ In 2015, Patel et al. applied the same principle to high-flow nasal oxygenation (HFNO), but administered heated, humidified oxygen through nasal cannulas at very high flow rates up to 70 l/min in adults. The study group observed a lower-than-expected rise of CO_2 using this method. This allowed extension in appoend time of patients who underwent general anaesthesia, even if they had difficult airways.⁵ A new term for this oxygen delivery technique was thus created by the study authors: THRIVE -transnasal humidified rapid-insufflation ventilatory exchange. The ventilatory effect is thought to happen by turbulences caused by the high-flow oxygen combined with the open mouth. These turbulences are believed to continue down through the trachea into the alveoli, which ultimately leads to a wash out of CO₂. Thereafter, several studies described prolonged appoea time without desaturation up to 65 minutes during continuous laryngoscopy or bronchoscopy⁵⁻⁷, or for laryngeal or tracheal surgery, where a tracheal tube would block the surgical field.⁸

However, the physiologic effects of HFNO remain insufficiently understood. Especially the ventilatory effect has not yet been proven with sufficient data. Rising CO₂ levels are the time limitation for HFNO, as they result in effects such as marked acidosis, increased blood pressure, increased heart rate and increased cerebral blood flow.⁹⁻¹¹ During the last century, PaCO₂ increase in apnoeic patients has been repeatedly studied. According to that literature, PaCO₂ increases rapidly during the first minute of apnoea (1.6-1.73 kPa), while Page 7 of 31

1 2

BMJ Open

3 4	93
5 6 7	94
7 8 9	95
10 11	96
12 13 14	97
15 16	98
17 18 19	99
20 21	100
22 23 24 25	101
26	102
27 28 29	103
29 30 31	104
32 33	105
34 35 36	106
37 38	
39 40 41	
42 43	
44 45 46	
46 47 48	
49 50	
51 52 53	
54 55	
56 57	
58 59 60	

afterwards a linear increase of about 0.4-0.67 kPa/min sets in.⁴ ¹¹⁻¹³ This physiologic CO₂
increase is faster than the one described using HFNO, which is only about 0.15-0.24 kPa/min.
Recently, two studies showed that apnoeic oxygenation using low flow rates in children is
equal to HFNO¹⁴ ¹⁵ without difference regarding CO₂ increase. Given this new evidence, it
seems possible that nasal oxygen flow rate has little to no impact on CO₂ clearance in adults
as well.

Therefore, we will compare different nasal flow rates of 100% oxygen (70 l/min, 10 l/min and 2 l/min) with HFNO (70 l/min). Furthermore, we will apply continuous laryngoscopy to HFNO and compare it to normal jaw thrust in the intervention groups in order to determine how mouth opening influences CO_2 clearance.

We hypothesise that any of our intervention groups (70 l/min, 10 l/min and 2 l/min, all with
jaw thrust) is non-inferior to the control group (HFNO with oxygen 70 l/min using
continuous laryngoscopy) regarding mean transcutaneous CO₂ increase in kPa/min.

107 METHODS AND ANALYSIS

This study was approved by the Cantonal Ethics Committee of Bern (ID 2018-00293) and is
registered on www.clinicaltrials.gov (NCT03478774) as well as on the Swiss Trial Registry
KOFAM (SNCTP000002861).

Aims

We want to better understand possible ventilatory effects during apnoeic oxygenation
using nasal cannulas at different flow rates and demonstrate the physiologic effects of
increased CO₂ levels on human physiology during general anaesthesia.

115 Design

This is a single-centre, single-blinded, prospective, non-inferiority randomised controlled trial at the Bern University Hospital, Bern, Switzerland. After the study participant has enrolled in the study by signing the informed consent, he or she will be randomised using a computer-generated sequence. Once general anaesthesia is induced, and mask ventilation is possible, the sealed envelope will be opened and oxygen flow will be provided according to randomisation. Therefore, the participant is blinded towards his or her group allocation, but anaesthesiologists cannot be blinded, because devices clearly differ from each other. Once randomised, the participant will stay in the allocated group for analysis, even if another intervention is applied (intention-to-treat).

125 Study population

Possible participants will be screened for eligibility checking the surgical schedule and we
invite them to participate during our pre-anaesthesia interview. To allow patients sufficient
time to consider participation, we contact eligible study participants the day before

BMJ Open

surgery. We will include adults (> 18 years of age), who will undergo elective surgery

requiring general anaesthesia, with an American Society of Anesthesiologists (ASA)

2	129
4 5	129
6 7	130
7 8 9	131
10 11	132
12 13	133
14 15 16	134
17 18	135
19 20	136
21 22 23	137
23 24 25	
26 27	138
28 29	139
30 31 32	140
33 34	141
35 36	142
37 38	143
39 40	ל4י
41 42	144
43 44	145
45 46 47	146
48 49	147
50 51	148
52 53	149
54 55	
56 57	150
58 59	151
~ ^	

