

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Classification tree model of the personal economic burden of dementia care by related factors of both people with dementia and caregivers

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026733
Article Type:	Research
Date Submitted by the Author:	17-Sep-2018
Complete List of Authors:	Nakabe, Takayo; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Uematsu, Hironori; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Wimo, Anders; Karolinska Institute, KI Alzheimer's Disease Research Center (ADRC) Imanaka, Yuichi; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management
Keywords:	Informal care, RUD, Cost, Classification, Japan
	·

SCHOLARONE™ Manuscripts

- Classification tree model of the personal economic burden of
- dementia care by related factors of both people with dementia and
- caregivers

- Takayo Nakabe^a, Noriko Sasaki^a, Hironori Uematsu^a, Susumu Kunisawa^a, Anders
- Wimo^b, Yuichi Imanaka^a
- ^a Department of Healthcare Economics and Quality Management, Graduate School of
- Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
- ^b Aging Research Centre, Department of Neurobiology, Care Sciences and Society
- (NVS), Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Corresponding author:
- Yuichi Imanaka, Professor

 Department of Healthcare Economics and Quality Management,
- Graduate School of Medicine, Kyoto University
- Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- E-mail: imanaka-y@umin.net
- Tel: +81-75-753-4454 Fax: +81-75-753-4455
- Word counts: 3750 words

19 Abstract

Objective:

- 21 The purpose of this study was to clarify the micro-level determinants of the economic
- burden of dementia care at home in community settings by classifying them into
- subgroups of factors related to people with dementia and their caregivers.

24 Methods

- A cross-sectional online survey was conducted from March 7 to March 14, 2016. For
- 26 the calculation of informal care costs, the average wage stratified by sex and age group
- was used as the opportunity cost. We conducted a chi-square automatic interaction
- detection analysis to identify the factors related to each cost divided into sub categories.

29 Results

- 30 In the resultant classifications, informal care cost was mainly related to caregivers'
- 31 employment status. When caregivers acquired family care leave, informal care costs
- 32 were the highest. On the other hand, out-of-pocket payments for long-term care were
- 33 related to care-need levels and family economic status. ADL and IADL functions such
- as bathing, toileting, and cleaning were related to all costs.

Conclusion

- 36 This study clarified the difference in dementia care costs between classified
- 37 subgroups by considering the combination of the situations of both people with

dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situations of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-need levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

Strengths and limitations of this study

- This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers.
- The chi-square automatic interaction detection dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.
- The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company.
- We only assessed objective burden of dementia care such as informal care time or costs, then we didn't consider the subjective burden of care and depressive symptoms.

1. Introduction

In the aging society of Japan, it is estimated that there are approximately 4.7 million people living with dementia and that there will be approximately 7 million people with dementia in 2025 [1]. Given that it is also estimated that the total number of people with dementia throughout the world will double every 20 years [2], we need to reconsider how to prepare for dementia care in the community. Long-term care (LTC) services in Japan used by people with dementia in home care can be classified into three main types: (1) LTC insurance services, (3) LTC services not covered by insurance, and (3) informal care as mutual assistance by family members. When a person with dementia uses the LTC insurance service, the user bears 10% or 20% of the service expenses as out-of-pocket payments depending on the person's income (Article 49-2 of the Long-Term Care Insurance Act). Aside from such copayments, when LTC services not covered by insurance or exceeding the LTC insurance limit amount are used, people must pay the full amount. Furthermore, it has been pointed out that informal care is an important component of home care, yet it places a burden on caregivers [3,4]. Nevertheless, given the estimates of the societal costs of dementia care throughout the world, the impact of informal care is essential [5,6].

The Japanese government recommends policies to shift to patient-centered and

home-centered care to reduce the fiscal burden of the insurance system on community-based integrated systems. While micro level of impact of dementia care has not been insufficiently understood[7], to construct a sustainable dementia care system, we clarified the personal economic burden of dementia care for different residence types and demonstrated that the cost at home in a community setting was equal to or higher than in various institutions[8]. Sustainable dementia care systems should be provided not only to benefit the government or insurance system but also to benefit people with dementia and their caregivers. Furthermore, although there are increasing dementia care costs related to the severity of dementia [9-12], it can be seen that the cost of dementia care increases through the interaction of characteristics or situations of people with dementia and their caregivers. Given this interaction, it is necessary to understand the actual conditions by classifying cases where the greatest economic burdens in dementia care are felt.

Therefore, the purpose of this study is to clarify the micro-level determinants of the economic burden of dementia care at home in community settings by classifying them into subgroups of factors related to people with dementia and their caregivers.

2. Methods

This study was a cross-sectional study, based on a self-rated, web-based questionnaire

97 survey. The economic burden of dementia care in this study is roughly divided into

informal care costs as opportunity costs and out-of-pocket payments that people actually

99 made.

2.1. Web-based survey for data collection on people with dementia and their caregivers

In this cross-sectional study, we conducted a web-based questionnaire survey from

March 3 to March 14, 2016 in cooperation with a commercial research company

(Automatic Internet Research System, Macromill, Inc., Japan). Potential participants

fulfilled the following criteria: (1) aged 30 years or older, (2) non-professional caregiver

of someone with dementia, (3) caring for only one person with dementia, and (4) having

no conflicts of interest with advertising or marketing research entities. A total of 3,600

participants were recruited from the research company's registrants and divided into

different age groups (850 participants each in the groups aged in 30's, 40's, 50's, and

60's; 200 participants in the group aged ≥70 years). We excluded caregivers under 29

years of age because, in Japan, they are estimated to represent only 2% of all caregivers

111 [13].

2.2. Questionnaire

113 Resource Utilization in Dementia (RUD) [15, 16] is a widely used tool to collect data

about resource use in persons with dementia and their caregivers [15]. RUD is available

in more than 60 languages and it is widely used throughout the world. In this study, we used RUD (Japanese version) items related to the characteristics of people with dementia and their caregivers, informal care time, employed situation of caregivers, residential types of people with dementia, and resource use of nursing care services. We added items related to LTC services and residential types. The questionnaire components were divided into four categories: (1) characteristics of people with dementia, (2) caregivers' situations (e.g., employment and cohabitation status), (3) informal care duration and (4) frequency of utilization of LTC services.

In this project, we could not get information about severity of dementia data because it was regarded as too difficult for caregivers to estimate that. However, we asked for substantial information about care-needs levels. Care needs reflect function, which is a stronger explanatory factor for costs than cognition [14], Care-needs levels (Support-needs levels 1-2, Care-needs levels 1-5) are determined using an evidence-based computer algorithm combined with an expert panel to indicate the amount of care required by each person while taking into consideration their symptoms and functional capability. This algorithm was estimated from the data on how much LTC services were required in 48 hours for more than 3,000 elderly people. High care-needs levels indicate increasing dependency and requirement for LTC services [15].

Care-need levels also affect the base amount of the maximum payment for LTC services allowance categories covered by insurance.

2.3. Informal care time

In the questionnaire, informal care time was divided in three domains; support for Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL) and Supervision [16]. We asked for the mean caregiving time per day and mean caregiving days per week in the past 30 days. We then multiplied the mean daily caregiving time and caregiving days per week to calculate both weekly and monthly informal care time. Supervision time was excluded in calculating informal care time and costs because supervision could be done simultaneously when caregiving for ADL and IADL functions, or in other housekeeping for people without dementia and other family members.

145 2.4. Cost estimation

In this study, we identified three costs as follows: informal care costs, out-of-pocket payments for LTC services covered by insurance (copayments), and out-of-pocket payments for LTC services not covered by insurance. To calculate the informal care costs, there are two methods that are frequently used: the "opportunity cost" and "replacement cost" approaches [17–19]. With the opportunity cost approach it is

assumed that there is an alternative use of caregiving time (such as paid work) and thus estimates the costs due to this lost opportunity, whereas the replacement cost approach assumes that informal care services can be valued similarly to home care services provided by professional caregivers. Even though many previous studies on the economic valuation of informal care have used the replacement cost approach [18], the 'opportunity cost approach' is recommended by the developers of RUD for estimating informal care costs [2,5,20]. We used the opportunity cost approach to assess informal care time as forgone wages for caregivers [2,5,9]. We used caregivers' monthly mean wages stratified by sex and age to value informal care. We assessed informal care costs for caregivers who were not working or who were over 65 years of age at 35% of the mean wage of employed caregivers [21–24]. A maximum daily informal care time of 16 hours was assumed, in order to allow for other activities such as cooking for other family members and sleep [12,25,26]. Caregivers were asked to state their contribution to the total informal care in 5-point scale of 20%. In order to treat all caregivers as primary caregivers and estimate the costs associated with all informal care provided to a patient, we adjusted the informal care time by dividing its time by the median of these contribution levels, according to RUD instructions. This adjustment of informal care time was done only when calculating the informal care costs.

Out-of-pocket payments for LTC services both covered and not covered by insurance were included in the questionnaire. We asked for these out-of-pocket payments through categories that were easy to answer (no payments, under JPY9,999, JPY10,000–24,999, JPY25,000–49,999, JPY50,000–74,999, JPY75,000–99,999, JPY100,000–124,999, JPY125,000–149,999, JPY150,000–299,999, JPY300,000–499,999, and over JPY500,000). We adjusted the answers by capping the upper limit of the limit amount depending on each care-needs level if the answers were over it. These costs were substituted by a median of each category, and we calculated the weighted average as the following formula: $\frac{\sum_{i=0}^{k} (median\ of\ category_i)*n_i}{\sum n}$

- All costs were converted from Japanese yen to US dollars using the purchasing power parity rate in 2016 (¥102 = \$1) provided by the Organization for Economic Cooperation and Development.
- 181 2.5. Inclusion and exclusion criteria
- With respondents, we only focused on community settings for people with dementia who lived in their own home. We excluded respondents based on the following criteria: (1) people with dementia who were hospitalized or lived in nursing home, (2) lack of data about out-of-pocket payments for LTC services or care-needs levels, (3) contradictions in relationships between caregivers and people with dementia, and (4)

contradictions in care time (over 24 hours). When the age difference was less than 15 years and the person with dementia was a parent or child (not in-law), these cases were identified as contradictions.

2.6. Statistical analysis

We conducted descriptive analysis for characteristics of people with dementia and caregivers. We then stratified the informal care time and dementia care costs by the care-needs level and cohabitation to test our hypothesis that high care-needs level or people who lives with caregivers need more informal care time. In this description, we didn't adjusted informal care time by caregivers' contribution rate.

Also, we used chi-square automatic interaction detection (CHAID) analysis to identify the characteristics of people with dementia and caregivers who needed more care services. In CHAID analysis, the dependent variable would be divided into sub-groups by the most explanatory independent variables. These groups could be formed by any possible combination with all independent variables. Especially, we conducted an exhaustive CHAID analysis that repeats the trial until it finds the optimal combination of all independent variables. The CHAID dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures. We set informal care costs, out-of-pocket payments for

LTC services covered by insurance and out-of-pocket payments for LTC services not covered by insurance as dependent variables. Then, we used the characteristics of people with dementia (age, sex, care-need level, dementia types, ADL and IADL functions, and primary disease as the reason for care), the characteristics of caregivers (age, sex, marital status, children, cohabitation with people with dementia, visiting time, relationship to people with dementia, and occupation), and economic factors (the ratio of copayments for healthcare services and family income of caregivers). We treated the ratio of copayments for healthcare services as income proxy variable because this ratio was decided by income of people with dementia. We set the following criteria: tree depth was limited to three levels, no group smaller than 100 was split, no group smaller than 30 was formed, and the p-value for all statistical tests was under 0.05.

- All data were analyzed using IBM SPSS Statistics 23.0 for Windows (SPSS Japan
- Inc., Tokyo, Japan).
- *2.6. Ethical considerations*
- 219 This study was approved by the Ethics committee of Kyoto University Graduate School
- 220 of Medicine (R0487).

- 3.	Res	ults
	1100	ulus

- 3.1. Characteristics of people with dementia and their caregivers
- A total of 3,916 caregivers answered the questionnaire. We focused only on people
- 225 with dementia who lived in their own home (n=2277). However, we excluded the data
- according to the criteria and the final sample comprised 1,383 respondents (Figure 1).
- Table 1 shows the characteristics of people with dementia and their caregivers. More
- than half of the people with dementia were female (66.7%), and the mean age was 81.8
- years. In contrast, more than half of the caregivers were male (61.7%), and the mean
- age was 52.2 years. 1,233 people (89.2%) responded that ADL functions such as meals
- and toilet use could be managed by themselves, while IADL functions such as cleaning
- and shopping could be done by one person in the same way. There were only 788
- people (57.0%) who did the latter by themselves.
- 234 3.2. Informal care time and costs of dementia care
- The mean daily informal care time was 9.36 hours in total. The time for only ADL
- was 4.97 hours and for only IADL was 4.39 hours. On the other hand, monthly informal
- care time (ADL+IADL) was 166.32 hours. Table 2 shows the differences in daily
- 238 informal care time and personal cost of dementia care among the care-need levels. In
- this table, we didn't adjust by contribution rate. Informal care times increased with

care-needs levels, especially in ADL. Out-of-pocket payments for LTC services were less than informal care costs in all of the care-needs levels.

3.3. Classification with classification trees

Figure 2 shows the results of CHAID analysis for informal care costs. Informal care costs were related to caregivers' employment status, cohabitation, age, and care-needs levels or ADL function of people with dementia. When the caregiver acquired family care leave, informal care cost was the highest (node 2). Even if the caregiver did not work, informal care costs were higher with high care-needs levels (node 6-8). The costs for cohabiting caregivers (node 5) were higher than for those not cohabiting (node 4). For those not cohabiting and the person with dementia could not walk without assistance (node 9), informal care costs were higher than for those that could walk (node 10).

Out-of-pocket payments for LTC services covered by insurance were related to care-need levels, ADL or IADL functions, sex (both the people with dementia and caregivers) and caregivers' household incomes (Figure 3). Especially, if the people with dementia could bathe or use the toilet by themselves, out-of-pocket payments would be about 65% lower (nodes 9-10, 15-18). On the other hand, if out-of-pocket payments were not covered by insurance, they were related to caregivers' household incomes,

income proxy variable, ADL or IADL functions of people with dementia, and age of people with dementia (Figure 4).

4. Discussion

In this study, we first demonstrated that informal care time for ADL or IADL functions increased with high care-needs levels as our hypothesis stipulated. Second, we found through classification tree analysis that a combination of characteristics of both people with dementia and their caregivers were related to dementia care costs. Caregivers' employment and cohabitation status were mainly related to informal care costs, and the costs were the highest when caregivers took nursing care leave, which caregivers leave work due to caregiving. Furthermore, when caregivers worked at an occupation and lived separately, or the people with dementia could not walk, the costs doubled. Out-of-pocket payments for LTC services covered by insurance were mainly related to care-need levels and ADL and IADL functions. In case where care was needed for toileting or bathing with low care-needs levels, high out-of-pocket payments were required for LTC services covered by insurance. On the other hand, out-of-pocket payments were related to caregivers' household income levels or income proxy variable. Caregivers with high annual incomes (more than \$117,648 US) made out-of-pocket payments for dementia care of full amounts that were two to five times more than others.

Informal care costs were mainly related to caregivers' characteristics such as employment or cohabitation status in the classification tree, which illustrated related factors by order of precedence. In many previous studies, ADL functions or dementia severity were explained as related factors in regression models [9–12]. Some studies showed caregivers' characteristics such as employment status were related to informal care costs [9,27,28], but few studies considered all of the caregivers' characteristics. Thus, caregiver factors may be as important as factors related to people with dementia are.

Furthermore, we considered the combination of characteristics of both people with dementia and their caregivers. For example, informal care costs doubled when caregivers lived separately and people with dementia could not walk. Also, Figure 1 shows the combination of caregivers without employment, care-need levels, and caregivers' cohabitation. CHAID analysis provided the classification only for related characteristics in the outcome. Such combinations suggest that support should be provided to caregivers who cannot live with people with dementia or caregivers who are not employed.

295 The association between out-of-pocket payments for LTC services covered by

insurance and care-need levels is reasonable because the benefit limit standard amounts for formal care services at home are decided in relation to care-need levels. In addition, when people with dementia had a high care-needs level and their caregiver's household income was high, out-of-pocket payments were high. Because the determination of service usage within the limit amount is a free contract, people with dementia and their caregivers may decide how they use formal care services depending on how much they can pay for services. Even for low care-needs levels, the cost may be high when people with dementia need assistance with bathing or toileting. This was affected by LTC insurance services providing specific substitutions, such as bath assistance.

Similarly, economic variables such as household income and income proxy variable were mainly related to out-of-pocket payments for LTC services not covered by insurance. This is because people must pay the full amount if they use LTC services without insurance. Furthermore, except when caregivers' income was high, the cost did not change significantly due to differences in ADL and IADL functions as it did when covered by insurance. According to the questionnaire responses, people tended to pay for expendables such as diapers, employment of housekeepers, and home repair such as handrail installation as out-of-pocket payments not covered by LTC insurance. These application examples were not really affected by ADL or IADL functions.

From the viewpoint of independent variables, if people with dementia lacked some ADL function, then costs might be higher but in the case of IADL functions this was reversed. There is a possibility that some services are used to support the independent lives of people with dementia. Some people with dementia who can do housework by themselves might move or walk around more, and therefore use more LTC services like commuting for care (day service) or commuting for rehabilitation. Also, care-need levels were not related to out-of-pocket payments not covered by insurance. The above application examples were also not related to care-needs levels. The relationship of cohabitation or employment status was the same as in previous studies [9,27,29].

In creating policy for LTC services in an aging society, we must understand the actual conditions from not only a societal but also a personal perspective. This is true even if from a societal viewpoint, the societal cost of dementia care in the community has been established by other countries to be greater than that in institutional care [30]. Furthermore, we need a wide range of perspectives of stakeholders to discuss the dementia care system, while almost all studies of economic burden of dementia stood on societal or payers' viewpoint[7,17–19]. Then, as a first step, we need to understand what people with dementia and their family caregivers are already spending too much money on. We need to recognize the complicated combination of characteristics

associated with people with dementia and their caregivers. To this point, the results of this classification could be useful to understanding which situation requires more resources depending on cost types. Our results may suggest that a sustainable dementia care system in Japan should be reconstructed from a personal viewpoint.