131	physical health status I-III, SpO ₂ \ge 96% breathing room air, and who provide written
132	informed consent in German as this is the common language spoken in Bern, Switzerland.
133	Because we intent to study the impact of apnoeic oxygenation on accumulation of CO2,
134	we will exclude all patients who – through their underlying condition – could bias or
135	influence the normal physiologic response. Also, for patient safety reasons we will exclude
136	patients that might be harmed due to study related effects or measurements. Specifically,
137	we exclude:
138	• Patients with risk factors for difficult airway (indication for flexible optic intubation,
139	high risk of regurgitation or expected difficult mask ventilation);
140	• Vulnerability towards hypoxaemia (known coronary heart disease, peripheral

occlusive arterial disease, known stenosis of the carotid or vertebral arteries,
anaemia or pregnancy);

Vulnerability towards hypercarbia (pulmonary arterial hypertension, increased intracranial pressure, intracranial surgery or hyperkalaemia);

Obstructive sleep apnoea, nasal obstruction, body-mass index < 16 kg/m2 or > 35
 kg/m2 or known, suspected cervical spine instability, neuromuscular disorder,
 absent power of judgement, limited knowledge of German language, allergies
 towards any of the used agents.

In order to further reduce potential bias, we will stratify randomisation according to body In order to further reduce potential bias, we will stratify randomisation according to body mass index (BMI) into three groups (16-25 kg/m², 25-30 kg/m² and 30-35 kg/m²) and
 according to smoker status into four groups (non-smokers, non-daily smokers, daily

152 smokers < 40 years of age, daily smokers > 40 years of age). According to the BMI, smoking 153 status and age group, the patient fits into one of the possible twelve strata. Within each 154 strata, the groups are being randomised for the different flow rates. Participants will be 155 randomized in a 1:1:1:1 ratio (25 patients per group) using a computer-generated sequence 156 which will be executed by a study nurse.

157 Sample size

Patel et al. showed an increase of only 0.15 kPa/min with a flow rate of 70L O2/min and maximal mouth opening⁵. However, end-tidal CO₂ was measured, not transcutaneous tcpCO₂. Gustafson et al. measured both, tcpCO₂ as well as arterial pCO₂, and found a CO₂-increase of 0.24 kPa/min, with a standard deviation of 0.05 kPa, which was almost twice as high as the tcpCO₂ value.⁶ Using a non-inferiority design, a difference of means of 0.04 kPa/min, a standard deviation of 0.05 kPa/min, an alpha of 0.025 (one-sided) with a power of 80%, revealed a necessary sample size of 22 patients per group. We will include 25 patients in each group (100 patients in total) to account for possible drop outs. A difference of means of 0.04 kPa/min CO₂ increase would still only result in an absolute difference of 1.2 kPa CO₂ after 30 minutes of apnoea time. We defined this as measurable, but still clinically acceptable and therefore non-inferior, because the normal range of standard arterial pCO₂ is 1.3 kPa (4.7-6.0 kPa).¹⁶

9 170 **Procedure**

Once written informed consent is obtained and pregnancy is excluded in female patients
 by a pregnancy test, we will extract demographic data from the hospital information
 system. This includes data collected through routine patients' workflow: age, sex, weight,
 height, BMI, airway risk factors (Mallampati score, mouth opening, thyromental distance,

Page 11 of 31

BMJ Open

reduced neck movement, retrognathia, and dental status) underlying diseases, smoking
habits, ASA physical health status and indication for surgery.

On the day of surgery, we will place an arterial cannula into the radial artery under local anaesthesia and draw arterial blood gases from the awake study participant breathing room air as a baseline measurement. We will install 1) standard anaesthesia monitoring: EKG, pulse oximetry, invasive blood pressure, end-tidal O₂, end-tidal CO₂, train of four (TOF), Narcotrend[®] EEG (Narcotrend[®], Hannover, Germany), and 2) study related monitoring: cardiac output (LiDCO, LiDCO Ltd, London, UK), thoracic electric impedance tomography (EIT; using PulmoVista[®] 500, by Dräger, Lübeck, Germany), bilateral near-infrared spectroscopy (NIRS; using Niro-200NX, Hamamatsu, Tokyo, Japan) and transcutaneous pCO_2 und pO_2 (tcpO₂) measurement (both via TCM5, Radiometer, Thalwil, Switzerland). After that, we will start bag-mask pre-oxygenation until end-tidal O_2 has reached 90%. Patients will receive a fentanyl bolus of 2µg/kg, and induction of anaesthesia will begin using a target-controlled infusion (TCI, Schnider model using syramed[®] µSP6000, Arcomed AG, Regensdorf, Switzerland) for propofol with a target concentration of 3.0 µg/ml and TCI for remifentanil (Minto model using syramed[®] µSP6000, Arcomed AG, Regensdorf, Switzerland) with a target concentration of 2.0 ng/ml. We will administer rocuronium 0.9mg/kg to achieve neuromuscular blockage. After induction, general anaesthesia will be confirmed by absent end-tidal CO₂ readings, unconsciousness and Narcotrend[®]-values in the target range of 40 to 60 under bag-mask ventilation.

Once mask ventilation with a tidal volume of 6ml/kg and a respiratory rate of 12/min is
successful, the previously sealed envelope containing the randomisation will be opened
and the intervention will be prepared according to group allocation.

> For safety reasons the experiment will be discontinued if mask ventilation is impossible even after full neuromuscular blockage and placement of an oropharyngeal tube. The anaesthetist in charge would then intubate the trachea and no study-related measurements would take place.