There are some limitations to this study. First, we conducted a web-based questionnaire survey with caregivers of people with dementia. Traditionally, respondents who use the Internet tend to be male and relatively young, reflecting the general characteristics of web-based research [31,32]. The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company [33]. Certainly, we cannot extrapolate our results to the population as a whole. However, public access to the Internet is common in developed countries these days [34]. Furthermore, this study focused on finding a combination of independent variables related to the dependent variables (informal care cost and financial burden), taking into account the interaction between multiple independent variables. Therefore, in this study, influence due to the difference in sample variable distribution is not considered to be a practical problem. Second, we didn't consider the subjective burden of care and depressive symptoms. These mental burdens are considered to be important factors in explaining the actual state of care costs, and many previous studies in Japan have covered subjective costs [35–37]. In the future, in addition to the burden of time and money, it would be preferable to measure subjective burdens.

Conclusions

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situation of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-needs levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

Footnotes

365 Abbreviations

366 LTC: Long-Term Care

367 RUD: Resource Utilization in Dementia

368	ADL: Activities of Daily Life
369	IADL: Instrumental Activities of Daily Life
370	CHAID analysis: chi-square automatic interaction detection analysis
371	Authors' contribution
372	TN, SN and YI designed the study. All authors discussed for preparing the questionnaire.
373	TN mainly analyzed all data, and HU, SK, AW and YI advised for analysis. TN
374	prepared the draft of the manuscript, then all authors contributed to rewrite it. All
375	authors read and approved the final manuscript.
376	Funding sources
377	This study was financially supported by a Health Sciences Research Grant from the
378	Ministry of Health, Labour and Welfare of Japan (H27-ninntishou-ippan-001), the Japan
379	Foundation for Aging and Health (H27), and a Grant-in-Aid for Scientific Research
380	from the Japan Society for the Promotion of Science ([A]16H02634). The funders had
381	no role in the study design, data collection and analysis, decision to publish, or
382	preparation of the manuscript.
383	Competing interest
384	None declared

385	Consent for publication
386	Not applicable.
387	Ethics approval and consent to participate
388	This study was approved by the Ethics Committee of Kyoto University Graduate School
389	of Medicine (R0487). All participants were volunteers and they finished to answer the
390	questionnaire as substitution of informed consent.
391	Acknowledgements
392	None.
393	Conflicts of interest
394	None.
395	Data sharing statement
396	No additional data are available.
397	

398	Refe	rences
399	1	Ninomiya T, Kiyohara Y, Obara T, et al. A study on future estimation of the
400		elderly population of dementia in Japan Grant-in-Aid for Scientific Research for
401		Ministru of Health, Labor and Welfare in 2014(H26-Tokubetsu-Shitei-036).
402		2014.
403		https://mhlw-grants.niph.go.jp/niph/search/NIDD00.do?resrchNum=201405037A
404	2	Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: the global
405		impact of dementia. 2015.https://www.alz.co.uk/research/world-report-2015
406		(accessed 3 Apr 2016).
407	3	Wimo A, Jönsson L, Fratiglioni L, et al. The societal costs of dementia in
408		Sweden 2012 - relevance and methodological challenges in valuing informal care.
409		Alzheimers Res Ther 2016;8:59. doi:10.1186/s13195-016-0215-9
410	4	Wimo A, Strauss E Von, Nordberg G. Time spent on informal and formal care
411		giving for persons with dementia in Sweden. <i>Heal Po</i> 2002; 61 :255–68.
412	5	Wimo A, Prince M. World Alzheimer Report 2010 THE GLOBAL ECONOMIC
413		IMPACT OF DEMENTIA.
414		2010.https://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive
415		Summary.pdf (accessed 3 Apr 2016).
416	6	Wimo A, Ali G, Wu Y, et al. The worldwide costs of dementia 2015 and

417		comparisons with 2010. Alzheimer's Dement 2016;:1–7.
418		doi:10.1016/j.jalz.2016.07.150
419	7	Jönsson L, Lin P-J, Khachaturian AS. Special topic section on health economics
420		and public policy of Alzheimer's disease. <i>Alzheimer's Dement</i> 2017; 13 :201–4.
421		doi:10.1016/j.jalz.2017.02.004
422	8	Nakabe T, Sasaki N, Uematsu H, et al. The personal cost of dementia care in
423		Japan: A comparative analysis of residence types. Int J Geriatr Psychiatry
424		2018; 33 :1243–52. doi:10.1002/gps.4916
425	9	Ku L-JE, Pai M-C, Shih P-Y. Economic Impact of Dementia by Disease
426		Severity: Exploring the Relationship between Stage of Dementia and Cost of
427		Care in Taiwan. <i>PLoS One</i> 2016; 11 :e0148779.
428		doi:10.1371/journal.pone.0148779
429	10	Leicht H, Heinrich S, Heider D, et al. Net costs of dementia by disease stage.
430		Acta Psychiatr Scand 2011; 124 :384–95. doi:10.1111/j.1600-0447.2011.01741.x
431	11	Leicht H, König H-H, Stuhldreher N, et al. Predictors of Costs in Dementia in a
432		Longitudinal Perspective. PLoS One 2013;8:e70018.
433		doi:10.1371/journal.pone.0070018
434	12	Farré M, Haro JM, Kostov B, et al. Direct and indirect costs and resource use in

435		dementia care: A cross-sectional study in patients living at home. Int J Nurs Stud
436		2016; 55 :39–49.
437	13	Ministry of Internal Affairs and Communications. Survey on Time Use and
438		Leisure Activities in 2016. 2017.
439		http://www.stat.go.jp/data/shakai/2016/pdf/gaiyou2.pdf (accessed 6 Mar 2018).
440	14	Mesterton J, Wimo A, By A, et al. Cross sectional observational study on the
441		societal costs of Alzheimer's disease. Curr Alzheimer Res 2010;7:358-
442		67.http://www.ncbi.nlm.nih.gov/pubmed/19939223 (accessed 11 Jun 2018).
443	15	Lin H-R, Otsubo T, Imanaka Y. Survival analysis of increases in care needs
444		associated with dementia and living alone among older long-term care service
445		users in Japan. BMC Geriatr 2017;17:182. doi:10.1186/s12877-017-0555-8
446	16	Wimo A, Gustavsson A, Jonsson L, et al. Application of resource utilization in
447		dementia (RUD) instrument in a global setting. Alzheimer's Dement 2013;9:429-
448		35. doi:10.1016/j.jalz.2012.06.008
449	17	Mauskopf J, Mucha L. A Review of the Methods Used to Estimate the Cost of
450		Alzheimer's Disease in the United States. Am J Alzheimer's Dis Other
451		Dementias 2011; 26 :298–309. doi:10.1177/1533317511407481
452	18	Quentin W, Sg R, Luppa M, et al. Cost-of-illness studies of dementia: a

453		systematic review focusing on stage dependency of costs. Acta Psychiatr Scand
454		2010; 121 :243–59. doi:10.1111/j.1600-0447.2009.01461.x
455	19	Schaller S, Mauskopf J, Kriza C, et al. The main cost drivers in dementia: a
456		systematic review. Int J Geriatr Psychiatry 2015;30:111–29.
457		doi:10.1002/gps.4198
458	20	Wimo A, Winblad B, Jönsson L. An estimate of the total worldwide societal
459		costs of dementia in 2005. Alzheimer's Dement 2007;3:81–91.
460		doi:10.1016/j.jalz.2007.02.001
461	21	Johannesson M, Borgquis L, Jönsson B, et al. The costs of treating hypertension -
462		an analysis of different cut-off points. <i>Health Policy (New York)</i> 1991; 18 :141–50.
463		doi:10.1016/0168-8510(91)90095-F
464	22	Costa N, Ferlicoq L, Derumeaux-burel H, et al. Comparison of Informal Care
465		Time and Costs in Different Age-Related Dementias: A Review. Biomed Res Int
466		2013; 2013 :1–15.
467	23	Åkerborg Ö, Lang A, Wimo A, et al. Cost of Dementia and Its Correlation With
468		Dependence. J Aging Health Published Online First: 26 January 2016.
469		doi:10.1177/0898264315624899
470	24	Bergvall N, Brinck P, Eek D, et al. Relative importance of patient disease

471		indicators on informal care and caregiver burden in Alzheimer 's disease. Int
472		Psychogeriatrics 2011;:73–85. doi:10.1017/S1041610210000785
473	25	Rattinger G, Schwartz S, Mullins C, et al. Dementia severtiy and the longitudinal
474		costs of informal care in the Cache County population. Alzheimer's Dement
475		2015; 11 :946–54.
476	26	Gustavsson A, Brinck P, Bergvall N, et al. Predictors of costs of care in
477		Alzheimer's disease: a multinational sample of 1222 patients. <i>Alzheimers Dement</i>
478		2011;7:318–27. doi:10.1016/j.jalz.2010.09.001
479	27	Gervès C, Chauvin P, Bellanger MM. Evaluation of full costs of care for patients
480		with Alzheimer 's disease in France : The predominant role of informal care.
481		Health Policy (New York) 2014;116:114-22. doi:10.1016/j.healthpol.2014.01.001
482	28	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
483		disease: GERAS study baseline results. <i>Alzheimers Dement</i> 2015;11:933–45.
484		doi:10.1016/j.jalz.2015.02.005
485	29	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
486		disease. Alzheimer's Dement 2015;11:933–45.
487	30	König H, Leicht H, Brettschneider C, et al. The Costs of Dementia From the
488		Societal Perspective : Is Care Provided in the Community Really Cheaper than

489		Nursing Home Care? <i>JAMDA</i> 2014; 15 :117–26.
490		doi:10.1016/j.jamda.2013.10.003
491	31	Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting
492		Results of Internet E-Surveys (CHERRIES). J Med Internet Res 2004;6:e34.
493		doi:10.2196/jmir.6.3.e34
494	32	Eysenbach G, Wyatt J. Using the Internet for Surveys and Health Research. J
495		Med Internet Res 2002;4:e13. doi:10.2196/jmir.4.2.e13
496	33	van Gelder MMHJ, Bretveld RW, Roeleveld N. Web-based Questionnaires: The
497		Future in Epidemiology? Am J Epidemiol 2010;172:1292–8.
498		doi:10.1093/aje/kwq291
499	34	Ebert JF, Huibers L, Christensen B, et al. Paper- or Web-Based Questionnaire
500		Invitations as a Method for Data Collection: Cross-Sectional Comparative Study
501		of Differences in Response Rate, Completeness of Data, and Financial Cost. J
502		Med Internet Res 2018; 20 :e24. doi:10.2196/jmir.8353
503	35	Washio S, Toyoshima Y, Yamazaki R, et al. [Factors related to the care burden
504		of family caregivers - focusing on the care burden of caregivers of elderly who
505		needs nursing care -]. Japanese J Clin Exp Med = Rinshou to Kenkyuu

507	36	Arai Y, Kumamoto K, Mizuno Y, et al. Depression among family caregivers of
508		community-dwelling older people who used services under the Long Term Care
509		Insurance program: a large-scale population-based study in Japan. Aging Ment
510		Health 2014; 18 :81–91. doi:10.1080/13607863.2013.787045
511	37	Washio S, Nogami Y, Motoyama S, et al. [Long-Term Care Insurance Act
512		amendment and care burden of family caregivers for elderly who need long-term
513		care at home]. Japanese J Clin Exp Med = Rinshou to Kenkyuu 2015; 92 :75–9.
514		

Figure 1: Selection process for the analysis

This diagram shows the flow of participants who we focused on.

Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs

The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 3: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 4: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily

Living; SD, Standard deviation; LTC, Long-term care

Table 1 Characteristics of people with dementia and caregivers

People with Dementia	N=1383
Age, mean±SD, y	
Sex, n (%)	
Female	922 (66.7)
Male	461 (33.3)
Care-needs level, n (%)	
Support-Needs Level 1-2	253 (18.3)
Care-Needs Level 1	310 (22.4)
Care-Needs Level 2	335 (24.2)
Care-Needs Level 3	258 (18.7)
Care-Needs Level 4	122 (8.8)
Care-Needs Level 5	105 (7.6)
ADL/IADL functional capab	pilities
ADL score (0-6), mean	3.2 (2.0)
IADL score (0-7), mean	1.3 (1.6)
Ratio of copayments for hea	
10%	961 (69.5)
20%	137 (9.9)
30%	157 (11.4)
Unknown	128 (9.3)
Caregivers	<u></u>
Age, mean \pm SD	
Sex, n (%)	530 (38.3) 853 (61.7) 575 (41.6) 169 (12.2) 288 (20.8) 90 (6.5) 99 (7.2)
Female	530 (38.3)
Male	853 (61.7)
Relationship, n (%)	
Mother	575 (41.6)
Mother-in-law	169 (12.2)
Father	288 (20.8)
Father-in-law	90 (6.5)
Spouse	99 (7.2)
Sibling	11 (0.8)
Child	10 (0.7)
Friend	5 (0.4)
Other (including grandpa	rents) 136 (9.8)
Contribution level for caregi	
1-20%	395 (28.6)
21-40%	355 (25.7)
41-60%	241 (17.4)
61-80%	166 (12.0)
81-100%	226 (16.3)
Currently employed, n (%)	
J 1 J / (/	

SD: Standard deviation, ADL: Activities of Daily Living, IADL: Instrumental Activities

of Daily Living

1 Table 2 Daily informal care time and personal costs of dementia care sorted by care-needs levels

			Support-required	Care-need	Care-need	Care-need	Care-need	Care-need
			level	level 1	level 2	level 3	level 4	level 5
Informal care time (hours/day)	ADL	Mean [SD]	2.56 [3.23]	2.23 [2.54]	2.92 [2.90]	3.44 [2.90]	3.99 [2.40]	4.60 [3.85]
		Median [IQR]	1.67 [2.00]	1.50 [2.50]	2.00 [3.00]	3.00 [3.50]	4.00 [3.00]	3.33 [4.00]
	IADL	Mean [SD]	2.35 [2.62]	2.46 [3.05]	2.88 [3.26]	2.82 [2.92]	3.03 [2.59]	3.45 [3.77]
		Median [IQR]	2.00 [2.00]	1.50 [2.00]	2.00 [2.00]	2.00 [2.50]	2.00 [3.13]	2.00 [4.00]
Personal cost of dementia care (US\$)	Informal care cost	Mean [SD]	1518 [2017]	1271 [1526]	1754 [1982]	2181 [2220]	2112 [2104]	2672 [2314]
		Median [IQR]	747 [1646]	709 [1440]	1090 [1697]	1366 [2459]	1535 [1466]	1939 [2240]
	OPP for LTC services covered by insurance	Mean [SD]	148 [190]	158 [174]	244 [209]	313 [217]	301 [202]	318 [218]
		Median [IQR]	49 [172]	49 [123]	172 [319]	368 [441]	368 [196]	368 [441]
	OPP for care services not covered by insurance	Mean [SD]	158 [336]	95 [156]	278 [695]	303 [543]	241 [579]	352 [998]
		Median [IQR]	49 [172]	49 [172]	49 [368]	172 [319]	49 [368]	49 [368]

ADL: Activities of Daily Living, IADL: Instrumental Activities of Daily Living, SD: Standard deviation, IQR: Interquartile range

³ OPP: Out-of-pocket payments LTC: Long-term care

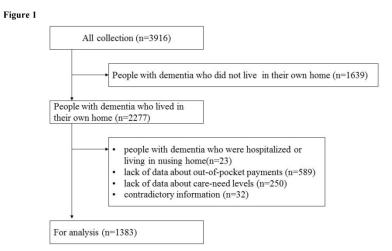


Figure 1: Selection process for the analysis
This diagram shows the flow of participants who we focused on.

338x190mm (300 x 300 DPI)

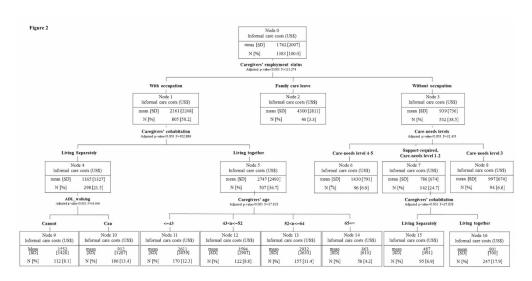


Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs
The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

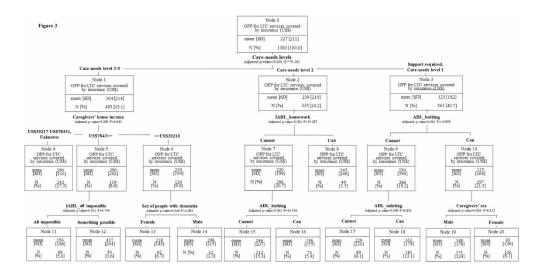


Figure 3: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

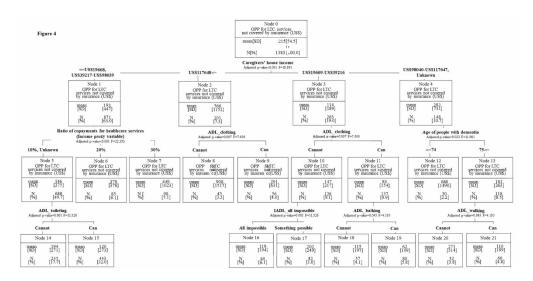


Figure 4: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Item No	Recommendation
Fitle and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract - p.1-2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found $-$ p.2-3
Introduction		, , p
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -
Buckground/rutionare	-	p.4-5
Objectives	3	State specific objectives, including any prespecified hypotheses – p.5
Methods		
Study design	4	Present key elements of study design early in the paper – p.5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
C		exposure, follow-up, and data collection – p.6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
- и- и		participants – p.6 and p.10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
variables	,	modifiers. Give diagnostic criteria, if applicable – p.6-10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement	o	assessment (measurement). Describe comparability of assessment methods if there i
measurement		more than one group – p.6, 9
Bias	9	Describe any efforts to address potential sources of bias – p.18-19
Study size	10	Explain how the study size was arrived at – p.6
Quantitative variables	11	Explain how due study size was arrived at – p.o Explain how quantitative variables were handled in the analyses. If applicable,
Qualititative variables	11	describe which groupings were chosen and why – p.11-12
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
Statistical methods	12	- p.11-12
		(b) Describe any methods used to examine subgroups and interactions – p.11-12
		(c) Explain how missing data were addressed-p.10
		- 1 - 1
		(d) If applicable, describe analytical methods taking account of sampling strategy –
		Non applicable
		(e) Describe any sensitivity analyses – Non applicable
Results		
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
		eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed – p.12-13
		(b) Give reasons for non-participation at each stage – Non applicable
		(c) Consider use of a flow diagram - Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders – p.13 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest –
		Non applicable
		Tion applicable
Outcome data	15*	Report numbers of outcome events or summary measures – Table 2
Outcome data Main results	15* 16	
		Report numbers of outcome events or summary measures – Table 2

		(b) Report category boundaries when continuous variables were categorized – Non
		applicable
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a
		meaningful time period – Non applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and
		sensitivity analyses – p.13, Figure2-4
Discussion		
Key results	18	Summarise key results with reference to study objectives - p,14-15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias - p.18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,
		multiplicity of analyses, results from similar studies, and other relevant evidence -
		p.15-18
Generalisability	21	Discuss the generalisability (external validity) of the study results –p.18-19
Other information		
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based - p.21

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Classification tree model of the personal economic burden of dementia care by related factors of both people with dementia and caregivers in Japan: A cross-sectional online survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026733.R1
Article Type:	Research
Date Submitted by the Author:	26-Feb-2019
Complete List of Authors:	Nakabe, Takayo; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Uematsu, Hironori; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Wimo, Anders; Karolinska Institute, KI Alzheimer's Disease Research Center (ADRC) Imanaka, Yuichi; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health economics
Keywords:	Informal care, RUD, Cost, Classification, Japan

SCHOLARONE™ Manuscripts

- 1 Classification tree model of the personal economic burden of
- dementia care by related factors of both people with dementia and
- 3 caregivers in Japan: A cross-sectional online survey
- 5 Takayo Nakabe^a, Noriko Sasaki^a, Hironori Uematsu^a, Susumu Kunisawa^a, Anders Wimo^b,
- 6 Yuichi Imanaka^a

- 7 a Department of Healthcare Economics and Quality Management, Graduate School of
- 8 Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
- 9 b Aging Research Centre, Department of Neurobiology, Care Sciences and Society (NVS),
- 10 Karolinska Institutet and Stockholm University, Stockholm, Sweden
- 11 Corresponding author:
- 12 Yuichi Imanaka, Professor
- 13 Department of Healthcare Economics and Quality Management,
- 14 Graduate School of Medicine, Kyoto University
- 15 Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- 16 E-mail: imanaka-y@umin.net
- 17 Tel: +81-75-753-4454 Fax: +81-75-753-4455
- Word counts: 3750 words

Abstract

Objective:

- 21 The purpose of this study was to clarify the micro-level determinants of the economic
- burden of dementia care at home in Japanese community settings by classifying them into
- subgroups of factors related to people with dementia and their caregivers.

24 Methods

- A cross-sectional online survey was conducted from March 7 to March 14, 2016. For the
- calculation of informal care costs, the average wage stratified by sex and age group was
- used as the opportunity cost. We conducted a chi-square automatic interaction detection
- analysis to identify the factors related to each cost divided into sub categories.

Results

- From 4313 respondents, only 1383 caregivers in community-settings were included in
- 31 this analysis. In the resultant classifications, informal care cost was mainly related to
- 32 caregivers' employment status. When caregivers acquired family care leave, informal
- care costs were the highest. On the other hand, out-of-pocket payments for long-term care
- were related to care-need levels and family economic status. ADL and IADL functions
- such as bathing, toileting, and cleaning were related to all costs.

Conclusion

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situations of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-need levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

46 Strengths and limitations of this study

- This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers.
- The chi-square automatic interaction detection dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.
- The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company.
- We only assessed objective burden of dementia care such as informal care time or costs, then we didn't consider the subjective burden of care and depressive symptoms.

1. Introduction

In the aging society of Japan, it is estimated that there are approximately 4.7 million people living with dementia and that there will be approximately 7 million people with dementia in 2025 [1]. Given that it is also estimated that the total number of people with dementia throughout the world will double every 20 years [2], we need to reconsider how to prepare for dementia care in the community. Long-term care (LTC) services in Japan used by people with dementia in home care can be classified into three main types: (1) LTC insurance services, (3) LTC services not covered by insurance, and (3) informal care as mutual assistance by family members. When a person with dementia uses the LTC insurance service, the user bears 10% or 20% of the service expenses as out-of-pocket payments depending on the person's income (Article 49-2 of the Long-Term Care Insurance Act). Aside from such copayments, when LTC services not covered by insurance or exceeding the LTC insurance limit amount are used, people must pay the full amount. Furthermore, it has been pointed out that informal care is an important component of home care, yet it places a burden on caregivers [3,4]. Nevertheless, given the estimates of the societal costs of dementia care throughout the world, the impact of informal care is essential [5,6]. The Japanese government recommends policies to shift to patient-centered and home-

The Japanese government recommends policies to shift to patient-centered and homecentered care to reduce the fiscal burden of the insurance system on community-based integrated systems. While micro level of impact of dementia care has not been insufficiently understood[7], to construct a sustainable dementia care system, we clarified the personal economic burden of dementia care for different residence types and demonstrated that the cost at home in a community setting was equal to or higher than in various institutions[8]. Sustainable dementia care systems should be provided not only to benefit the government or insurance system but also to benefit people with dementia and their caregivers. Furthermore, although there are increasing dementia care costs related to the severity of dementia [9–12], it can be seen that the cost of dementia care increases through the interaction of characteristics or situations of people with dementia and their caregivers. Given this interaction, it is necessary to understand the actual conditions by classifying cases where the greatest economic burdens in dementia care are felt.

Therefore, the purpose of this study is to clarify the micro-level determinants of the economic burden of dementia care at home in community settings by classifying them into subgroups of factors related to people with dementia and their caregivers.

2. Methods

This study was a cross-sectional study, based on a self-rated, online questionnaire survey. The economic burden of dementia care in this study is roughly divided into informal care costs as opportunity costs and out-of-pocket payments that people actually

97 made.

2.1. Online survey for data collection on people with dementia and their caregivers

In this cross-sectional study, we conducted an online questionnaire survey from March 3 to March 14, 2016 in cooperation with a commercial research company (Automatic Internet Research System, Macromill, Inc., Japan). Potential participants fulfilled the following criteria: (1) aged 30 years or older, (2) non-professional caregiver of someone with dementia, (3) caring for only one person with dementia, and (4) having no conflicts of interest with advertising or marketing research entities. A total of 3,600 participants were recruited from the research company's registrants and divided into different age groups (850 participants each in the groups aged in 30's, 40's, 50's, and 60's; 200 participants in the group aged ≥70 years). We excluded caregivers under 29 years of age because, in Japan, they are estimated to represent only 2% of all caregivers [13].

2.2. Questionnaire

Resource Utilization in Dementia (RUD) [14,15] is a widely used tool to collect data about resource use in persons with dementia and their caregivers [15]. RUD is available in more than 60 languages and it is widely used throughout the world. In this study, we used RUD (Japanese version) items related to the characteristics of people with dementia and their caregivers, informal care time, employed situation of caregivers, residential

types of people with dementia, and resource use of nursing care services. We added items related to LTC services and residential types. The questionnaire components were divided into four categories: (1) characteristics of people with dementia, (2) caregivers' situations (e.g., employment and cohabitation status), (3) informal care duration and (4) frequency of utilization of LTC services.

In this project, we could not get information about severity of dementia data because it was regarded as too difficult for caregivers to estimate that. However, we asked for substantial information about care-needs levels. Care needs reflect function, which is a stronger explanatory factor for costs than cognition [16]. Care-needs levels (Supportneeds levels 1-2, Care-needs levels 1-5) determine whether a person is qualified to apply for LTC insurance (Article 27 and 32 of the Long-Term Care Insurance Act). Once an insured person applies to use any LTC service, their mental and physical status is first be assessed by certified researchers using a basic checklist. Based on this checklist, careneed times are estimated using an evidence-based computer algorithm. This algorithm was created from the data on how much LTC services were required in 48 hours for more than 3,000 elderly people as a one-minute time study [17]. After estimating the care-needs time, care-needs levels were determined by an expert panel to indicate the amount of care required by each person while taking into consideration their symptoms and functional

capability. High care-needs levels indicate increasing dependency and requirement for LTC services [18]. Care-need levels also affect the base amount of the maximum payment for LTC services allowance categories covered by insurance.

2.3. Informal care time

In the questionnaire, informal care time was divided in three domains; support for Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL) and Supervision [15]. We asked for the mean caregiving time per day and mean caregiving days per week in the past 30 days. We then multiplied the mean daily caregiving time and caregiving days per week to calculate both weekly and monthly informal care time. Supervision time was excluded in calculating informal care time and costs because supervision could be done simultaneously when caregiving for ADL and IADL functions, or in other housekeeping for people without dementia and other family members.

2.4. Cost estimation

In this study, we identified three costs as follows: informal care costs, out-of-pocket payments for LTC services covered by insurance (copayments), and out-of-pocket payments for LTC services not covered by insurance. To calculate the informal care costs, there are two methods that are frequently used: the "opportunity cost" and "replacement cost" approaches [19–21]. With the opportunity cost approach it is assumed that there is

an alternative use of caregiving time (such as paid work) and thus estimates the costs due to this lost opportunity, whereas the replacement cost approach assumes that informal care services can be valued similarly to home care services provided by professional caregivers. Even though many previous studies on the economic valuation of informal care have used the replacement cost approach [20], the 'opportunity cost approach' is recommended by the developers of RUD for estimating informal care costs [2,5,22]. We used the opportunity cost approach to assess informal care time as forgone wages for caregivers [2,5,9]. We used caregivers' monthly mean wages stratified by sex and age to value informal care. We assessed informal care costs for caregivers who were not working or who were over 65 years of age at 30% of the mean wage of employed caregivers [23– 26]. A maximum daily informal care time of 16 hours was assumed, in order to allow for other activities such as cooking for other family members and sleep [12,27,28]. Caregivers were asked to state their contribution to the total informal care in 5-point scale of 20%. In order to treat all caregivers as primary caregivers and estimate the costs associated with all informal care provided to a patient, we adjusted the informal care time by dividing its time by the median of these contribution levels, according to RUD instructions. This adjustment of informal care time was done only when calculating the informal care costs.

Out-of-pocket payments for LTC services both covered and not covered by insurance were included in the questionnaire. We asked for these out-of-pocket payments through categories that were easy to answer (no payments, under JPY9,999, JPY10,000–24,999, JPY25,000-49,999, JPY50,000-74,999, JPY75,000-99,999, JPY100,000-124,999, JPY150.000-299.999. JPY300.000-499.999. JPY125.000-149.999. over JPY500,000). We adjusted the answers by capping the upper limit of the limit amount (Care-needs level 1; JPY166,920, Care-needs level 5; JPY 360,650) depending on each care-needs level or each ratio of copayment (10% or 20%) if the answers were over it. These costs were substituted by a median of each category, and we calculated the weighted average as the following formula: $\frac{\sum_{i=0}^{k} (median \ of \ category_i) * n_i}{\sum_{i=0}^{k} (median \ of \ category_i) * n_i}$ All costs were converted from Japanese yen to US dollars using the purchasing power parity rate in 2016 (\$102 = \$1) provided by the Organization for Economic Cooperation and Development. 2.5. Inclusion and exclusion criteria With respondents, we only focused on community settings for people with dementia who lived in their own home. We excluded respondents based on the following criteria:

(1) people with dementia who were hospitalized or lived in nursing home, (2) lack of data

about out-of-pocket payments for LTC services or care-needs levels, (3) contradictions

in relationships between caregivers and people with dementia, and (4) contradictions in care time (over 24 hours). When the age difference was less than 15 years and the person with dementia was a parent or child (not in-law), these cases were identified as contradictions.

2.6. Statistical analysis

We conducted descriptive analysis for characteristics of people with dementia and caregivers. We then stratified the informal care time and dementia care costs by the careneeds level and cohabitation to test our hypothesis that high care-needs level or people who lives with caregivers need more informal care time. In this description, we didn't adjusted informal care time by caregivers' contribution rate.

Also, we used chi-square automatic interaction detection (CHAID) analysis to identify the characteristics of people with dementia and caregivers who needed more care services. In CHAID analysis, the dependent variable would be divided into sub-groups by the most explanatory independent variables. These groups could be formed by any possible combination with all independent variables. Especially, we conducted an exhaustive CHAID analysis that repeats the trial until it finds the optimal combination of all independent variables. The CHAID dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.

We set informal care costs, out-of-pocket payments for LTC services covered by insurance and out-of-pocket payments for LTC services not covered by insurance as dependent variables. Then, we used the characteristics of people with dementia (age, sex, care-need level, dementia types, ADL and IADL functions, and primary disease as the reason for care), the characteristics of caregivers (age, sex, marital status, children, cohabitation with people with dementia, visiting time, relationship to people with dementia, and occupation), and economic factors (the ratio of copayments for healthcare services and family income of caregivers). We treated the ratio of copayments for healthcare services as income proxy variable because this ratio was decided by income of people with dementia. We set the following criteria: tree depth was limited to three levels, no group smaller than 100 was split, no group smaller than 30 was formed, and the p-value for all statistical tests was under 0.05.

- All data were analyzed using IBM SPSS Statistics 23.0 for Windows (SPSS Japan Inc.,
- 218 Tokyo, Japan).
- 219 2.6. Ethical considerations and consents
- 220 This study was approved by the Ethics committee of Kyoto University Graduate School
- of Medicine (R0487). All participants were volunteers and they were informed that there
- 222 was no obligation to participate in the study, and only people who consented to this study

- 223 completed the questionnaire.
 - 2.7. Patient and public involvement
- Patients were not formally involved in this study; however, their caregivers participated in our online-based questionnaire survey. Caregivers, who constituted the online panel, were sent the invitation by the Internet research company. Patients and their caregivers
- can view the results of this study when it is published in a peer-reviewed journal.
 - 3. Results
- 230 3.1. Characteristics of people with dementia and their caregivers

(57.0%) who did the latter by themselves.

- A total of 3,916 caregivers answered the questionnaire. We focused only on people with dementia who lived in their own home (n=2277). However, we excluded the data according to the criteria and the final sample comprised 1,383 respondents (Figure 1).
- Table 1 shows the characteristics of people with dementia and their caregivers. More than half of the people with dementia were female (66.7%), and the mean age was 81.8 years. In contrast, more than half of the caregivers were male (61.7%), and the mean age was 52.2 years. 1,233 people (89.2%) responded that ADL functions such as meals and toilet use could be managed by themselves, while IADL functions such as cleaning and shopping could be done by one person in the same way. There were only 788 people

3.2. Informal care time and costs of dementia care

The mean daily informal care time was 9.36 hours in total. The time for only ADL was 4.97 hours and for only IADL was 4.39 hours. On the other hand, monthly informal care time (ADL+IADL) was 166.32 hours. Table 2 shows the differences in daily informal care time and personal cost of dementia care among the care-need levels. In this table, we didn't adjust by contribution rate. Informal care times increased with care-needs levels, especially in ADL. Out-of-pocket payments for LTC services were less than informal care costs in all of the care-needs levels.

3.3. Classification with classification trees

Figure 2 shows the results of CHAID analysis for informal care costs. Informal care costs were related to caregivers' employment status, cohabitation, age, and care-needs levels or ADL function of people with dementia. When the caregiver acquired family care leave, informal care cost was the highest (node 2). For the caregivers who were between 43-52 years old (node 12) and worked outside the home as well as cohabited with people with dementia, informal care costs were high, similar to caregivers who acquired family care leave (node 2). Even if the caregiver did not work, informal care costs were higher with high care-needs levels (node 6-8). The costs for cohabiting caregivers (node 5) were higher than for those not cohabiting (node 4). For those not cohabiting and the person

with dementia could not walk without assistance (node 9), informal care costs were higher than for those that could walk (node 10).

Out-of-pocket payments for LTC services covered by insurance were related to careneed levels, ADL or IADL functions, sex (both the people with dementia and caregivers)
and caregivers' household incomes (Figure 3). Especially, if the people with dementia
could bathe or use the toilet by themselves, out-of-pocket payments would be about 65%
lower (nodes 9-10, 15-18). On the other hand, if out-of-pocket payments were not covered
by insurance, they were related to caregivers' household incomes, income proxy variable,
ADL or IADL functions of people with dementia, and age of people with dementia
(Figure 4). Both the out-of-pocket payments that were covered by insurance and those
that were not were related to caregivers' house hold income or ADL functions which
affected the ability to pay and service use volume.

4. Discussion

In this study, we first demonstrated that informal care time for ADL or IADL functions increased with high care-needs levels as our hypothesis stipulated (Care-need level 1: 2.2hours, level 3: 3.4 hours. level 5: 4.6 hours). Second, we established that the combination of characteristics of both people with dementia and their caregivers were related to dementia care costs through the classification tree analysis. Caregivers'

employment and cohabitation status were mainly related to informal care costs, and the costs were the highest when caregivers took nursing care leave, which caregivers leave work due to caregiving. Furthermore, when caregivers worked at an occupation and lived separately, or the people with dementia could not walk, the costs doubled. Out-of-pocket payments for LTC services covered by insurance were mainly related to care-need levels and ADL and IADL functions. In the case of low care-needs levels, where care was needed for toileting or bathing, high out-of-pocket payments were required for LTC insurance services. On the other hand, out-of-pocket payments were related to caregivers' household income levels or income proxy variable. Caregivers with high annual incomes (more than \$117,648 US) made out-of-pocket payments for dementia care of full amounts that were two to five times more than others.

Informal care costs were mainly related to caregivers' characteristics such as employment or cohabitation status in the classification tree, which illustrated related factors by order of precedence. In many previous studies, ADL functions or dementia severity were explained as related factors in regression models [9–12]. Some studies showed caregivers' characteristics such as employment status were related to informal care costs [9,29,30], but few studies considered all of the caregivers' characteristics. Thus, caregiver factors may be as important as factors related to people with dementia are.