For all patients who show a cardiovascular reaction (increase of heart rate and blood pressure) to the study procedure (laryngoscopy or jaw thrust), we will titrate remifentanil to effect. Once steady state has set in, we will no longer interfere with remifentanil. Whenever Narcotrend[®] values rise above our target range, propofol will be increased. We will not correct dropping Narcotrend[®] values as this is likely to be caused by increasing CO₂ and therefore an effect we want to measure.

When complete neuromuscular blockage has been confirmed by TOF = 0, we will stop mask ventilation and start the apnoea time. Arterial blood gas will be drawn and analysed at start of apnoea.

If assigned to the control group, the study participant will receive high-flow humidified oxygen at 70l/min via Optiflow™ (Fisher&Paykel, Auckland, NewZealand) throughout the apnoea period while the glottis will be visualised by videolaryngoscopy (MacGrath™ MAC, Medtronic, Dublin, Ireland), thus assuring airway patency. If assigned to one of the intervention groups, one of the senior anaesthesia researchers will apply jaw thrust and one of the following flow rates: 1) high-flow humidified oxygen at 70l/min via Optiflow[™]; 2) medium-flow humidified oxygen at 10l/min (Carbamed digiflow, Switzerland; Aquapak[®] Hudson RCI[®], Teleflex[®], Wayne, Pennsylvania, USA; O2Star[™] nasal cannula curved, Dräger, Lübeck, Germany); or 3) low-flow humidified oxygen at 2l/min (Carbamed digiflow, Switzerland; Aquapak[®] Hudson RCI[®], Teleflex[®], Wayne, Pennsylvania, USA; O2Star[™] nasal cannula curved, Dräger, Lübeck, Germany) (see Figure 1).

Page 13 of 31

BMJ Open

During jaw thrust, upper airway patency will be visually confirmed by a nasopharyngeal fiberscope (EF-N slim, Acutronic, Hirzel, Switzerland).¹⁷ Only if the airway is obstructed, we will insert an oropharyngeal airway tube (Guedel airway, Intersurgical[®], Workingham, Berkshire, UK). We will not assess the degree of opening, as this would not have any direct consequences for the study.

During apnoea time, we will continuously measure invasive arterial blood pressure, pulse oximetry and EKG as part of standard monitoring. Furthermore, we will continuously measure $tcpCO_2$, $tcpO_2$ by applying a probe to the patient's chest, two fingers below the clavicle; depth of anaesthesia (Narcotrend[®]); bilateral brain oxygenation (NIRS); cardiac output by pulse contour analysis; and ventilation distribution changes by thoracic electrical impedance tomography. For this, resulting potential differences are measured, and impedance distribution sampled at 30 Hz will be calculated by an automated linearized Newton-Raphson reconstruction algorithm¹⁸. Relative change in end-expiratory lung impedance (EELI) and measures of ventilation inhomogeneity such as the global inhomogeneity index (GI) will be calculated as described previously, using customised software (Matlab R2013a, The MathWorks Inc., Nattick, MA, USA).^{19 20}

Furthermore, we will take arterial blood samples at the onset of apnoea, one minute after apnoea, and thereafter every two minutes to perform blood gas analysis (total of max. 10 measurements). These blood samples will be analysed for PaO₂, SaO₂, PaCO₂, pH, bicarbonate and potassium.

242 During the induction of anaesthesia, potential hypotension due to the anaesthetic drugs
 243 will be counteracted with a continuous infusion of norepinephrine. Thereafter, steady
 244 state will set in and any change in blood pressure is due to the vasoactive effect of CO₂. As

we want to measure these effects we will no longer interfere with blood pressure, exceptfor persisting hypotension.

The experiment will end when any of the following criteria is met: $SpO_2 < 92\%$, $p_{tc}CO_2 > 10.67$ kPa, pH <7.1, K⁺ >6.0 mmol/l, t = 15 minutes. Thereafter the trachea will be intubated according to the decision of the attending anaesthetists. With that the pre-surgical part of the study will end.

Study participants will either be visited on the ward or contacted by phone on the first postoperative day in the morning to ask about the quality of recovery.^{21 22} This includes ability to breathe easily, feeling rested, being able to enjoy food, getting support from hospital doctors and nurses as well as any pain, nausea and vomiting, feeling worried or anxious, or feeling sad or depressed. Furthermore, we ask specifically for pain localised in the patient's throat, mandibular joint, or head; nasal dryness; lip injuries; dental damages; other injuries; or any other discomfort or complication. For assessing the severity of complications, we will use a (modified) visual analogue scale (VAS), where o is no pain (or discomfort), and 10 is maximum pain (or discomfort). We will also assess all injuries obtained during airway management and the study period. After this interview, no further data will be acquired, and the study ends.

Objectives

263 Primary outcome

Our primary outcome is to measure the increase of mean transcutaneous CO₂ over time in
kPa/min and to determine the influence of nasal oxygen flow rate (70l/min, 10l/min and
266 2l/min) and the presence of an open mouth (jaw thrust vs. continuous laryngoscopy).