Furthermore, we considered the combination of characteristics of both people with dementia and their caregivers. For example, informal care costs doubled when caregivers lived separately and people with dementia could not walk. Many previous studies established the determinants by regression analysis[9,12,31–34]. Although it is possible to understand the influence on the objective variable adjusted in the multivariate by regression analysis, the combinations between explanatory variables have not been clarified. CHAID analysis provided the classification only for related characteristics in the outcome. Such combinations suggest that support should be provided to caregivers who cannot live with people with dementia or caregivers who are not employed (Figure 2, Node 3-4).

The association between out-of-pocket payments for LTC services covered by insurance and care-need levels is reasonable because the benefit limit standard amounts for formal care services at home are decided in relation to care-need levels[35]. In addition, when people with dementia had a high care-needs level and their caregiver's household income was high, out-of-pocket payments were high. Because the determination of service usage within the limit amount is a free contract, people with dementia and their caregivers may decide how they use formal care services depending on how much they can pay for services. High care-needs levels [36], age[10,34,36,37]

and sex[10,36] were related to the high costs of LTC services. Even for low care-needs levels, the cost may be high when people with dementia need assistance with bathing or toileting. This was affected by LTC insurance services providing specific substitutions, such as bath assistance, and also Ku et al.'s or Dodel et al.'s ADL functions were related to the social care costs[9,30].

Similarly, economic variables such as household income and income proxy variable were mainly related to out-of-pocket payments for LTC services not covered by insurance (Figure 4). This is because people must pay the full amount if they use LTC services without insurance. In the United States, high copayments are required for the use of LTC services; however, these copayments were related to age, sex, and comorbidities in the cohort study [37]. A part of the result of Hurd et al. was similar to our results in the case of the payments that were covered by insurance for the use of LTC services. Out-ofpocket payments not covered by insurance might occur for over the limit standard amounts or the use of LTC services not covered by insurance (e.g. feeding service[38]). According to the questionnaire responses, people tended to pay for expendables such as diapers, employment of housekeepers, and home repair such as handrail installation as out-of-pocket payments not covered by LTC insurance. Furthermore, except when caregivers' income was high, the cost did not change significantly due to differences in

ADL and IADL functions as it did for the payments that were covered by insurance.

These application examples were not really affected by ADL or IADL functions.

From the viewpoint of independent variables, if people with dementia lacked some ADL function, then costs might be higher but in the case of IADL functions this was reversed. There is a possibility that some services are used to support the independent lives of people with dementia. Some people with dementia who can do housework by themselves might move or walk around more, and therefore use more LTC services like commuting for care (day service) or commuting for rehabilitation. Also, care-need levels were not related to out-of-pocket payments not covered by insurance. The above application examples were also not related to care-needs levels. The relationship of cohabitation or employment status was the same as in previous studies [9,29,32]. While differences of burden of dementia care depended on the dementia types that existed and were pointed out [24], dementia types were not related to any other factors in this study. In our CHAID analysis, family caregivers' economic status or severity (care-needs levels) might have been more important than dementia types to dementia care costs. In creating policy for LTC services in an aging society, we must understand the actual conditions from not only a societal but also a personal perspective. This is true even if from a societal viewpoint, the societal cost of dementia care in the community has been established by

other countries to be greater than that in institutional care [39]. Furthermore, we need a wide range of perspectives of stakeholders to discuss the dementia care system, while almost all studies of economic burden of dementia stood on societal or payers' viewpoint[7,19–21]. Then, as a first step, we need to understand what people with dementia and their family caregivers are already spending too much money on. We need to recognize the complicated combination of characteristics associated with people with dementia and their caregivers. To this point, the results of this classification could be useful to understanding which situation requires more resources depending on cost types. Our results may suggest that a sustainable dementia care system in Japan should be reconstructed from a personal viewpoint.

There are some limitations to this study. First, we conducted an online questionnaire survey with caregivers of people with dementia. Traditionally, respondents who use the Internet tend to be male and relatively young, reflecting the general characteristics of online research [40–42]. The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company [43]. Certainly, we cannot extrapolate the representative value in each node of the CHAID tree to the population as a whole. However, this study focused on finding a combination of independent variables related to

the dependent variables (informal care cost and financial burden), taking into account the interaction between multiple independent variables. The significance of subgroups made by combinations of variables may not change significantly even if the population changes. Therefore, in this study, influence due to the difference between this sample and general public is not considered to be a practical problem. However, further research (e.g. a paper-based questionnaire survey mailed to the family caregivers association) to collect representative samples might be needed in the future. Second, we didn't consider the subjective burden of care and depressive symptoms. These mental burdens are considered to be important factors in explaining the actual state of care costs, and many previous studies in Japan have covered subjective costs [44–46]. In the future, in addition to the burden of time and money, it would be preferable to measure subjective burdens. Third, we estimated informal care costs only by the opportunity cost approach. Some studies indicated results estimated by both opportunity cost approach and replacement cost approach. The opportunity cost approach might be underestimated in comparison to the replacement approach[9,37]

Conclusions

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situation of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-needs levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

Footnotes

- 396 Abbreviations
- 397 LTC: Long-Term Care
- 398 RUD: Resource Utilization in Dementia
- 399 ADL: Activities of Daily Life
- 400 IADL: Instrumental Activities of Daily Life
- 401 CHAID analysis: chi-square automatic interaction detection analysis
- 402 Authors' contribution
 - TN, SN and YI designed the study. All authors discussed for preparing the questionnaire.

404	TN mainly analyzed all data, and HU, SK, AW and YI advised for analysis. TN prepared
405	the draft of the manuscript, then all authors contributed to rewrite it. All authors read and
406	approved the final manuscript.
407	Funding sources
408	This study was financially supported by a Health Sciences Research Grant from the
409	Ministry of Health, Labour and Welfare of Japan (H27-ninntishou-ippan-001), the Japan
410	Foundation for Aging and Health (H27), and a Grant-in-Aid for Scientific Research from
411	the Japan Society for the Promotion of Science ([A]16H02634). The funders had no role
412	in the study design, data collection and analysis, decision to publish, or preparation of the
413	manuscript.
414	manuscript. Competing interest
415	None declared.
416	Acknowledgements
417	None.
418	Conflicts of interest
419	None.
420	Data sharing statement

No additional data are available.

423	Refe	erences
424	1	Ninomiya T, Kiyohara Y, Obara T, et al. A study on future estimation of the
425		elderly population of dementia in Japan Grant-in-Aid for Scientific Research for
426		Ministru of Health, Labor and Welfare in 2014(H26-Tokubetsu-Shitei-036).
427		2014. https://mhlw-
428		grants.niph.go.jp/niph/search/NIDD00.do?resrchNum=201405037A
429	2	Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: the global
430		impact of dementia. 2015.https://www.alz.co.uk/research/world-report-2015
431		(accessed 3 Apr 2016).
432	3	Wimo A, Jönsson L, Fratiglioni L, et al. The societal costs of dementia in
433		Sweden 2012 - relevance and methodological challenges in valuing informal
434		care. Alzheimers Res Ther 2016;8:59. doi:10.1186/s13195-016-0215-9
435	4	Wimo A, Strauss E Von, Nordberg G. Time spent on informal and formal care
436		giving for persons with dementia in Sweden. <i>Heal Po</i> 2002; 61 :255–68.
437	5	Wimo A, Prince M. World Alzheimer Report 2010 THE GLOBAL ECONOMIC
438		IMPACT OF DEMENTIA.
439		2010.https://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive
440		Summary.pdf (accessed 3 Apr 2016).
441	6	Wimo A, Ali G, Wu Y, et al. The worldwide costs of dementia 2015 and

442		comparisons with 2010. Alzheimer's Dement 2016;:1–7.
443		doi:10.1016/j.jalz.2016.07.150
444	7	Jönsson L, Lin P-J, Khachaturian AS. Special topic section on health economics
445		and public policy of Alzheimer's disease. <i>Alzheimer's Dement</i> 2017; 13 :201–4.
446		doi:10.1016/j.jalz.2017.02.004
447	8	Nakabe T, Sasaki N, Uematsu H, et al. The personal cost of dementia care in
448		Japan: A comparative analysis of residence types. Int J Geriatr Psychiatry
449		2018; 33 :1243–52. doi:10.1002/gps.4916
450	9	Ku L-JE, Pai M-C, Shih P-Y. Economic Impact of Dementia by Disease
451		Severity: Exploring the Relationship between Stage of Dementia and Cost of
452		Care in Taiwan. <i>PLoS One</i> 2016; 11 :e0148779.
453		doi:10.1371/journal.pone.0148779
454	10	Leicht H, Heinrich S, Heider D, et al. Net costs of dementia by disease stage.
455		Acta Psychiatr Scand 2011; 124 :384–95. doi:10.1111/j.1600-0447.2011.01741.x
456	11	Leicht H, König H-H, Stuhldreher N, et al. Predictors of Costs in Dementia in a
457		Longitudinal Perspective. <i>PLoS One</i> 2013; 8 :e70018.
458		doi:10.1371/journal.pone.0070018
459	12	Farré M, Haro JM, Kostov B, et al. Direct and indirect costs and resource use in

460		dementia care: A cross-sectional study in patients living at home. Int J Nurs Stud
461		2016; 55 :39–49.
462	13	Ministry of Internal Affairs and Communications. Survey on Time Use and
463		Leisure Activities in 2016. 2017.
464		http://www.stat.go.jp/data/shakai/2016/pdf/gaiyou2.pdf (accessed 6 Mar 2018).
465	14	Wimo A, Jonsson L, Zbrozek A. The Resource Utilization in Dementia (RUD)
466		instrument is valid for assessing informal care time in community-living patients
467		with dementia. J Nutr Health Aging 2010;14:685-
468		90.http://www.ncbi.nlm.nih.gov/pubmed/20922346 (accessed 3 Feb 2016).
469	15	Wimo A, Gustavsson A, Jonsson L, et al. Application of resource utilization in
470		dementia (RUD) instrument in a global setting. Alzheimer's Dement 2013;9:429-
471		35. doi:10.1016/j.jalz.2012.06.008
472	16	Mesterton J, Wimo A, By A, et al. Cross sectional observational study on the
473		societal costs of Alzheimer's disease. Curr Alzheimer Res 2010;7:358-
474		67.http://www.ncbi.nlm.nih.gov/pubmed/19939223 (accessed 11 Jun 2018).
475	17	Ministry of Health Labour and Welfare. Mechanism and procedures for
476		cartification of care-needs levels. https://www.mhlw.go.jp/file/05-Shingikai-
477		11901000-Koyoukintoujidoukateikyoku-Soumuka/0000126240.pdf (accessed 12

478		Feb 2019).
479	18	Lin H-R, Otsubo T, Imanaka Y. Survival analysis of increases in care needs
480		associated with dementia and living alone among older long-term care service
481		users in Japan. BMC Geriatr 2017; 17 :182. doi:10.1186/s12877-017-0555-8
482	19	Mauskopf J, Mucha L. A Review of the Methods Used to Estimate the Cost of
483		Alzheimer's Disease in the United States. Am J Alzheimer's Dis Other
484		Dementias 2011; 26 :298–309. doi:10.1177/1533317511407481
485	20	Quentin W, Sg R, Luppa M, et al. Cost-of-illness studies of dementia: a
486		systematic review focusing on stage dependency of costs. Acta Psychiatr Scand
487		2010; 121 :243–59. doi:10.1111/j.1600-0447.2009.01461.x
488	21	Schaller S, Mauskopf J, Kriza C, et al. The main cost drivers in dementia: a
489		systematic review. Int J Geriatr Psychiatry 2015;30:111–29.
490		doi:10.1002/gps.4198
491	22	Wimo A, Winblad B, Jönsson L. An estimate of the total worldwide societal
492		costs of dementia in 2005. Alzheimer's Dement 2007;3:81–91.
493		doi:10.1016/j.jalz.2007.02.001
494	23	Johannesson M, Borgquis L, Jönsson B, et al. The costs of treating hypertension -
495		an analysis of different cut-off points. <i>Health Policy (New York)</i> 1991; 18 :141–

496		50. doi:10.1016/0168-8510(91)90095-F
497	24	Costa N, Ferlicoq L, Derumeaux-burel H, et al. Comparison of Informal Care
498		Time and Costs in Different Age-Related Dementias: A Review. Biomed Res Int
499		2013; 2013 :1–15.
500	25	Åkerborg Ö, Lang A, Wimo A, et al. Cost of Dementia and Its Correlation With
501		Dependence. J Aging Health Published Online First: 26 January 2016.
502		doi:10.1177/0898264315624899
503	26	Bergvall N, Brinck P, Eek D, et al. Relative importance of patient disease
504		indicators on informal care and caregiver burden in Alzheimer 's disease. Int
505		Psychogeriatrics 2011;:73–85. doi:10.1017/S1041610210000785
506	27	Rattinger G, Schwartz S, Mullins C, et al. Dementia severtiy and the longitudinal
507		costs of informal care in the Cache County population. Alzheimer's Dement
508		2015; 11 :946–54.
509	28	Gustavsson A, Brinck P, Bergvall N, et al. Predictors of costs of care in
510		Alzheimer's disease: a multinational sample of 1222 patients. <i>Alzheimers Dement</i>
511		2011; 7 :318–27. doi:10.1016/j.jalz.2010.09.001
512	29	Gervès C, Chauvin P, Bellanger MM. Evaluation of full costs of care for patients
513		with Alzheimer 's disease in France: The predominant role of informal care.

514		Health Policy (New York) 2014;116:114–22. doi:10.1016/j.healthpol.2014.01.001
515	30	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
516		disease: GERAS study baseline results. <i>Alzheimers Dement</i> 2015; 11 :933–45.
517		doi:10.1016/j.jalz.2015.02.005
518	31	Hurd MD, Martorell P, Delavande A, et al. Monetary Costs of Dementia in the
519		United States. N Engl J Med 2013; 368 :1326–34. doi:10.1056/NEJMsa1204629
520	32	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
521		disease. Alzheimer's Dement 2015;11:933-45.
522	33	Peña-Longobardo L, Oliva-moreno J. Economic valuation and determinants of
523		informal care to people with Alzheimer 's disease. Eur J Heal Econ
524		2015; 16 :507–15. doi:10.1007/s10198-014-0604-6
525	34	André Hajek , Christian Brettschneider, Annette Ernst, Tina Posselt, Birgitt
526		Wiese, Jana Prokein, Siegfried Weyerer, Jochen Werle, Angela Fuchs et al.
527		Longitudinal predictors of informal and formal caregiving time in community-
528		dwelling dementia patients. Soc Psychiatry Psychiatr Epidemiol 2015;:1–10.
529	35	Tokyo Metropolitan Government. The Long-term Care Insurance System: Long-
530		term Care Service Costs to Be Paid by th User.
531		http://www.fukushihoken.metro.tokyo.jp/kourei/koho/kaigo_pamph.files/p.10kai

532		gohoken-english.pdf (accessed 12 Feb 2019).
533	36	Huei-Ru Lin, Tetsuya Otsubo and YI. The Effects of Dementia and Long-Term
534		Care Services on the Deterioration of Care-needs Levels of the Elderly in Japan.
535		Medicine (Baltimore) 2015;94:1–7.
536	37	Michael D. Hurd, Paco Martorell, Adeline Delavande, Kathleen J. Mullen and
537		KML. Monetary Costs of Dementia in the United States. N Engl J Med
538		2013; 368 :1326–34. doi:10.1056/NEJMsa1204629.Monetary
539	38	Ministry of Health Labour and Welfare. Reference case examples of long-term
540		care insurance services for constructing community-based integrated care system
541		2016. https://www.mhlw.go.jp/file/06-Seisakujouhou-12300000-
542		Roukenkyoku/guidebook-bunkatu1.pdf (accessed 12 Feb 2019).
543	39	König H, Leicht H, Brettschneider C, et al. The Costs of Dementia From the
544		Societal Perspective : Is Care Provided in the Community Really Cheaper than
545		Nursing Home Care ? <i>JAMDA</i> 2014; 15 :117–26.
546		doi:10.1016/j.jamda.2013.10.003
547	40	Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting
548		Results of Internet E-Surveys (CHERRIES). J Med Internet Res 2004;6:e34.
549		doi:10.2196/jmir.6.3.e34

550	41	Eysenbach G, Wyatt J. Using the Internet for Surveys and Health Research. J
551		Med Internet Res 2002;4:e13. doi:10.2196/jmir.4.2.e13
552	42	Fujihara S, Inoue A, Kubota K, et al. Caregiver Burden and Work Productivity
553		Among Japanese Working Family Caregivers of People with Dementia. <i>Int J</i>
554		Behav Med 2018;:1–11. doi:10.1007/s12529-018-9753-9
555	43	van Gelder MMHJ, Bretveld RW, Roeleveld N. Web-based Questionnaires: The
556		Future in Epidemiology? <i>Am J Epidemiol</i> 2010; 172 :1292–8.
557		doi:10.1093/aje/kwq291
558	44	Washio S, Toyoshima Y, Yamazaki R, et al. [Factors related to the care burden
559		of family caregivers - focusing on the care burden of caregivers of elderly who
560		needs nursing care -]. Japanese J Clin Exp Med = Rinshou to Kenkyuu
561		2012; 89 :1687–91.
562	45	Arai Y, Kumamoto K, Mizuno Y, et al. Depression among family caregivers of
563		community-dwelling older people who used services under the Long Term Care
564		Insurance program: a large-scale population-based study in Japan. Aging Ment
565		Health 2014; 18 :81–91. doi:10.1080/13607863.2013.787045
566	46	Washio S, Nogami Y, Motoyama S, et al. [Long-Term Care Insurance Act
567		amendment and care burden of family caregivers for elderly who need long-term

care at home]. Japanese J Clin Exp Med = Rinshou to Kenkyuu 2015;**92**:75–9.

Figure 1: Selection process for the analysis

This diagram shows the flow of participants who we focused on.

Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs

The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 3: Classification tree of chi-square automatic interaction detection for outof-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 4: Classification tree of chi-square automatic interaction detection for outof-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily

Living; SD, Standard deviation; LTC, Long-term care

Table 1 Characteristics of people with dementia and caregivers

People with	Dementia	N=1383		
	Age, mean±SD, y	81.8±10.3		
	Sex, n (%)			
	Female	922 (66.7)		
	Male	461 (33.3)		
	Care-needs level, n (%)	,		
	Support-Needs Level 1-2	253 (18.3) 310 (22.4) 335 (24.2)		
	Care-Needs Level 1			
	Care-Needs Level 2			
	Care-Needs Level 3	258 (18.7)		
	Care-Needs Level 4	122 (8.8)		
	Care-Needs Level 5	105 (7.6)		
	ADL/IADL functional capabilities	100 (7.0)		
	ADL score (0-6), mean±SD	3.2±2.0		
	IADL score (0-0), mean±SD	1.3±1.6		
	Ratio of copayments for healthcare services, n(%			
	10%	961 (69.5)		
	20%	137 (9.9)		
	30%	157 (11.4)		
	Unknown	128 (9.3)		
		128 (9.3)		
	Types of Dementia, n(%)	751 (54.2)		
<u> </u>	Alzheimer's disease	751 (54.3)		
Caregivers	Assumption + CD	52.2+12.1		
	Age, mean \pm SD	52.2±13.1		
	Sex, n (%)	520 (20.2)		
	Female	530 (38.3)		
	Male	853 (61.7)		
	Relationship, n (%)	/// 6		
	Mother	575 (41.6)		
	Mother-in-law	169 (12.2)		
	Father	288 (20.8)		
	Father-in-law	90 (6.5)		
	Spouse	99 (7.2)		
	Sibling	11 (0.8)		
	Child	10 (0.7)		
	Friend	5 (0.4)		
	Other (including grandparents)	136 (9.8)		
	Contribution level for caregiving, n (%)			
	1-20%	395 (28.6)		
	21-40%	355 (25.7)		
	41-60%	241 (17.4)		
	61-80%	166 (12.0)		
	81-100%	226 (16.3)		

SD: Standard deviation, ADL: Activities of Daily Living, IADL: Instrumental Activities

of Daily Living

Table 2 Daily informal care time and personal costs of dementia care sorted by care-needs levels

			Support-	Care-need	Care-need	Care-need	Care-need	Care-need
			required level	level 1	level 2	level 3	level 4	level 5
Informal care	ADL	Mean [SD]	2.56 [3.23]	2.23 [2.54]	2.92 [2.90]	3.44 [2.90]	3.99 [2.40]	4.60 [3.85]
time (hours/day)		Median [IQR]	1.67 [2.00]	1.50 [2.50]	2.00 [3.00]	3.00 [3.50]	4.00 [3.00]	3.33 [4.00]
3/	IADL	Mean [SD]	2.35 [2.62]	2.46 [3.05]	2.88 [3.26]	2.82 [2.92]	3.03 [2.59]	3.45 [3.77]
		Median [IQR]	2.00 [2.00]	1.50 [2.00]	2.00 [2.00]	2.00 [2.50]	2.00 [3.13]	2.00 [4.00]
Personal cost	Informal care cost	Mean [SD]	1518 [2017]	1271 [1526]	1754 [1982]	2181 [2220]	2112 [2104]	2672 [2314]
of dementia care (US\$)		Median [IQR]	747 [1646]	709 [1440]	1090 [1697]	1366 [2459]	1535 [1466]	1939 [2240]
	OPP for LTC services covered by insurance	Mean [SD]	148 [190]	158 [174]	244 [209]	313 [217]	301 [202]	318 [218]
		Median [IQR]	49 [172]	49 [123]	172 [319]	368 [441]	368 [196]	368 [441]
	OPP for care services not covered by insurance	Mean [SD]	158 [336]	95 [156]	278 [695]	303 [543]	241 [579]	352 [998]
		Median [IQR]	49 [172]	49 [172]	49 [368]	172 [319]	49 [368]	49 [368]

ADL: Activities of Daily Living, IADL: Instrumental Activities of Daily Living, SD: Standard deviation, IQR: Interquartile range

OPP: Out-of-pocket payments LTC: Long-term care

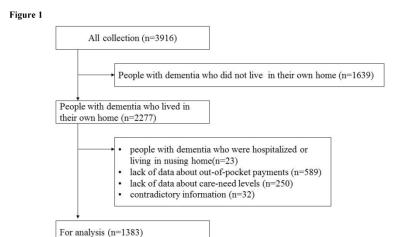


Figure 1: Selection process for the analysis
This diagram shows the flow of participants who we focused on.

338x190mm (300 x 300 DPI)

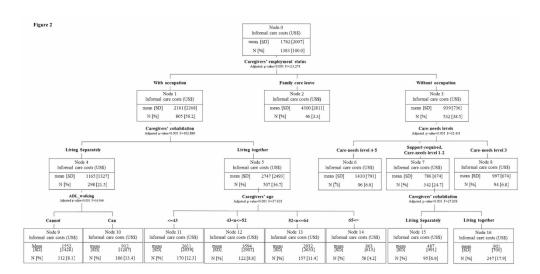


Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs
The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

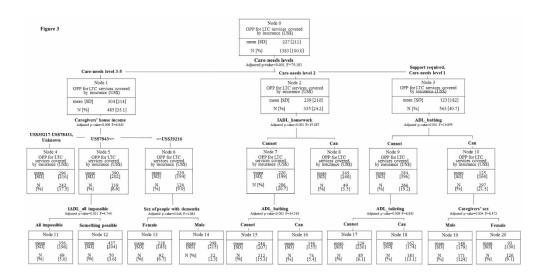


Figure 3: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

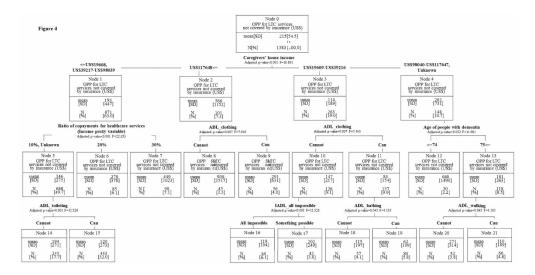


Figure 4: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract - p.1-2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found $-$ p.2-3
Introduction		and what was round pizes
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -
Dackground/rationale	2	p.4-5
Objectives	3	State specific objectives, including any prespecified hypotheses – p.5
Methods		
Study design	4	Present key elements of study design early in the paper – p.5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
seumg .		exposure, follow-up, and data collection – p.6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
r		participants – p.6 and p.10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable – p.6-10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group – p.6, 9
Bias	9	Describe any efforts to address potential sources of bias – p.18-19
Study size	10	Explain how the study size was arrived at – p.6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
C		describe which groupings were chosen and why – p.11-12
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		- p.11-12
		(b) Describe any methods used to examine subgroups and interactions – p.11-12
		(c) Explain how missing data were addressed-p.10
		(d) If applicable, describe analytical methods taking account of sampling strategy –
		Non applicable
		(e) Describe any sensitivity analyses – Non applicable
Results		(a) second any sensitivity analyses from approach
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
r	-	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed – p.12-13
		(b) Give reasons for non-participation at each stage – Non applicable
		(c) Consider use of a flow diagram - Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders – p.13 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest –
		Non applicable
Outcome data	15*	Report numbers of outcome events or summary measures – Table 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
main roouth	10	their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included –p.12-13
		adjusted for and why they were included -p.12-13

		(b) Report category boundaries when continuous variables were categorized – Non
		applicable (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period – Non applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses – p.13, Figure2-4
Discussion		
Key results	18	Summarise key results with reference to study objectives - p,14-15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias – p.18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence – p.15-18
Generalisability	21	Discuss the generalisability (external validity) of the study results –p.18-19
Other information		<u></u>
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based - p.21

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Classification tree model of the personal economic burden of dementia care by related factors of both people with dementia and caregivers in Japan: A cross-sectional online survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026733.R2
Article Type:	Research
Date Submitted by the Author:	07-May-2019
Complete List of Authors:	Nakabe, Takayo; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Uematsu, Hironori; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Wimo, Anders; Karolinska Institute, KI Alzheimer's Disease Research Center (ADRC) Imanaka, Yuichi; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health economics
Keywords:	Informal care, RUD, Cost, Classification, Japan

SCHOLARONE™ Manuscripts

- 1 Classification tree model of the personal economic burden of
- dementia care by related factors of both people with dementia and
- 3 caregivers in Japan: A cross-sectional online survey
- 5 Takayo Nakabe^a, Noriko Sasaki^a, Hironori Uematsu^a, Susumu Kunisawa^a, Anders Wimo^b,
- 6 Yuichi Imanaka^a

- 7 a Department of Healthcare Economics and Quality Management, Graduate School of
- 8 Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
- 9 b Aging Research Centre, Department of Neurobiology, Care Sciences and Society (NVS),
- 10 Karolinska Institutet and Stockholm University, Stockholm, Sweden
- 11 Corresponding author:
- 12 Yuichi Imanaka, Professor
- 13 Department of Healthcare Economics and Quality Management,
- 14 Graduate School of Medicine, Kyoto University
- 15 Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- 16 E-mail: imanaka-y@umin.net
- 17 Tel: +81-75-753-4454 Fax: +81-75-753-4455
- Word counts: 3750 words

Abstract

Objective:

- 21 The purpose of this study was to clarify the micro-level determinants of the economic
- burden of dementia care at home in Japanese community settings by classifying them into
- subgroups of factors related to people with dementia and their caregivers.

Methods

- A cross-sectional online survey was conducted from March 7 to March 14, 2016.
- Participants were recruited through the panels of Japanese research company. For the
- 27 calculation of informal care costs, the average wage stratified by sex and age group was
- used as the opportunity cost. We conducted a chi-square automatic interaction detection
- analysis to identify the factors related to each cost (informal care costs and out-of-pocket
- 30 payments for long-term care services) divided into sub categories.

Results

- From 4313 respondents, only 1383 caregivers in community-settings were included in
- this analysis. In the resultant classifications, informal care cost was mainly related to
 - caregivers' employment status. When caregivers acquired family care leave, informal
- care costs were the highest. On the other hand, out-of-pocket payments for long-term care
- were related to care-need levels and family economic status. ADL and IADL functions
- such as bathing, toileting, and cleaning were related to all costs.

Conclusion

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situations of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-need levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

48 Strengths and limitations of this study

- This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers.
- The chi-square automatic interaction detection dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.
- The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company.
- We only assessed objective burden of dementia care such as informal care time or
 costs, then we didn't consider the subjective burden of care and depressive symptoms.

1. Introduction

In the aging society of Japan, it is estimated that there are approximately 4.7 million people living with dementia and that there will be approximately 7 million people with dementia in 2025 [1]. Given that it is also estimated that the total number of people with dementia throughout the world will double every 20 years [2], we need to reconsider how to prepare for dementia care in the community.

Long-term care (LTC) services in Japan used by people with dementia in home care can be classified into three main types: (1) LTC insurance services, (3) LTC services not covered by insurance, and (3) informal care as mutual assistance by family members.

can be classified into three main types: (1) LTC insurance services, (3) LTC services not covered by insurance, and (3) informal care as mutual assistance by family members. When a person with dementia uses the LTC insurance service, the user bears 10% or 20% of the service expenses as out-of-pocket payments depending on the person's income (Article 49-2 of the Long-Term Care Insurance Act). Aside from such copayments, when LTC services not covered by insurance or exceeding the LTC insurance limit amount are used, people must pay the full amount. Furthermore, it has been pointed out that informal care is an important component of home care, yet it places a burden on caregivers [3,4]. Nevertheless, given the estimates of the societal costs of dementia care throughout the world, the impact of informal care is essential [5,6].

The Japanese government recommends policies to shift to patient-centered and homecentered care to reduce the fiscal burden of the insurance system on community-based integrated systems. While micro level of impact of dementia care has not been insufficiently understood[7], to construct a sustainable dementia care system, we clarified the personal economic burden of dementia care for different residence types and demonstrated that the cost at home in a community setting was equal to or higher than in various institutions[8]. Sustainable dementia care systems should be provided not only to benefit the government or insurance system but also to benefit people with dementia and their caregivers. Furthermore, although there are increasing dementia care costs related to the severity of dementia [9–12], it can be seen that the cost of dementia care increases through the interaction of characteristics or situations of people with dementia and their caregivers. Given this interaction, it is necessary to understand the actual conditions by classifying cases where the greatest economic burdens in dementia care are felt.

Therefore, the purpose of this study is to clarify the micro-level determinants of the economic burden of dementia care at home in community settings by classifying them into subgroups of factors related to people with dementia and their caregivers.

2. Methods

This study was a cross-sectional study, based on a self-rated, online questionnaire survey. The economic burden of dementia care in this study is roughly divided into informal care costs as opportunity costs and out-of-pocket payments that people actually

2.1. Online survey for data collection on people with dementia and their caregivers

99 made.

In this cross-sectional study, we conducted an online questionnaire survey from March 3 to March 14, 2016 in cooperation with a commercial research company (Automatic Internet Research System, Macromill, Inc., Japan). Potential participants fulfilled the following criteria: (1) aged 30 years or older, (2) non-professional caregiver of someone with dementia, (3) caring for only one person with dementia, and (4) having no conflicts of interest with advertising or marketing research entities. A total of 3,600 participants were recruited from the research company's registrants and divided into different age groups (850 participants each in the groups aged in 30's, 40's, 50's, and 60's; 200 participants in the group aged ≥70 years). We excluded caregivers under 29 years of age because, in Japan, they are estimated to represent only 2% of all caregivers [13].

2.2. Questionnaire

Resource Utilization in Dementia (RUD) [14,15] is a widely used tool to collect data about resource use in persons with dementia and their caregivers [15]. RUD is available in more than 60 languages and it is widely used throughout the world. In this study, we used RUD (Japanese version) items related to the characteristics of people with dementia and their caregivers, informal care time, employed situation of caregivers, residential

types of people with dementia, and resource use of nursing care services. We added items related to LTC services and residential types. The questionnaire components were divided into four categories: (1) characteristics of people with dementia, (2) caregivers' situations (e.g., employment and cohabitation status), (3) informal care duration and (4) frequency of utilization of LTC services.

In this project, we could not get information about severity of dementia data because it was regarded as too difficult for caregivers to estimate that. However, we asked for substantial information about care-needs levels. Care needs reflect function, which is a stronger explanatory factor for costs than cognition [16]. Care-needs levels (Supportneeds levels 1-2, Care-needs levels 1-5) determine whether a person is qualified to apply for LTC insurance (Article 27 and 32 of the Long-Term Care Insurance Act). Once an insured person applies to use any LTC service, their mental and physical status is first be assessed by certified researchers using a basic checklist. Based on this checklist, careneed times are estimated using an evidence-based computer algorithm. This algorithm was created from the data on how much LTC services were required in 48 hours for more than 3,000 elderly people as a one-minute time study [17]. After estimating the care-needs time, care-needs levels were determined by an expert panel to indicate the amount of care required by each person while taking into consideration their symptoms and functional

capability. High care-needs levels indicate increasing dependency and requirement for LTC services [18]. Care-need levels also affect the base amount of the maximum payment for LTC services allowance categories covered by insurance.

2.3. Informal care time

In the questionnaire, informal care time was divided in three domains; support for Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL) and Supervision [15]. We asked for the mean caregiving time per day and mean caregiving days per week in the past 30 days. We then multiplied the mean daily caregiving time and caregiving days per week to calculate both weekly and monthly informal care time. Supervision time was excluded in calculating informal care time and costs because supervision could be done simultaneously when caregiving for ADL and IADL functions, or in other housekeeping for people without dementia and other family members.

2.4. Cost estimation

In this study, we identified three costs as follows: informal care costs, out-of-pocket payments for LTC services covered by insurance (copayments), and out-of-pocket payments for LTC services not covered by insurance. To calculate the informal care costs, there are two methods that are frequently used: the "opportunity cost" and "replacement cost" approaches [19–21]. With the opportunity cost approach it is assumed that there is

an alternative use of caregiving time (such as paid work) and thus estimates the costs due to this lost opportunity, whereas the replacement cost approach assumes that informal care services can be valued similarly to home care services provided by professional caregivers. Even though many previous studies on the economic valuation of informal care have used the replacement cost approach [20], the 'opportunity cost approach' is recommended by the developers of RUD for estimating informal care costs [2,5,22]. We used the opportunity cost approach to assess informal care time as forgone wages for caregivers [2,5,9]. We used caregivers' monthly mean wages stratified by sex and age to value informal care. We assessed informal care costs for caregivers who were not working or who were over 65 years of age at 30% of the mean wage of employed caregivers [23– 26]. A maximum daily informal care time of 16 hours was assumed, in order to allow for other activities such as cooking for other family members and sleep [12,27,28]. Caregivers were asked to state their contribution to the total informal care in 5-point scale of 20%. In order to treat all caregivers as primary caregivers and estimate the costs associated with all informal care provided to a patient, we adjusted the informal care time by dividing its time by the median of these contribution levels, according to RUD instructions. This adjustment of informal care time was done only when calculating the informal care costs.

Out-of-pocket payments for LTC services both covered and not covered by insurance were included in the questionnaire. We asked for these out-of-pocket payments through categories that were easy to answer (no payments, under JPY9,999, JPY10,000–24,999, JPY25,000-49,999, JPY50,000-74,999, JPY75,000-99,999, JPY100,000-124,999, JPY125.000-149.999. JPY150.000-299.999. JPY300.000-499.999. over JPY500,000). We adjusted the answers by capping the upper limit of the limit amount (Care-needs level 1; JPY166,920, Care-needs level 5; JPY 360,650) depending on each care-needs level or each ratio of copayment (10% or 20%) if the answers were over it. These costs were substituted by a median of each category, and we calculated the weighted average as the following formula: $\frac{\sum_{i=0}^{k} (median \ of \ category_i) * n_i}{\sum_{i=0}^{k} n_i}$ All costs were converted from Japanese yen to US dollars using the purchasing power parity rate in 2016 (\$102 = \$1) provided by the Organization for Economic Cooperation and Development.