60 267 Secondary outcomes

Page 15 of 31

BMJ Open

Secondary outcomes are: lowest O₂ saturation; changes in end-expiratory lung impedance, which will help quantify the degree of atelectasis after intubation, and influence of increasing CO₂ on: cardiac output and systemic blood pressure, invasive arterial blood pressure, pulse oximetry and ECG as part of standard monitoring, tcpO₂, depth of anaesthesia, bilateral brain oxygenation (NIRS), arterial blood gas analysis (PaO₂, SaO₂, PaCO₂, pH, bicarbonate and potassium). Furthermore: postoperative pain, nausea and vomiting, feeling worried or anxious, or feeling sad or depressed, injurie or any other discomfort or complication.

Statistical plan

Distribution of data will be checked for normality using qq-plots and the Shapiro-Wilks analysis using Stata (StataCorp LLC, College Station, Texas, USA). For our primary outcome parameter, the rise of PtcCO₂, we will use a linear mixed model using groups and minutes. Normal distributed data will be presented as means and standard deviation, otherwise median and interquartile range will be used. Proportions will be presented as numbers and percentage. Analytical statistics uses Mann-Whitney u-test and Student's t-test, according distribution, or ANOVA and Kruskal-Wallis for multiple group comparisons. Each of the groups will a-priory be compared to the control group independently, therefore no correction for multiple comparisons will have to be used. Other multiple comparisons and any subgroup-analyses will be performed using appropriate correction factors. Proportions will be compared by Chi-square test or Fisher's exact test. As sensitivity analyses, we will do regression analyses, using mixed effects linear regressions. All statistical analyses will be performed on an intention-to-treat basis. We will also include a per-protocol analysis in order to minimize bias for the standard treatment group. If the results of such an analysis are consistent with those from the intention-to-treat approach

2		
3 4	292	and if both
5 6 7	293	is strengthe
7 8 9 10	294	Patient in
11 12	295	No patients
13 14 15	296	
16 17 18		
19 20		
21 22 23		
24 25		
26 27 28		
29 30 31		
32 33		
34 35 36		
37 38		
39 40 41		
42 43 44		
45 46		
47 48 49		
50 51		
52 53 54		
55 56 57		
58 59		
60		

lie below the non-inferiority threshold, the inference regarding non-inferiority

ened. A p < 0.05 will be considered as statistically significant.

volvement

or patient representatives were involved in the design of this trial.

BMJ Open

2	
3 4 5	297
6 7	298
8 9 10	299
11 12	300
13 14 15	301
16 17	302
18 19 20	303
21 22	304
23 24 25	305
26 27	306
28 29 30	307
31 32	308
33 34 35	309
35 36 37	310
38 39	311
40 41 42	312
43 44	313
45 46 47	314
48 49	315
50 51 52	316
53 54	317
55 56 57	318
57 58 59	319
60	320

ETHICS AND DISSEMINATION

This study will be conducted in accordance with the ICH GCP Note for Guidance on Good 98 Clinical Practise and local regulations with approval of the Cantonal Ethics Committee Bern, 99 following the Swiss law for human research.²³ The ethics committee already approved our 00 study (ID 2018-00293), including the safety end points. A drop in O_2 -saturation < 92% allows 301 for timely securing the airway without risk of hypoxic damages of the study participants. 302 Furthermore, prior publications suggest it to be very likely that all groups maintain stable 303 O_2 -saturation throughout the maximum approved time of 15 minutes.^{24 25} Rising CO₂ levels 304 could lead to acidosis; therefore, patients vulnerable to hypercarbia are excluded 305 preliminarily (see section study population). As routinely stated in the protocol for the 06 ethics committee, the study can be terminated prematurely if new evidence suggesting 307 severe disadvantage or increased morbidity will arise during the study period. 08

309 All study data will be directly recorded in the CRF, which should also be considered being

 $_{6}^{\circ}$ 310 source data. These data will be transferred into the departmental research

⁸ 311 documentation system – LabKey (LabKey Software, Seattle, WA, USA, version 14.3). All

312 study data will be archived for a minimum of 10 years after study termination or

³ 313 premature termination of the clinical trial.

⁴⁵
 ⁴⁶
 ⁴⁷
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁵⁰
 ⁵⁰
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵²
 ⁵³
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁴
 ⁵⁵
 ⁵⁴
 ⁵⁵
 ⁵⁴
 ⁵⁵
 ⁵⁵
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁵
 ⁵⁵
 ⁵⁵
 ⁵⁵
 ⁵⁵
 <li

A study nurse otherwise not involved in the study will be in charge of data monitoring and
auditing after every 20 patients.

⁰ 320 Important modifications to the protocol will have to reported to the ethics committee.

> Both, the principal investigator and sponsor investigator will have access to the final trial data set. Other researchers may be granted access to the dataset to answer scientific questions.

> Results will be presented at national and international scientific meetings and will be published in a peer-reviewed medical journal.

Informed Consent

In order to be eligible for the study, all patients have to sign an ethics committee approved informed consent form. All potential risks and benefits will be thoroughly explained by study personnel and the patient will be given enough time to consider his or her study eterezonz participation.

DISCUSSION

Humidified high-flow nasal oxygenation is a widely used therapy in intensive care for both adults and paediatric spontaneously breathing patients. The new use in patients under general anaesthesia has revitalized the old concept of apnoeic oxygenation. Its use in anaesthesiology spreads from oxygenating an awake patient, to pre-oxygenation, as well as to apnoeic oxygenation during rapid-sequence intubation (RSI), or during micro laryngoscopy, and bronchoscopy. More and more applications for humidified HFNO or THRIVE are emerging and they show great potential.

However, there is only limited evidence explaining physiologic changes during HFNO, especially the proposed mechanism of CO_2 elimination by a ventilatory effect in anaesthetised patients. It remains unknown how different flow rates affect CO_2 clearance and if a minimal flow rate (of 2l/min) is able to maintain oxygenation over 15 minutes. There are a few studies suggesting lower flow rates could also be effective.^{24 25} However, no prospective study compared high flow to low flow so far; and it has not yet been determined how flow rate influences CO_2 clearance. As high CO_2 levels have a multitude of effects, such as pulmonic arterial vasoconstriction, acidosis, and hyperkalaemia, a better understanding of CO_2 clearance could lead to the definition of contraindications or safety measurements for humified HFNO/THRIVE, especially for longer apnoea periods (e.g. during micro laryngoscopy).

351 It is not known, if changes of thoracic electric impedance tomography in anaesthetised
 352 patients are similar to those in awake patients.²⁶ For example, it is already known that end 353 expiratory lung impedance (EELI) is increased in awake patients. This is probably due to a
 354 higher pharyngeal pressure observed in patients with HFNO who breath spontaneously.
 355 The effect has never been evaluated in anaesthetised patients.^{27 28}

Also, haemodynamic changes during apnoeic oxygenation and under increasing $PaCO_2$ have not yet been investigated rigorously. We only found studies describing increased PaCO₂ and its influence on cardiac output and brain perfusion in awake patients and healthy volunteers^{9 10 29}. It is very likely that anaesthetised patients have a different reaction due to the vasodilatory effect of most anaesthetic drugs, which could very easily overweigh the vasoconstrictive effects of increased CO₂ levels.

Overall, knowledge of the underlying physiological mechanisms during HFNO in anaesthetised patients is still very limited. This study investigates under rigorously controlled circumstances the concept of humidified HFNO on prolonged apnoea time, presumably without desaturation. With our findings, we hope to improve airway management safety as this study enables the medical community to better understand the physiology behind apnoeic oxygenation and the influence of different nasal flow rates on CO₂ clearance. Our study's extensive setup also allows us to measure the effects of increased CO₂ on cerebral perfusion and cardiac output.

If low-flow oxygen administration with standard nasal cannula is non-inferior compared to high-flow humidified HFNO, it could have direct clinical impact. Oxygen and standard nasal cannula are ubiquitously available and it will be hard to argue against apnoeic oxygenation during routine intubation. Especially for rapid sequence intubation (RSI) and other emergency airway procedures, apnoeic oxygenation may be - and perhaps should be -performed using a standard nasal cannula at a low flow rate.³⁰ For patients at risk of desaturation, this has the potential to reduce complication of hypoxia and therefore will improve patient safety with little additional resources.

57 378 Due to the design of this trial, we will not be able to determine the influence of 59 379 pathophysiologic alterations of patients' underlying diseases, as we exclude severely ill Page 21 of 31

1 2 **BMJ** Open

3 4	380
5 6 7	381
7 8 9	382
10 11	383
12 13 14	384
15 16	385
17 18 19	386
20 21	387
22 23 24	388
25 26	389
27 28	390
29 30 31	391
32 33	392
34 35 36	393
37 38	394
39 40 41	395
42 43	
44 45	
46 47 48	
49 50	
51 52 53	
55 55	
56 57	
58 59 60	

patients from this study for safety reasons. Furthermore, although we include 100 patients
in this trial, we may still end up with an uneven distribution of risk factors. To minimize this
bias, we stratify according to BMI and smoking status, as we assume these factors to be
the most influential on our primary outcome.

384 Provided all groups have a similar CO₂ clearance, the inclusion of 100 patients will provide
 385 a solid foundation to detect even smaller haemodynamic, thoracic EIT, or EEG changes.
 386 Nevertheless, all results are to be considered for anaesthetised patients using propofol and
 387 remifentanil. We do not know how other anaesthetic drugs would potentially interfere
 388 with patients' physiology.

All this leads us to the conclusion that this study will be able to provide highly interesting results and urgently needed evidence on physiologic changes during HFNO and CO₂ increase in adult patients during apnoeic oxygenation. We will find an answer to our question, if the application of nasal oxygen at 70l/min, 10l/min or 2l/min using jaw thrust is non-inferior compared to nasal oxygen at 70l/min using continuous laryngoscopy in regard

394 to CO_2 clearance in anaesthetised patients.

AUTHOR CONTRIBUTIONS

397 RG and LT conceived the study. RG, LT, FS, HK, and TR wrote the study protocol. RG, LT, FS 398 and HK developed the practical approach to measurement and recruitment. TRiv was 399 involved in the protocol development and manuscript review. LT designed the statistical 400 analysis plan for the protocol. All authors critically reviewed this manuscript and agree to 401 its final form.