2.5. Inclusion and exclusion criteria

With respondents, we only focused on community settings for people with dementia who lived in their own home. We excluded respondents based on the following criteria:

(1) people with dementia who were hospitalized or lived in nursing home, (2) lack of data about out-of-pocket payments for LTC services or care-needs levels, (3) contradictions

in relationships between caregivers and people with dementia, and (4) contradictions in care time (over 24 hours). When the age difference was less than 15 years and the person with dementia was a parent or child (not in-law), these cases were identified as contradictions.

2.6. Statistical analysis

We conducted descriptive analysis for characteristics of people with dementia and caregivers. We then stratified the informal care time and dementia care costs by the careneeds level and cohabitation to test our hypothesis that high care-needs level or people who lives with caregivers need more informal care time. In this description, we didn't adjusted informal care time by caregivers' contribution rate.

Also, we used chi-square automatic interaction detection (CHAID) analysis to identify the characteristics of people with dementia and caregivers who needed more care services. In CHAID analysis, the dependent variable would be divided into sub-groups by the most explanatory independent variables. These groups could be formed by any possible combination with all independent variables. Especially, we conducted an exhaustive CHAID analysis that repeats the trial until it finds the optimal combination of all independent variables. The CHAID dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.

We set informal care costs, out-of-pocket payments for LTC services covered by insurance and out-of-pocket payments for LTC services not covered by insurance as dependent variables. Then, we used the characteristics of people with dementia (age, sex, care-need level, dementia types, ADL and IADL functions, and primary disease as the reason for care), the characteristics of caregivers (age, sex, marital status, children, cohabitation with people with dementia, visiting time, relationship to people with dementia, and occupation), and economic factors (the ratio of copayments for healthcare services and family income of caregivers). We treated the ratio of copayments for healthcare services as income proxy variable because this ratio was decided by income of people with dementia. We set the following criteria: tree depth was limited to three levels, no group smaller than 100 was split, no group smaller than 30 was formed, and the p-value for all statistical tests was under 0.05.

- All data were analyzed using IBM SPSS Statistics 23.0 for Windows (SPSS Japan Inc.,
- 220 Tokyo, Japan).
- 221 2.6. Ethical considerations and consents
- 222 This study was approved by the Ethics committee of Kyoto University Graduate School
- of Medicine (R0487). All participants were volunteers and they were informed that there
- was no obligation to participate in the study, and only people who consented to this study

- completed the questionnaire.
- 2.7. Patient and public involvement
- Patients were not formally involved in this study; however, their caregivers participated
- in our online-based questionnaire survey. Caregivers, who constituted the online panel,
- were sent the invitation by the Internet research company. Patients and their caregivers
- can view the results of this study when it is published in a peer-reviewed journal.

3. Results

- 3.1. Characteristics of people with dementia and their caregivers
- A total of 3,916 caregivers answered the questionnaire. We focused only on people
- with dementia who lived in their own home (n=2277). However, we excluded the data
- according to the criteria and the final sample comprised 1,383 respondents (Figure 1).
- Table 1 shows the characteristics of people with dementia and their caregivers. More
- than half of the people with dementia were female (66.7%), and the mean age was 81.8
- years. In contrast, more than half of the caregivers were male (61.7%), and the mean age
- was 52.2 years. 1,233 people (89.2%) responded that ADL functions such as meals and
- 240 toilet use could be managed by themselves, while IADL functions such as cleaning and
- shopping could be done by one person in the same way. There were only 788 people
- 242 (57.0%) who did the latter by themselves.

3.2. Informal care time and costs of dementia care

The mean daily informal care time was 9.36 hours in total. The time for only ADL was 4.97 hours and for only IADL was 4.39 hours. On the other hand, monthly informal care time (ADL+IADL) was 166.32 hours. Table 2 shows the differences in daily informal care time and personal cost of dementia care among the care-need levels. In this table, we didn't adjust by contribution rate. Informal care times increased with care-needs levels, especially in ADL. Out-of-pocket payments for LTC services were less than informal care costs in all of the care-needs levels.

3.3. Classification with classification trees

Figure 2 shows the results of CHAID analysis for informal care costs. Informal care costs were related to caregivers' employment status, cohabitation, age, and care-needs levels or ADL function of people with dementia. When the caregiver acquired family care leave, informal care cost was the highest (node 2). For the caregivers who were between 43-52 years old (node 12) and worked outside the home as well as cohabited with people with dementia, informal care costs were high, similar to caregivers who acquired family care leave (node 2). Even if the caregiver did not work, informal care costs were higher with high care-needs levels (node 6-8). The costs for cohabiting caregivers (node 5) were higher than for those not cohabiting (node 4). For those not cohabiting and the person

with dementia could not walk without assistance (node 9), informal care costs were higher than for those that could walk (node 10).

Out-of-pocket payments for LTC services covered by insurance were related to careneed levels, ADL or IADL functions, sex (both the people with dementia and caregivers)
and caregivers' household incomes (Figure 3). Especially, if the people with dementia
could bathe or use the toilet by themselves, out-of-pocket payments would be about 65%
lower (nodes 9-10, 15-18). On the other hand, if out-of-pocket payments were not covered
by insurance, they were related to caregivers' household incomes, income proxy variable,
ADL or IADL functions of people with dementia, and age of people with dementia
(Figure 4). Both the out-of-pocket payments that were covered by insurance and those
that were not were related to caregivers' house hold income or ADL functions which
affected the ability to pay and service use volume.

4. Discussion

In this study, we first demonstrated that informal care time for ADL or IADL functions increased with high care-needs levels as our hypothesis stipulated (Care-need level 1: 2.2hours, level 3: 3.4 hours. level 5: 4.6 hours). Second, we established that the combination of characteristics of both people with dementia and their caregivers were related to dementia care costs through the classification tree analysis. Caregivers'

employment and cohabitation status were mainly related to informal care costs, and the costs were the highest when caregivers took nursing care leave, which caregivers leave work due to caregiving. Furthermore, when caregivers worked at an occupation and lived separately, or the people with dementia could not walk, the costs doubled. Out-of-pocket payments for LTC services covered by insurance were mainly related to care-need levels and ADL and IADL functions. In the case of low care-needs levels, where care was needed for toileting or bathing, high out-of-pocket payments were required for LTC insurance services. On the other hand, out-of-pocket payments were related to caregivers' household income levels or income proxy variable. Caregivers with high annual incomes (more than \$117,648 US) made out-of-pocket payments for dementia care of full amounts that were two to five times more than others.

Informal care costs were mainly related to caregivers' characteristics such as employment or cohabitation status in the classification tree, which illustrated related factors by order of precedence. In many previous studies, ADL functions or dementia severity were explained as related factors in regression models [9–12]. Some studies showed caregivers' characteristics such as employment status were related to informal care costs [9,29,30], but few studies considered all of the caregivers' characteristics. Thus, caregiver factors may be as important as factors related to people with dementia are.

Furthermore, we considered the combination of characteristics of both people with dementia and their caregivers. For example, informal care costs doubled when caregivers lived separately and people with dementia could not walk. Many previous studies established the determinants by regression analysis[9,12,31–34]. Although it is possible to understand the influence on the objective variable adjusted in the multivariate by regression analysis, the combinations between explanatory variables have not been clarified. CHAID analysis provided the classification only for related characteristics in the outcome. Such combinations suggest that support should be provided to caregivers who cannot live with people with dementia or caregivers who are not employed (Figure 2, Node 3-4).

The association between out-of-pocket payments for LTC services covered by insurance and care-need levels is reasonable because the benefit limit standard amounts for formal care services at home are decided in relation to care-need levels[35]. In addition, when people with dementia had a high care-needs level and their caregiver's household income was high, out-of-pocket payments were high. Because the determination of service usage within the limit amount is a free contract, people with dementia and their caregivers may decide how they use formal care services depending on how much they can pay for services. High care-needs levels [36], age[10,34,36,37]

and sex[10,36] were related to the high costs of LTC services. Even for low care-needs levels, the cost may be high when people with dementia need assistance with bathing or toileting. This was affected by LTC insurance services providing specific substitutions, such as bath assistance, and also Ku et al.'s or Dodel et al.'s ADL functions were related to the social care costs[9,30].

Similarly, economic variables such as household income and income proxy variable were mainly related to out-of-pocket payments for LTC services not covered by insurance (Figure 4). This is because people must pay the full amount if they use LTC services without insurance. In the United States, high copayments are required for the use of LTC services; however, these copayments were related to age, sex, and comorbidities in the cohort study [37]. A part of the result of Hurd et al. was similar to our results in the case of the payments that were covered by insurance for the use of LTC services. Out-ofpocket payments not covered by insurance might occur for over the limit standard amounts or the use of LTC services not covered by insurance (e.g. feeding service[38]). According to the questionnaire responses, people tended to pay for expendables such as diapers, employment of housekeepers, and home repair such as handrail installation as out-of-pocket payments not covered by LTC insurance. Furthermore, except when caregivers' income was high, the cost did not change significantly due to differences in

ADL and IADL functions as it did for the payments that were covered by insurance.

These application examples were not really affected by ADL or IADL functions.

From the viewpoint of independent variables, if people with dementia lacked some ADL function, then costs might be higher but in the case of IADL functions this was reversed. There is a possibility that some services are used to support the independent lives of people with dementia. Some people with dementia who can do housework by themselves might move or walk around more, and therefore use more LTC services like commuting for care (day service) or commuting for rehabilitation. Also, care-need levels were not related to out-of-pocket payments not covered by insurance. The above application examples were also not related to care-needs levels. The relationship of cohabitation or employment status was the same as in previous studies [9,29,32]. While differences of burden of dementia care depended on the dementia types that existed and were pointed out [24], dementia types were not related to any other factors in this study. In our CHAID analysis, family caregivers' economic status or severity (care-needs levels) might have been more important than dementia types to dementia care costs. In creating policy for LTC services in an aging society, we must understand the actual conditions from not only a societal but also a personal perspective. This is true even if from a societal viewpoint, the societal cost of dementia care in the community has been established by

other countries to be greater than that in institutional care [39]. Furthermore, we need a wide range of perspectives of stakeholders to discuss the dementia care system, while almost all studies of economic burden of dementia stood on societal or payers' viewpoint[7,19–21]. Then, as a first step, we need to understand what people with dementia and their family caregivers are already spending too much money on. We need to recognize the complicated combination of characteristics associated with people with dementia and their caregivers. To this point, the results of this classification could be useful to understanding which situation requires more resources depending on cost types. Our results may suggest that a sustainable dementia care system in Japan should be reconstructed from a personal viewpoint.

There are some limitations to this study. First, we conducted an online questionnaire survey with caregivers of people with dementia. Traditionally, respondents who use the Internet tend to be male and relatively young, reflecting the general characteristics of online research [40–42]. The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company [43]. Certainly, we cannot extrapolate the representative value in each node of the CHAID tree to the population as a whole. However, this study focused on finding a combination of independent variables related to

the dependent variables (informal care cost and financial burden), taking into account the interaction between multiple independent variables. The significance of subgroups made by combinations of variables may not change significantly even if the population changes. Therefore, in this study, influence due to the difference between this sample and general public is not considered to be a practical problem. However, further research (e.g. a paper-based questionnaire survey mailed to the family caregivers association) to collect representative samples might be needed in the future. Second, it was impossible to measure the response rate in this study. Samples were collected from an online panel until the target number set in each age category was achieved. Third, we didn't consider the subjective burden of care and depressive symptoms. These mental burdens are considered to be important factors in explaining the actual state of care costs, and many previous studies in Japan have covered subjective costs [44–46]. In the future, in addition to the burden of time and money, it would be preferable to measure subjective burdens. Fourth, we estimated informal care costs only by the opportunity cost approach. Some studies indicated results estimated by both opportunity cost approach and replacement cost approach. The opportunity cost approach might be underestimated in comparison to the replacement approach[9,37]

Conclusions

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situation of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-needs levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

Footnotes

- *Abbreviations*
- 401 LTC: Long-Term Care
- 402 RUD: Resource Utilization in Dementia
- 403 ADL: Activities of Daily Life
- 404 IADL: Instrumental Activities of Daily Life
- 405 CHAID analysis: chi-square automatic interaction detection analysis

None.

406	Authors' contribution
407	TN, SN and YI designed the study. All authors discussed for preparing the questionnaire.
408	TN mainly analyzed all data, and HU, SK, AW and YI advised for analysis. TN prepared
409	the draft of the manuscript, then all authors contributed to rewrite it. All authors read and
410	approved the final manuscript.
411	Funding sources
412	This study was financially supported by a Health Sciences Research Grant from the
413	Ministry of Health, Labour and Welfare of Japan (H27-ninntishou-ippan-001), the Japan
414	Foundation for Aging and Health (H27), and a Grant-in-Aid for Scientific Research from
415	the Japan Society for the Promotion of Science ([A]16H02634). The funders had no role
416	in the study design, data collection and analysis, decision to publish, or preparation of the
417	manuscript.
418	Competing interest
419	None declared.
420	Acknowledgements
421	None.
422	Conflicts of interest

- Data sharing statement
- able. No additional data are available.

427	Refe	erences
428	1	Ninomiya T, Kiyohara Y, Obara T, et al. A study on future estimation of the
429		elderly population of dementia in Japan Grant-in-Aid for Scientific Research for
430		Ministru of Health, Labor and Welfare in 2014(H26-Tokubetsu-Shitei-036).
431		2014. https://mhlw-
432		grants.niph.go.jp/niph/search/NIDD00.do?resrchNum=201405037A
433	2	Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: the global
434		impact of dementia. 2015.https://www.alz.co.uk/research/world-report-2015
435		(accessed 3 Apr 2016).
436	3	Wimo A, Jönsson L, Fratiglioni L, et al. The societal costs of dementia in
437		Sweden 2012 - relevance and methodological challenges in valuing informal
438		care. Alzheimers Res Ther 2016;8:59. doi:10.1186/s13195-016-0215-9
439	4	Wimo A, Strauss E Von, Nordberg G. Time spent on informal and formal care
440		giving for persons with dementia in Sweden. <i>Heal Po</i> 2002; 61 :255–68.
441	5	Wimo A, Prince M. World Alzheimer Report 2010 THE GLOBAL ECONOMIC
442		IMPACT OF DEMENTIA.
443		2010.https://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive
444		Summary.pdf (accessed 3 Apr 2016).
445	6	Wimo A, Ali G, Wu Y, et al. The worldwide costs of dementia 2015 and

446		comparisons with 2010. Alzheimer's Dement 2016;:1–7.
447		doi:10.1016/j.jalz.2016.07.150
448	7	Jönsson L, Lin P-J, Khachaturian AS. Special topic section on health economics
449		and public policy of Alzheimer's disease. <i>Alzheimer's Dement</i> 2017; 13 :201–4.
450		doi:10.1016/j.jalz.2017.02.004
451	8	Nakabe T, Sasaki N, Uematsu H, et al. The personal cost of dementia care in
452		Japan: A comparative analysis of residence types. Int J Geriatr Psychiatry
453		2018; 33 :1243–52. doi:10.1002/gps.4916
454	9	Ku L-JE, Pai M-C, Shih P-Y. Economic Impact of Dementia by Disease
455		Severity: Exploring the Relationship between Stage of Dementia and Cost of
456		Care in Taiwan. <i>PLoS One</i> 2016; 11 :e0148779.
457		doi:10.1371/journal.pone.0148779
458	10	Leicht H, Heinrich S, Heider D, et al. Net costs of dementia by disease stage.
459		Acta Psychiatr Scand 2011; 124 :384–95. doi:10.1111/j.1600-0447.2011.01741.x
460	11	Leicht H, König H-H, Stuhldreher N, et al. Predictors of Costs in Dementia in a
461		Longitudinal Perspective. <i>PLoS One</i> 2013; 8 :e70018.
462		doi:10.1371/journal.pone.0070018
463	12	Farré M, Haro JM, Kostov B, et al. Direct and indirect costs and resource use in

464		dementia care: A cross-sectional study in patients living at home. Int J Nurs Stud
465		2016; 55 :39–49.
466	13	Ministry of Internal Affairs and Communications. Survey on Time Use and
467		Leisure Activities in 2016. 2017.
468		http://www.stat.go.jp/data/shakai/2016/pdf/gaiyou2.pdf (accessed 6 Mar 2018).
469	14	Wimo A, Jonsson L, Zbrozek A. The Resource Utilization in Dementia (RUD)
470		instrument is valid for assessing informal care time in community-living patients
471		with dementia. J Nutr Health Aging 2010;14:685–
472		90.http://www.ncbi.nlm.nih.gov/pubmed/20922346 (accessed 3 Feb 2016).
473	15	Wimo A, Gustavsson A, Jonsson L, et al. Application of resource utilization in
474		dementia (RUD) instrument in a global setting. Alzheimer's Dement 2013;9:429-
475		35. doi:10.1016/j.jalz.2012.06.008
476	16	Mesterton J, Wimo A, By A, et al. Cross sectional observational study on the
477		societal costs of Alzheimer's disease. Curr Alzheimer Res 2010;7:358-
478		67.http://www.ncbi.nlm.nih.gov/pubmed/19939223 (accessed 11 Jun 2018).
479	17	Ministry of Health Labour and Welfare. Mechanism and procedures for
480		cartification of care-needs levels. https://www.mhlw.go.jp/file/05-Shingikai-
481		11901000-Koyoukintoujidoukateikyoku-Soumuka/0000126240.pdf (accessed 12

	Feb 2019).
18	Lin H-R, Otsubo T, Imanaka Y. Survival analysis of increases in care needs
	associated with dementia and living alone among older long-term care service
	users in Japan. BMC Geriatr 2017;17:182. doi:10.1186/s12877-017-0555-8
19	Mauskopf J, Mucha L. A Review of the Methods Used to Estimate the Cost of
	Alzheimer's Disease in the United States. Am J Alzheimer's Dis Other
	Dementias 2011; 26 :298–309. doi:10.1177/1533317511407481
20	Quentin W, Sg R, Luppa M, et al. Cost-of-illness studies of dementia: a
	systematic review focusing on stage dependency of costs. Acta Psychiatr Scand
	2010; 121 :243–59. doi:10.1111/j.1600-0447.2009.01461.x
21	Schaller S, Mauskopf J, Kriza C, et al. The main cost drivers in dementia: a
	systematic review. Int J Geriatr Psychiatry 2015;30:111–29.
	doi:10.1002/gps.4198
22	Wimo A, Winblad B, Jönsson L. An estimate of the total worldwide societal
	costs of dementia in 2005. Alzheimer's Dement 2007;3:81–91.
	doi:10.1016/j.jalz.2007.02.001
23	Johannesson M, Borgquis L, Jönsson B, et al. The costs of treating hypertension -
	an analysis of different cut-off points. <i>Health Policy (New York)</i> 1991; 18 :141–
	19 20 21

500		50. doi:10.1016/0168-8510(91)90095-F
501	24	Costa N, Ferlicoq L, Derumeaux-burel H, et al. Comparison of Informal Care
502		Time and Costs in Different Age-Related Dementias: A Review. Biomed Res Int
503		2013; 2013 :1–15.
504	25	Åkerborg Ö, Lang A, Wimo A, et al. Cost of Dementia and Its Correlation With
505		Dependence. J Aging Health Published Online First: 26 January 2016.
506		doi:10.1177/0898264315624899
507	26	Bergvall N, Brinck P, Eek D, et al. Relative importance of patient disease
508		indicators on informal care and caregiver burden in Alzheimer 's disease. <i>Int</i>
509		Psychogeriatrics 2011;:73–85. doi:10.1017/S1041610210000785
510	27	Rattinger G, Schwartz S, Mullins C, et al. Dementia severtiy and the longitudinal
511		costs of informal care in the Cache County population. Alzheimer's Dement
512		2015;11:946–54.
513	28	Gustavsson A, Brinck P, Bergvall N, et al. Predictors of costs of care in
514		Alzheimer's disease: a multinational sample of 1222 patients. <i>Alzheimers Dement</i>
515		2011; 7 :318–27. doi:10.1016/j.jalz.2010.09.001
516	29	Gervès C, Chauvin P, Bellanger MM. Evaluation of full costs of care for patients
517		with Alzheimer 's disease in France: The predominant role of informal care.

518		Health Policy (New York) 2014;116:114–22. doi:10.1016/j.healthpol.2014.01.001
519	30	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
520		disease: GERAS study baseline results. <i>Alzheimers Dement</i> 2015;11:933–45.
521		doi:10.1016/j.jalz.2015.02.005
522	31	Hurd MD, Martorell P, Delavande A, et al. Monetary Costs of Dementia in the
523		United States. N Engl J Med 2013; 368 :1326–34. doi:10.1056/NEJMsa1204629
524	32	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
525		disease. Alzheimer's Dement 2015;11:933–45.
526	33	Peña-Longobardo L, Oliva-moreno J. Economic valuation and determinants of
527		informal care to people with Alzheimer's disease. Eur J Heal Econ
528		2015; 16 :507–15. doi:10.1007/s10198-014-0604-6
529	34	André Hajek , Christian Brettschneider, Annette Ernst, Tina Posselt, Birgitt
530		Wiese, Jana Prokein, Siegfried Weyerer, Jochen Werle, Angela Fuchs et al.
531		Longitudinal predictors of informal and formal caregiving time in community-
532		dwelling dementia patients. Soc Psychiatry Psychiatr Epidemiol 2015;:1–10.
533	35	Tokyo Metropolitan Government. The Long-term Care Insurance System: Long-
534		term Care Service Costs to Be Paid by th User.
535		http://www.fukushihoken.metro.tokyo.jp/kourei/koho/kaigo_pamph.files/p.10kai

536		gohoken-english.pdf (accessed 12 Feb 2019).
537	36	Huei-Ru Lin, Tetsuya Otsubo and YI. The Effects of Dementia and Long-Term
538		Care Services on the Deterioration of Care-needs Levels of the Elderly in Japan.
539		Medicine (Baltimore) 2015;94:1–7.
540	37	Michael D. Hurd, Paco Martorell, Adeline Delavande, Kathleen J. Mullen and
541		KML. Monetary Costs of Dementia in the United States. N Engl J Med
542		2013; 368 :1326–34. doi:10.1056/NEJMsa1204629.Monetary
543	38	Ministry of Health Labour and Welfare. Reference case examples of long-term
544		care insurance services for constructing community-based integrated care system.
545		2016. https://www.mhlw.go.jp/file/06-Seisakujouhou-12300000-
546		Roukenkyoku/guidebook-bunkatu1.pdf (accessed 12 Feb 2019).
547	39	König H, Leicht H, Brettschneider C, et al. The Costs of Dementia From the
548		Societal Perspective : Is Care Provided in the Community Really Cheaper than
549		Nursing Home Care ? <i>JAMDA</i> 2014; 15 :117–26.
550		doi:10.1016/j.jamda.2013.10.003
551	40	Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting
552		Results of Internet E-Surveys (CHERRIES). J Med Internet Res 2004;6:e34.
553		doi:10.2196/jmir.6.3.e34

554	41	Eysenbach G, Wyatt J. Using the Internet for Surveys and Health Research. J
555		Med Internet Res 2002;4:e13. doi:10.2196/jmir.4.2.e13
556	42	Fujihara S, Inoue A, Kubota K, et al. Caregiver Burden and Work Productivity
557		Among Japanese Working Family Caregivers of People with Dementia. Int J
558		Behav Med 2018;:1–11. doi:10.1007/s12529-018-9753-9
559	43	van Gelder MMHJ, Bretveld RW, Roeleveld N. Web-based Questionnaires: The
560		Future in Epidemiology? Am J Epidemiol 2010;172:1292–8.
561		doi:10.1093/aje/kwq291
562	44	Washio S, Toyoshima Y, Yamazaki R, et al. [Factors related to the care burden
563		of family caregivers - focusing on the care burden of caregivers of elderly who
564		needs nursing care -]. Japanese J Clin Exp Med = Rinshou to Kenkyuu
565		2012; 89 :1687–91.
566	45	Arai Y, Kumamoto K, Mizuno Y, et al. Depression among family caregivers of
567		community-dwelling older people who used services under the Long Term Care
568		Insurance program: a large-scale population-based study in Japan. Aging Ment
569		Health 2014; 18 :81–91. doi:10.1080/13607863.2013.787045
570	46	Washio S, Nogami Y, Motoyama S, et al. [Long-Term Care Insurance Act
571		amendment and care burden of family caregivers for elderly who need long-term

care at home]. Japanese J Clin Exp Med = Rinshou to Kenkyuu 2015;**92**:75–9.

Figure 1: Selection process for the analysis

This diagram shows the flow of participants who we focused on.

Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs

The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 3: Classification tree of chi-square automatic interaction detection for outof-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 4: Classification tree of chi-square automatic interaction detection for outof-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily

Living; SD, Standard deviation; LTC, Long-term care

Table 1 Characteristics of people with dementia and caregivers

People with	Dementia	N=1383			
	Age, mean±SD, y	81.8±10.3			
	Sex, n (%)				
	Female	922 (66.7)			
	Male	461 (33.3)			
	Care-needs level, n (%)	` ,			
	Support-Needs Level 1-2	253 (18.3)			
	Care-Needs Level 1	310 (22.4)			
	Care-Needs Level 2	335 (24.2)			
	Care-Needs Level 3	258 (18.7)			
	Care-Needs Level 4	122 (8.8)			
	Care-Needs Level 5	105 (7.6)			
	ADL/IADL functional capabilities	100 (7.0)			
	ADL score (0-6), mean±SD	3.2±2.0			
	IADL score (0-7), mean±SD	1.3 ± 1.6			
	Ratio of copayments for healthcare services, n(%				
	10%	961 (69.5)			
	20%	137 (9.9)			
	30%	157 (9.9)			
	Unknown	137 (11.4) 128 (9.3)			
	Types of Dementia, n(%)	120 (7.3)			
	Alzheimer's disease	751 (54.3)			
Caregivers	Alzheimer s'disease	731 (34.3)			
Caregivers	Age, mean \pm SD	52.2±13.1			
	Sex, n (%)	32.2-13.1			
	Female	530 (38.3)			
	Male	853 (61.7)			
	Relationship, n (%)	833 (01.7)			
	Mother	575 (41.6)			
	Mother-in-law				
	Father	169 (12.2)			
	Father-in-law	288 (20.8)			
		90 (6.5)			
	Spouse	99 (7.2)			
	Sibling	11 (0.8)			
	Child	10 (0.7)			
	Friend	5 (0.4)			
	Other (including grandparents)	136 (9.8)			
	Contribution level for caregiving, n (%)	205 (20.0)			
	1-20%	395 (28.6)			
	21-40%	355 (25.7)			
	41-60%	241 (17.4)			
	61-80%	166 (12.0)			
	81-100%	226 (16.3)			
	Currently employed, n (%)	532 (38.5)			

SD: Standard deviation, ADL: Activities of Daily Living, IADL: Instrumental Activities

of Daily Living

Table 2 Daily informal care time and personal costs of dementia care sorted by care-needs levels

			Support-	Care-need	Care-need	Care-need	Care-need	Care-need
			required level	level 1	level 2	level 3	level 4	level 5
Informal care	ADL	Mean [SD]	2.56 [3.23]	2.23 [2.54]	2.92 [2.90]	3.44 [2.90]	3.99 [2.40]	4.60 [3.85]
time (hours/day)		Median [IQR]	1.67 [2.00]	1.50 [2.50]	2.00 [3.00]	3.00 [3.50]	4.00 [3.00]	3.33 [4.00]
	IADL	Mean [SD]	2.35 [2.62]	2.46 [3.05]	2.88 [3.26]	2.82 [2.92]	3.03 [2.59]	3.45 [3.77]
		Median [IQR]	2.00 [2.00]	1.50 [2.00]	2.00 [2.00]	2.00 [2.50]	2.00 [3.13]	2.00 [4.00]
Personal cost	Informal	Mean [SD]	1518 [2017]	1271 [1526]	1754 [1982]	2181 [2220]	2112 [2104]	2672 [2314]
of dementia care (US\$)	care cost	Median [IQR]	747 [1646]	709 [1440]	1090 [1697]	1366 [2459]	1535 [1466]	1939 [2240]
, ,	OPP for	Mean [SD]	148 [190]	158 [174]	244 [209]	313 [217]	301 [202]	318 [218]
	LTC services covered by insurance	Median [IQR]	49 [172]	49 [123]	172 [319]	368 [441]	368 [196]	368 [441]
	OPP for	Mean [SD]	158 [336]	95 [156]	278 [695]	303 [543]	241 [579]	352 [998]
	care services not covered by insurance	Median [IQR]	49 [172]	49 [172]	49 [368]	172 [319]	49 [368]	49 [368]

ADL: Activities of Daily Living, IADL: Instrumental Activities of Daily Living, SD: Standard deviation, IQR: Interquartile range

OPP: Out-of-pocket payments LTC: Long-term care

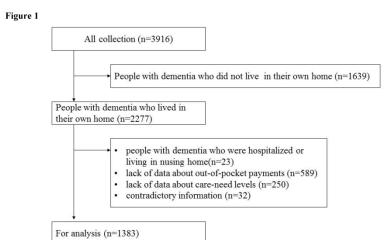


Figure 1: Selection process for the analysis This diagram shows the flow of participants who we focused on.

338x190mm (300 x 300 DPI)

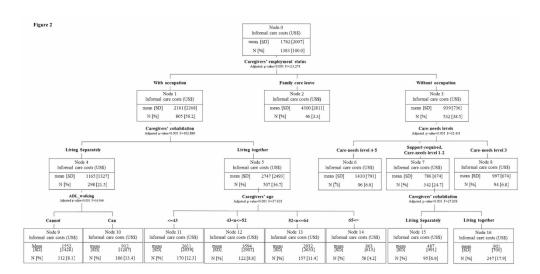


Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs
The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

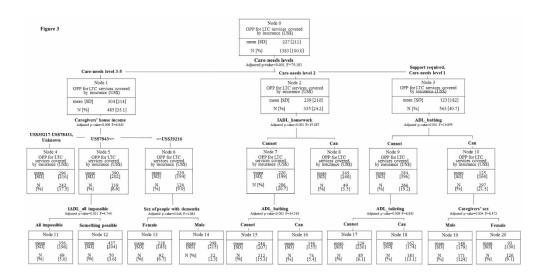


Figure 3: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

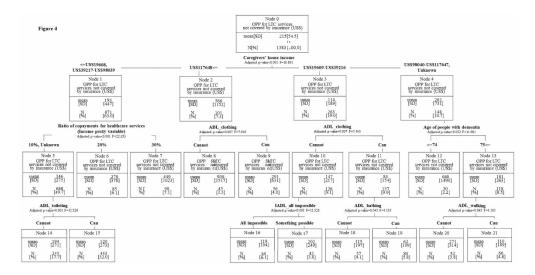


Figure 4: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract - p.1-2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found $-$ p.2-3
Introduction		and what was round pizes
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -
Dackground/rationale	2	p.4-5
Objectives	3	State specific objectives, including any prespecified hypotheses – p.5
Methods		
Study design	4	Present key elements of study design early in the paper – p.5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
seumg .		exposure, follow-up, and data collection – p.6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
r		participants – p.6 and p.10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable – p.6-10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group – p.6, 9
Bias	9	Describe any efforts to address potential sources of bias – p.18-19
Study size	10	Explain how the study size was arrived at – p.6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
C		describe which groupings were chosen and why – p.11-12
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		- p.11-12
		(b) Describe any methods used to examine subgroups and interactions – p.11-12
		(c) Explain how missing data were addressed-p.10
		(d) If applicable, describe analytical methods taking account of sampling strategy –
		Non applicable
		(e) Describe any sensitivity analyses – Non applicable
Results		(g) Describe any sensitivity analyses Tron appreciate
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
r	-	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed – p.12-13
		(b) Give reasons for non-participation at each stage – Non applicable
		(c) Consider use of a flow diagram - Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
2 compare and		information on exposures and potential confounders – p.13 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest –
		Non applicable
Outcome data	15*	Report numbers of outcome events or summary measures – Table 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
man results	10	their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included –p.12-13
		adjusted for and why they were included -p.12-13

		(b) Report category boundaries when continuous variables were categorized – Non
		applicable (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period – Non applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses – p.13, Figure2-4
Discussion		
Key results	18	Summarise key results with reference to study objectives - p,14-15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias – p.18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence – p.15-18
Generalisability	21	Discuss the generalisability (external validity) of the study results –p.18-19
Other information		<u></u>
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based - p.21

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Classification tree model of the personal economic burden of dementia care by related factors of both people with dementia and caregivers in Japan: A cross-sectional online survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026733.R3
Article Type:	Research
Date Submitted by the Author:	12-Jun-2019
Complete List of Authors:	Nakabe, Takayo; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Sasaki, Noriko; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Uematsu, Hironori; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Kunisawa, Susumu; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management Wimo, Anders; Karolinska Institute, KI Alzheimer's Disease Research Center (ADRC) Imanaka, Yuichi; Kyoto University Graduate School of Medicine, Department of Healthcare Economics and Quality Management
Primary Subject Heading :	Public health
Secondary Subject Heading:	Health economics
Keywords:	Informal care, RUD, Cost, Classification, Japan

SCHOLARONE™ Manuscripts

- 1 Classification tree model of the personal economic burden of
- dementia care by related factors of both people with dementia and
- 3 caregivers in Japan: A cross-sectional online survey
- 5 Takayo Nakabe^a, Noriko Sasaki^a, Hironori Uematsu^a, Susumu Kunisawa^a, Anders Wimo^b,
- 6 Yuichi Imanaka^a

- 7 a Department of Healthcare Economics and Quality Management, Graduate School of
- 8 Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan.
- 9 b Aging Research Centre, Department of Neurobiology, Care Sciences and Society (NVS),
- 10 Karolinska Institutet and Stockholm University, Stockholm, Sweden
- 11 Corresponding author:
- 12 Yuichi Imanaka, Professor
- 13 Department of Healthcare Economics and Quality Management,
- 14 Graduate School of Medicine, Kyoto University
- 15 Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- 16 E-mail: imanaka-y@umin.net
- 17 Tel: +81-75-753-4454 Fax: +81-75-753-4455
- Word counts: 3750 words

Abstract

- **Objective:**
- 21 The purpose of this study was to clarify the micro-level determinants of the economic
- burden of dementia care at home in Japanese community settings by classifying them into
- subgroups of factors related to people with dementia and their caregivers.
- **Design:**
- 25 A cross-sectional online survey.
- 26 Participants:
- 27 4313 panels of Japanese research company who fulfilled the following criteria: (1) aged
- 28 30 years or older, (2) non-professional caregiver of someone with dementia, (3) caring
- 29 for only one person with dementia, and (4) having no conflicts of interest with advertising
- or marketing research entities.
- 31 Primary outcome measures:
- 32 Informal care costs and out-of-pocket payments for long-term care services
- **Results:**
- From 4313 respondents, only 1383 caregivers in community-settings were included in
- 35 this analysis. We conducted a chi-square automatic interaction detection analysis to
- 36 identify the factors related to each cost (informal care costs and out-of-pocket payments
- for long-term care services) divided into sub categories. In the resultant classifications,

informal care cost was mainly related to caregivers' employment status. When caregivers acquired family care leave, informal care costs were the highest. On the other hand, out-of-pocket payments for long-term care were related to care-need levels and family economic status. ADL and IADL functions such as bathing, toileting, and cleaning were related to all costs.

Conclusion

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situations of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-need levels and family economic status. These classifications will be useful in understanding which situation represents a greater economic burden, and helpful in improving the sustainability of the dementia care system in Japan.

Strengths and limitations of this study

- This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers.
- The chi-square automatic interaction detection dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.
- The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company.
- We only assessed objective burden of dementia care such as informal care time or costs, then we didn't consider the subjective burden of care and depressive symptoms.