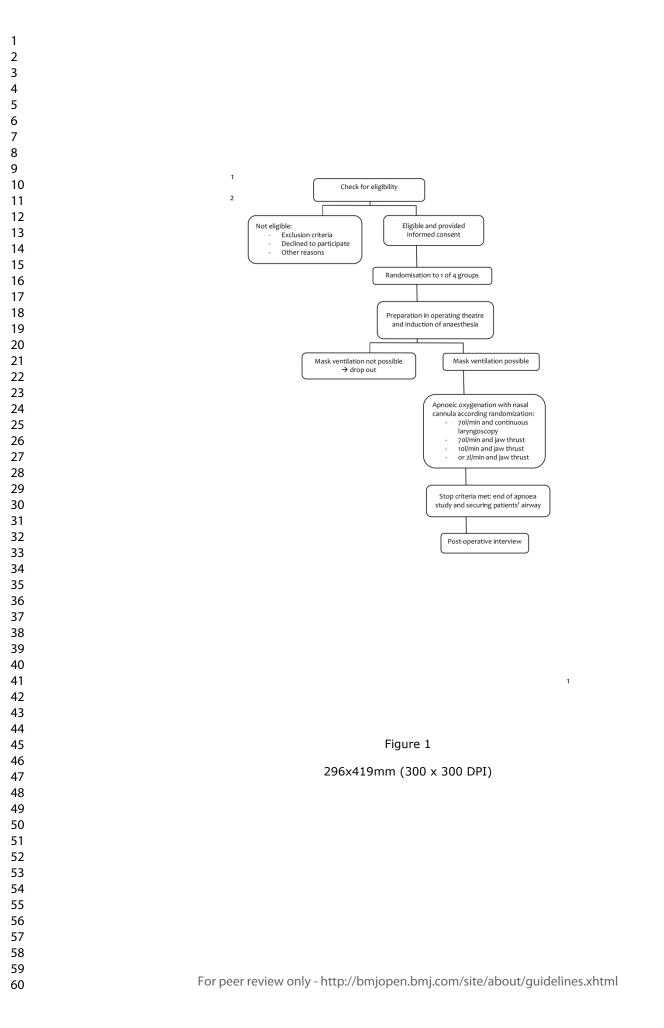
FUNDING STATEMENT

This research is funded by a departmental research grant assigned to LT. For this study, Fisher & Paykel (Auckland, New Zealand) provide all necessary breathing circuits and nasal cannulas without costs. Fisher & Paykel are neither involved in the design nor have they any influence on the data analysis and the presentation of results or their publication nor do the study authors have any financial or any other collaborations with Fisher & Paykel.

408 COMPETING INTERESTS

409 None of the authors have any financial or any other competing interests concerning this

410 study.


411 FIGURE LEGENDS

412 Figure 1: Study flow chart

REFERENCES

6 7	414	1. Volhard F. Über künstliche Atmung durch Ventilation der Trachea und eine einfache
8 9	415 416	Vorrichtung zur rhythmischen künstlichen Atmung. Münchener Medizinische Wochenschrift 1908;55(5)
10	417	2. Meltzer SJ, Auer J. Continuous Respiration without Respiratory Movements. J Exp Med
11	417 418	1909;11(4):622-5.
12	419	3. Bartlett RG, Jr., Brubach HF, Specht H. Demonstration of aventilatory mass flow during
13 14	419	ventilation and apnea in man. J Appl Physiol 1959;14(1):97-101. doi:
15	421	10.1152/jappl.1959.14.1.97
16	422	4. Eger EI, Severinghaus JW. The rate of rise of PaCO ₂ in the apneic anesthetized patient.
17	423	Anesthesiology 1961;22:419-25.
18 19	424	5. Patel A, Nouraei SA. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange
20	425	(THRIVE): a physiological method of increasing apnoea time in patients with
21	426	difficult airways. Anaesthesia 2015;70(3):323-9. doi: 10.1111/anae.12923
22	427	6. Gustafsson IM, Lodenius A, Tunelli J, et al. Apnoeic oxygenation in adults under general
23 24	428	anaesthesia using Transnasal Humidified Rapid-Insufflation Ventilatory Exchange
24 25	429	(THRIVE) - a physiological study. Br J Anaesth 2017;118(4):610-17. doi:
26	430	10.1093/bja/aexo36
27	431	7. Lyons C, Callaghan M. Apnoeic oxygenation with high-flow nasal oxygen for laryngeal
28	432	surgery: a case series. Anaesthesia 2017;72(11):1379-87. doi: 10.1111/anae.14036
29 30	433	8. Riva T, Seiler S, Stucki F, et al. High-flow nasal cannula therapy and apnea time in
31	434	laryngeal surgery. Paediatr Anaesth 2016;26(12):1206-08. doi: 10.1111/pan.12992
32	435	9. Bain AR, Ainslie PN, Hoiland RL, et al. Cerebral oxidative metabolism is decreased with
33	436	extreme apnoea in humans; impact of hypercapnia. J Physiol 2016;594(18):5317-28.
34 35	437	doi: 10.1113/JP272404
35 36	438	10. Sechzer PH, Egbert LD, Linde HW, et al. Effect of carbon dioxide inhalation on arterial
37	439	pressure, ECG and plasma catecholamines and 17-OH corticosteroids in normal
38	440	man. J Appl Physiol 1960;15:454-8. doi: 10.1152/jappl.1960.15.3.454
39	441	11. Frumin MJ, Epstein RM, Cohen G. Apneic oxygenation in man. Anesthesiology
40 41	442	1959;20:789-98.
42	443	12. Holmdahl MH. Pulmonary uptake of oxygen, acid-base metabolism, and circulation
43	444	during prolonged apnoea. Acta Chir Scand Suppl 1956;212:1-128. [published Online
44	445	First: 1956/01/01]
45	446	13. Stock MC, Schisler JQ, McSweeney TD. The PaCO2 rate of rise in anesthetized patients
46 47	447	with airway obstruction. J Clin Anesth 1989;1(5):328-32. [published Online First:
48	448	1989/01/01]
49	449	14. Riva T, Pedersen TH, Seiler S, et al. Transnasal humidified rapid insufflation ventilatory
50	450	exchange for oxygenation of children during apnoea: a prospective randomised
51	451	controlled trial. Br J Anaesth 2018;120(3):592-99. doi: 10.1016/j.bja.2017.12.017
52 53	452	[published Online First: 2018/02/18]
55 54	453	15. Humphreys S, Lee-Archer P, Reyne G, et al. Transnasal humidified rapid-insufflation
55	454	ventilatory exchange (THRIVE) in children: a randomized controlled trial. Br J
56	455	Anaesth 2017;118(2):232-38. doi: 10.1093/bja/aew401 [published Online First:
57 50	456	2017/01/20]
58 59	457	16. M. Habben FA. Blutgasanalyse [Web Page]. 2018 [Available from:
60	458	http://flexikon.doccheck.com/de/Blutgasanalyse accessed 19.1. 2018.

1 2		
3	450	47 Hours I. Hours M.R. Alturkous II. at al. Effectiveness of the jow thrust monouver in
4	459	17. Uzun L, Ugur MB, Altunkaya H, et al. Effectiveness of the jaw-thrust maneuver in
5	460	opening the airway: a flexible fiberoptic endoscopic study. ORL J Otorhinolaryngol
6	461	Relat Spec 2005;67(1):39-44. doi: 10.1159/000084304
7	462	18. Yorkey TJ, Webster JG, Tompkins WJ. Comparing reconstruction algorithms for
8 9	463	electrical impedance tomography. IEEE transactions on bio-medical engineering
9 10	464	1987;34(11):843-52.
11	465	19. Schnidrig S, Casaulta C, Schibler A, et al. Influence of end-expiratory level and tidal
12	466	volume on gravitational ventilation distribution during tidal breathing in healthy
13	467	adults. European journal of applied physiology 2013;113(3):591-8.
14	468	20. Wettstein M, Radlinger L, Riedel T. Effect of different breathing aids on ventilation
15 16	469	distribution in adults with cystic fibrosis. PloS one 2014;9(9):e106591.
17	470	21. Myles PS, Boney O, Botti M, et al. Systematic review and consensus definitions for the
18	471	Standardised Endpoints in Perioperative Medicine (StEP) initiative: patient
19	472	comfort. British Journal of Anaesthesia 2018;120(4):705-11. doi:
20	473	10.1016/j.bja.2017.12.037
21	474	22. Theiler L, Hermann K, Schoettker P, et al. SWIVITSwiss video-intubation trial
22 23	475	evaluating video-laryngoscopes in a simulated difficult airway scenario: study
24	476	protocol for a multicenter prospective randomized controlled trial in Switzerland.
25	477	Trials 2013;14:94. doi: 10.1186/1745-6215-14-94 [published Online First: 2013/04/06]
26	478	23. Bundesverfassung der Schweizerischen Eidgenossenschaft, Artikel 118b, 2010.
27	479	24. Teller LE, Alexander CM, Frumin MJ, et al. Pharyngeal insufflation of oxygen prevents
28	479	arterial desaturation during apnea. Anesthesiology 1988;69(6):980-2.
29 30	480 481	
31	-	25. Heard A, Toner AJ, Evans JR, et al. Apneic Oxygenation During Prolonged
32	482	Laryngoscopy in Obese Patients: A Randomized, Controlled Trial of Buccal RAE
33	483	Tube Oxygen Administration. Anesth Analg 2017;124(4):1162-67. doi:
34	484	10.1213/ANE.0000000001564
35 36	485	26. Parke RL, Bloch A, McGuinness SP. Effect of Very-High-Flow Nasal Therapy on Airway
37	486	Pressure and End-Expiratory Lung Impedance in Healthy Volunteers. Respiratory
38	487	Care 2015;60(10):1397-403. doi: 10.4187/respcare.04028
39	488	27. Groves N, Tobin A. High flow nasal oxygen generates positive airway pressure in adult
40	489	volunteers. Aust Crit Care 2007;20(4):126-31. doi: 10.1016/j.aucc.2007.08.001
41 42	490	28. Parke R, McGuinness S, Eccleston M. Nasal high-flow therapy delivers low level
42 43	491	positive airway pressure. Br J Anaesth 2009;103(6):886-90. doi: 10.1093/bja/aep280
44	492	29. Price HL. Effects of carbon dioxide on the cardiovascular system. Anesthesiology
45	493	1960;21:652-63.
46	494	30. Weingart SD, Levitan RM. Preoxygenation and prevention of desaturation during
47	495	emergency airway management. Ann Emerg Med 2012;59(3):165-75 e1. doi:
48 49	496	10.1016/j.annemergmed.2011.10.002 [published Online First: 2011/11/05]
50	497	
51		
52		
53		
54 57		
55 56		
57		
58		
50		

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 			Reporting Item	Page Number
	Title	#1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
	Trial registration	#2a	Trial identifier and registry name. If not yet registered, name of intended registry	4
	Trial registration: data set	#2b	All items from the World Health Organization Trial Registration Data Set <i>Explanation: different registry used</i>	n/a
	Protocol version	#3	Date and version identifier V4.5, February 2019	
29 30 31	Funding	#4	Sources and types of financial, material, and other support	22
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Roles and responsibilities: contributorship	#5a	Names, affiliations, and roles of protocol contributors	1
	Roles and responsibilities: sponsor contact information	#5b	Name and contact information for the trial sponsor	1
	Roles and responsibilities: sponsor and funder	#5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	22
53 54 55 56 57 58 59	Roles and responsibilities: committees	#5d	<i>Note: investigator-driven study</i> Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data	n/a
60		For peer	review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 27	of 31
---------	-------

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35			management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee) <i>Explanation: Single-center study</i>	
	Background and rationale	#6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	6
	Background and rationale: choice of comparators	#6b	Explanation for choice of comparators	7
	Objectives	#7	Specific objectives or hypotheses	6, 7
	Trial design	#8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, non-inferiority, exploratory)	8
	Study setting	#9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	8
	Eligibility criteria	#10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	8-10
36 37 38 39	Interventions: description	#11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	11-14
40 41 42 43 44	Interventions: modifications	#11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving / worsening disease)	14
45 46 47 48 49	Interventions: adherance	#11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return; laboratory tests)	n/a
50 51 52 53			<i>Explanation: no compliance of patient necessary. Short duration of intervention (15 min)</i>	
54 55 56 57 58	Interventions: concomitant care	#11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	n/a
59 60		For peer r	review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3			Explanation: short duration of trial (15 min), no additional interventions necessary	
4 5 7 8 9 10 11 12 13 14 15 16 17 18	Outcomes	#12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	15
	Participant timeline	#13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	Figure 1
19 20 21 22 23 24	Sample size	#14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	10
25 26 27 28	Recruitment	#15	Strategies for achieving adequate participant enrolment to reach target sample size	8,9
29 30 31 32 33 34 35 36 37	Allocation: sequence generation	#16a	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	10
38 39 40 41 42 43 44	Allocation concealment mechanism	#16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	10
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Allocation: implementation	#16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	10
	Blinding (masking)	#17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	8
	Blinding (masking): emergency unblinding	#17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	n/a
60		For peer 1	review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2			Explanation: blinding not possible	
3 4 5 6 7 8 9 10 11	Data collection plan	#18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	11-14
12 13 14 15 16 17	Data collection plan: retention	#18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	11-14
18 19 20 21 22 23 24	Data management	#19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	17-18
25 26 27 28 29	Statistics: outcomes	#20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	15, 16
30 31 32 33	Statistics: additional analyses	#20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	15, 16
34 35 36 37 38	Statistics: analysis population and missing data	#20c	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	15, 16
 39 40 41 42 43 44 45 46 47 48 40 	Data monitoring: formal committee	#21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	17
49 50 51 52 53	Data monitoring: interim analysis	#21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	17, 18
54 55 56 57 58 59	Harms	#22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	17, 18
60		For peer I	review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 30 of 31

BMJ Open

1 2 3 4 5	Auditing	#23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	17, 18
6 7	Research ethics	#24	Plans for seeking research ethics committee / institutional review	17
8 9	approval		board (REC / IRB) approval	
10 11 12 13 14 15 16	Protocol amendments	#25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC / IRBs, trial participants, trial registries, journals, regulators)	17, 18
17 18 19	Consent or assent	#26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	18
20 21 22 23	Consent or assent: ancillary studies	#26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	n/a
24 25 26 27 28 20	Confidentiality	#27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	n/a
29 30 31 32	Declaration of interests	#28	Financial and other competing interests for principal investigators for the overall trial and each study site	22
 33 34 35 36 37 38 	Data access	#29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	17, 18
38 39 40 41 42 43	Ancillary and post trial care	#30	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation <i>Explanation: no provisions</i>	n/a
44 45	Dissemination policy:	#31a	Plans for investigators and sponsor to communicate trial results to	18
46 47 48 49 50 51 52	trial results	11910	participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	10
53 54	Dissemination policy:	#31b	Authorship eligibility guidelines and any intended use of	n/a
55 56	authorship		professional writers	
57 58			Explanation: no professional writers	
59 60	F	or peer r	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

ruge J				
1 2 3	Dissemination policy: reproducible research	#31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	n/a
4 5			Explanation: none	
6 7 8 9	Informed consent materials	#32	Model consent form and other related documentation given to participants and authorised surrogates	n/a
10 11 12 13			Explanation: only available in German. May be obtained upon request by the author	
14 15 16 17 18 19 20	Biological specimens	#33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable <i>Explanation: not applicable</i>	n/a
21 22			Explanation. not applicable	
23			ated under the terms of the Creative Commons Attribution License CC-	
25			ed on 30. May 2018 using <u>http://www.goodreports.org/</u> , a tool made by	y the
26	EQUATOR Network in	collabo	bration with <u>Penelope.ai</u>	
27 28				
29				
30 31				
32				
33 34				
35				
36				
37 38				
39				
40				
41 42				
43				
44				
45 46				
40				
48				
49 50				
50 51				
52				