1. Introduction

In the aging society of Japan, it is estimated that there are approximately 4.7 million people living with dementia and that there will be approximately 7 million people with dementia in 2025 [1]. Given that it is also estimated that the total number of people with dementia throughout the world will double every 20 years [2], we need to reconsider how to prepare for dementia care in the community. Long-term care (LTC) services in Japan used by people with dementia in home care can be classified into three main types: (1) LTC insurance services, (3) LTC services not covered by insurance, and (3) informal care as mutual assistance by family members. When a person with dementia uses the LTC insurance service, the user bears 10% or 20% of the service expenses as out-of-pocket payments depending on the person's income (Article 49-2 of the Long-Term Care Insurance Act). Aside from such copayments, when LTC services not covered by insurance or exceeding the LTC insurance limit amount are used, people must pay the full amount. Furthermore, it has been pointed out that informal care is an important component of home care, yet it places a burden on caregivers [3,4]. Nevertheless, given the estimates of the societal costs of dementia care throughout the world, the impact of informal care is essential [5,6]. The Japanese government recommends policies to shift to patient-centered and home-

centered care to reduce the fiscal burden of the insurance system on community-based

integrated systems. While micro level of impact of dementia care has not been insufficiently understood[7], to construct a sustainable dementia care system, we clarified the personal economic burden of dementia care for different residence types and demonstrated that the cost at home in a community setting was equal to or higher than in various institutions[8]. Sustainable dementia care systems should be provided not only to benefit the government or insurance system but also to benefit people with dementia and their caregivers. Furthermore, although there are increasing dementia care costs related to the severity of dementia [9–12], it can be seen that the cost of dementia care increases through the interaction of characteristics or situations of people with dementia and their caregivers. Given this interaction, it is necessary to understand the actual conditions by classifying cases where the greatest economic burdens in dementia care are felt.

Therefore, the purpose of this study is to clarify the micro-level determinants of the economic burden of dementia care at home in community settings by classifying them into subgroups of factors related to people with dementia and their caregivers.

2. Methods

This study was a cross-sectional study, based on a self-rated, online questionnaire survey. The economic burden of dementia care in this study is roughly divided into informal care costs as opportunity costs and out-of-pocket payments that people actually

made.

2.1. Online survey for data collection on people with dementia and their caregivers

In this cross-sectional study, we conducted an online questionnaire survey from March 3 to March 14, 2016 in cooperation with a commercial research company (Automatic Internet Research System, Macromill, Inc., Japan). Potential participants fulfilled the following criteria: (1) aged 30 years or older, (2) non-professional caregiver of someone with dementia, (3) caring for only one person with dementia, and (4) having no conflicts of interest with advertising or marketing research entities. A total of 3,600 participants were recruited from the research company's registrants and divided into different age groups (850 participants each in the groups aged in 30's, 40's, 50's, and 60's; 200 participants in the group aged ≥70 years). We excluded caregivers under 29 years of age because, in Japan, they are estimated to represent only 2% of all caregivers [13].

2.2. Questionnaire

Resource Utilization in Dementia (RUD) [14,15] is a widely used tool to collect data about resource use in persons with dementia and their caregivers [15]. RUD is available in more than 60 languages and it is widely used throughout the world. In this study, we used RUD (Japanese version) items related to the characteristics of people with dementia and their caregivers, informal care time, employed situation of caregivers, residential

types of people with dementia, and resource use of nursing care services. We added items related to LTC services and residential types. The questionnaire components were divided into four categories: (1) characteristics of people with dementia, (2) caregivers' situations (e.g., employment and cohabitation status), (3) informal care duration and (4) frequency of utilization of LTC services.

In this project, we could not get information about severity of dementia data because it was regarded as too difficult for caregivers to estimate that. However, we asked for substantial information about care-needs levels. Care needs reflect function, which is a stronger explanatory factor for costs than cognition [16]. Care-needs levels (Supportneeds levels 1-2, Care-needs levels 1-5) determine whether a person is qualified to apply for LTC insurance (Article 27 and 32 of the Long-Term Care Insurance Act). Once an insured person applies to use any LTC service, their mental and physical status is first be assessed by certified researchers using a basic checklist. Based on this checklist, careneed times are estimated using an evidence-based computer algorithm. This algorithm was created from the data on how much LTC services were required in 48 hours for more than 3,000 elderly people as a one-minute time study [17]. After estimating the care-needs time, care-needs levels were determined by an expert panel to indicate the amount of care required by each person while taking into consideration their symptoms and functional

capability. High care-needs levels indicate increasing dependency and requirement for LTC services [18]. Care-need levels also affect the base amount of the maximum payment

for LTC services allowance categories covered by insurance.

2.3. Informal care time

In the questionnaire, informal care time was divided in three domains; support for Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL) and Supervision [15]. We asked for the mean caregiving time per day and mean caregiving days per week in the past 30 days. We then multiplied the mean daily caregiving time and caregiving days per week to calculate both weekly and monthly informal care time. Supervision time was excluded in calculating informal care time and costs because supervision could be done simultaneously when caregiving for ADL and IADL functions, or in other housekeeping for people without dementia and other family members.

2.4. Cost estimation

In this study, we identified three costs as follows: informal care costs, out-of-pocket payments for LTC services covered by insurance (copayments), and out-of-pocket payments for LTC services not covered by insurance. To calculate the informal care costs, there are two methods that are frequently used: the "opportunity cost" and "replacement cost" approaches [19–21]. With the opportunity cost approach it is assumed that there is

an alternative use of caregiving time (such as paid work) and thus estimates the costs due to this lost opportunity, whereas the replacement cost approach assumes that informal care services can be valued similarly to home care services provided by professional caregivers. Even though many previous studies on the economic valuation of informal care have used the replacement cost approach [20], the 'opportunity cost approach' is recommended by the developers of RUD for estimating informal care costs [2,5,22]. We used the opportunity cost approach to assess informal care time as forgone wages for caregivers [2,5,9]. We used caregivers' monthly mean wages stratified by sex and age to value informal care. We assessed informal care costs for caregivers who were not working or who were over 65 years of age at 30% of the mean wage of employed caregivers [23– 26]. A maximum daily informal care time of 16 hours was assumed, in order to allow for other activities such as cooking for other family members and sleep [12,27,28]. Caregivers were asked to state their contribution to the total informal care in 5-point scale of 20%. In order to treat all caregivers as primary caregivers and estimate the costs associated with all informal care provided to a patient, we adjusted the informal care time by dividing its time by the median of these contribution levels, according to RUD instructions. This adjustment of informal care time was done only when calculating the informal care costs.

Out-of-pocket payments for LTC services both covered and not covered by insurance were included in the questionnaire. We asked for these out-of-pocket payments through categories that were easy to answer (no payments, under JPY9,999, JPY10,000–24,999, JPY25,000-49,999, JPY50,000-74,999, JPY75,000-99,999, JPY100,000-124,999, JPY125.000-149.999. JPY150.000-299.999. JPY300.000-499.999. over JPY500,000). We adjusted the answers by capping the upper limit of the limit amount (Care-needs level 1; JPY166,920, Care-needs level 5; JPY 360,650) depending on each care-needs level or each ratio of copayment (10% or 20%) if the answers were over it. These costs were substituted by a median of each category, and we calculated the weighted average as the following formula: $\frac{\sum_{i=0}^{k} (median \ of \ category_i) * n_i}{\sum_{i=0}^{k} (median \ of \ category_i) * n_i}$ All costs were converted from Japanese yen to US dollars using the purchasing power parity rate in 2016 (\$102 = \$1) provided by the Organization for Economic Cooperation and Development.

2.5. Inclusion and exclusion criteria

With respondents, we only focused on community settings for people with dementia who lived in their own home. We excluded respondents based on the following criteria:

(1) people with dementia who were hospitalized or lived in nursing home, (2) lack of data about out-of-pocket payments for LTC services or care-needs levels, (3) contradictions

in relationships between caregivers and people with dementia, and (4) contradictions in care time (over 24 hours). When the age difference was less than 15 years and the person with dementia was a parent or child (not in-law), these cases were identified as contradictions.

2.6. Statistical analysis

We conducted descriptive analysis for characteristics of people with dementia and caregivers. We then stratified the informal care time and dementia care costs by the careneeds level and cohabitation to test our hypothesis that high care-needs level or people who lives with caregivers need more informal care time. In this description, we didn't adjusted informal care time by caregivers' contribution rate.

Also, we used chi-square automatic interaction detection (CHAID) analysis to identify the characteristics of people with dementia and caregivers who needed more care services. In CHAID analysis, the dependent variable would be divided into sub-groups by the most explanatory independent variables. These groups could be formed by any possible combination with all independent variables. Especially, we conducted an exhaustive CHAID analysis that repeats the trial until it finds the optimal combination of all independent variables. The CHAID dendograms provide a visual depiction of criteria and predictor variable interactions that might not be detected in traditional analytic procedures.

We set informal care costs, out-of-pocket payments for LTC services covered by insurance and out-of-pocket payments for LTC services not covered by insurance as dependent variables. Then, we used the characteristics of people with dementia (age, sex, care-need level, dementia types, ADL and IADL functions, and primary disease as the reason for care), the characteristics of caregivers (age, sex, marital status, children, cohabitation with people with dementia, visiting time, relationship to people with dementia, and occupation), and economic factors (the ratio of copayments for healthcare services and family income of caregivers). We treated the ratio of copayments for healthcare services as income proxy variable because this ratio was decided by income of people with dementia. We set the following criteria: tree depth was limited to three levels, no group smaller than 100 was split, no group smaller than 30 was formed, and the p-value for all statistical tests was under 0.05.

- All data were analyzed using IBM SPSS Statistics 23.0 for Windows (SPSS Japan Inc.,
- 225 Tokyo, Japan).
- 226 2.6. Ethical considerations and consents
- 227 This study was approved by the Ethics committee of Kyoto University Graduate School
- of Medicine (R0487). All participants were volunteers and they were informed that there
- 229 was no obligation to participate in the study, and only people who consented to this study

- 230 completed the questionnaire.
 - 2.7. Patient and public involvement
- Patients were not formally involved in this study; however, their caregivers participated in our online-based questionnaire survey. Caregivers, who constituted the online panel, were sent the invitation by the Internet research company. Patients and their caregivers

can view the results of this study when it is published in a peer-reviewed journal.

- 3. Results
- 237 3.1. Characteristics of people with dementia and their caregivers

(57.0%) who did the latter by themselves.

A total of 3,916 caregivers answered the questionnaire. We focused only on people with dementia who lived in their own home (n=2277). However, we excluded the data according to the criteria and the final sample comprised 1,383 respondents (Figure 1). Table 1 shows the characteristics of people with dementia and their caregivers. More than half of the people with dementia were female (66.7%), and the mean age was 81.8 years. In contrast, more than half of the caregivers were male (61.7%), and the mean age was 52.2 years. 1,233 people (89.2%) responded that ADL functions such as meals and toilet use could be managed by themselves, while IADL functions such as cleaning and shopping could be done by one person in the same way. There were only 788 people

3.2. Informal care time and costs of dementia care

The mean daily informal care time was 9.36 hours in total. The time for only ADL was 4.97 hours and for only IADL was 4.39 hours. On the other hand, monthly informal care time (ADL+IADL) was 166.32 hours. Table 2 shows the differences in daily informal care time and personal cost of dementia care among the care-need levels. In this table, we didn't adjust by contribution rate. Informal care times increased with care-needs levels, especially in ADL. Out-of-pocket payments for LTC services were less than informal care costs in all of the care-needs levels.

3.3. Classification with classification trees

Figure 2 shows the results of CHAID analysis for informal care costs. Informal care costs were related to caregivers' employment status, cohabitation, age, and care-needs levels or ADL function of people with dementia. When the caregiver acquired family care leave, informal care cost was the highest (node 2). For the caregivers who were between 43-52 years old (node 12) and worked outside the home as well as cohabited with people with dementia, informal care costs were high, similar to caregivers who acquired family care leave (node 2). Even if the caregiver did not work, informal care costs were higher with high care-needs levels (node 6-8). The costs for cohabiting caregivers (node 5) were higher than for those not cohabiting (node 4). For those not cohabiting and the person

with dementia could not walk without assistance (node 9), informal care costs were higher than for those that could walk (node 10).

Out-of-pocket payments for LTC services covered by insurance were related to careneed levels, ADL or IADL functions, sex (both the people with dementia and caregivers)
and caregivers' household incomes (Figure 3). Especially, if the people with dementia
could bathe or use the toilet by themselves, out-of-pocket payments would be about 65%
lower (nodes 9-10, 15-18). On the other hand, if out-of-pocket payments were not covered
by insurance, they were related to caregivers' household incomes, income proxy variable,
ADL or IADL functions of people with dementia, and age of people with dementia
(Figure 4). Both the out-of-pocket payments that were covered by insurance and those
that were not were related to caregivers' house hold income or ADL functions which
affected the ability to pay and service use volume.

4. Discussion

In this study, we first demonstrated that informal care time for ADL or IADL functions increased with high care-needs levels as our hypothesis stipulated (Care-need level 1: 2.2hours, level 3: 3.4 hours. level 5: 4.6 hours). Second, we established that the combination of characteristics of both people with dementia and their caregivers were related to dementia care costs through the classification tree analysis. Caregivers'

employment and cohabitation status were mainly related to informal care costs, and the costs were the highest when caregivers took nursing care leave, which caregivers leave work due to caregiving. Furthermore, when caregivers worked at an occupation and lived separately, or the people with dementia could not walk, the costs doubled. Out-of-pocket payments for LTC services covered by insurance were mainly related to care-need levels and ADL and IADL functions. In the case of low care-needs levels, where care was needed for toileting or bathing, high out-of-pocket payments were required for LTC insurance services. On the other hand, out-of-pocket payments were related to caregivers' household income levels or income proxy variable. Caregivers with high annual incomes (more than \$117,648 US) made out-of-pocket payments for dementia care of full amounts that were two to five times more than others.

Informal care costs were mainly related to caregivers' characteristics such as employment or cohabitation status in the classification tree, which illustrated related factors by order of precedence. In many previous studies, ADL functions or dementia severity were explained as related factors in regression models [9–12]. Some studies showed caregivers' characteristics such as employment status were related to informal care costs [9,29,30], but few studies considered all of the caregivers' characteristics. Thus, caregiver factors may be as important as factors related to people with dementia are.

Furthermore, we considered the combination of characteristics of both people with dementia and their caregivers. For example, informal care costs doubled when caregivers lived separately and people with dementia could not walk. Many previous studies established the determinants by regression analysis[9,12,31–34]. Although it is possible to understand the influence on the objective variable adjusted in the multivariate by regression analysis, the combinations between explanatory variables have not been clarified. CHAID analysis provided the classification only for related characteristics in the outcome. Such combinations suggest that support should be provided to caregivers who cannot live with people with dementia or caregivers who are not employed (Figure 2, Node 3-4).

The association between out-of-pocket payments for LTC services covered by insurance and care-need levels is reasonable because the benefit limit standard amounts for formal care services at home are decided in relation to care-need levels[35]. In addition, when people with dementia had a high care-needs level and their caregiver's household income was high, out-of-pocket payments were high. Because the determination of service usage within the limit amount is a free contract, people with dementia and their caregivers may decide how they use formal care services depending on how much they can pay for services. High care-needs levels [36], age[10,34,36,37]

and sex[10,36] were related to the high costs of LTC services. Even for low care-needs levels, the cost may be high when people with dementia need assistance with bathing or toileting. This was affected by LTC insurance services providing specific substitutions, such as bath assistance, and also Ku et al.'s or Dodel et al.'s ADL functions were related to the social care costs[9,30].

Similarly, economic variables such as household income and income proxy variable were mainly related to out-of-pocket payments for LTC services not covered by insurance (Figure 4). This is because people must pay the full amount if they use LTC services without insurance. In the United States, high copayments are required for the use of LTC services; however, these copayments were related to age, sex, and comorbidities in the cohort study [37]. A part of the result of Hurd et al. was similar to our results in the case of the payments that were covered by insurance for the use of LTC services. Out-ofpocket payments not covered by insurance might occur for over the limit standard amounts or the use of LTC services not covered by insurance (e.g. feeding service[38]). According to the questionnaire responses, people tended to pay for expendables such as diapers, employment of housekeepers, and home repair such as handrail installation as out-of-pocket payments not covered by LTC insurance. Furthermore, except when caregivers' income was high, the cost did not change significantly due to differences in

ADL and IADL functions as it did for the payments that were covered by insurance.

These application examples were not really affected by ADL or IADL functions.

From the viewpoint of independent variables, if people with dementia lacked some ADL function, then costs might be higher but in the case of IADL functions this was reversed. There is a possibility that some services are used to support the independent lives of people with dementia. Some people with dementia who can do housework by themselves might move or walk around more, and therefore use more LTC services like commuting for care (day service) or commuting for rehabilitation. Also, care-need levels were not related to out-of-pocket payments not covered by insurance. The above application examples were also not related to care-needs levels. The relationship of cohabitation or employment status was the same as in previous studies [9,29,32]. While differences of burden of dementia care depended on the dementia types that existed and were pointed out [24], dementia types were not related to any other factors in this study. In our CHAID analysis, family caregivers' economic status or severity (care-needs levels) might have been more important than dementia types to dementia care costs. In creating policy for LTC services in an aging society, we must understand the actual conditions from not only a societal but also a personal perspective. This is true even if from a societal viewpoint, the societal cost of dementia care in the community has been established by

other countries to be greater than that in institutional care [39]. Furthermore, we need a wide range of perspectives of stakeholders to discuss the dementia care system, while almost all studies of economic burden of dementia stood on societal or payers' viewpoint[7,19–21]. Then, as a first step, we need to understand what people with dementia and their family caregivers are already spending too much money on. We need to recognize the complicated combination of characteristics associated with people with dementia and their caregivers. To this point, the results of this classification could be useful to understanding which situation requires more resources depending on cost types. Our results may suggest that a sustainable dementia care system in Japan should be reconstructed from a personal viewpoint.

There are some limitations to this study. First, we conducted an online questionnaire survey with caregivers of people with dementia. Traditionally, respondents who use the Internet tend to be male and relatively young, reflecting the general characteristics of online research [40–42]. The sample may therefore not be representative of all caregivers because the sample is limited to those who have access to the Internet and are registered with an Internet research company [43]. Certainly, we cannot extrapolate the representative value in each node of the CHAID tree to the population as a whole. However, this study focused on finding a combination of independent variables related to

the dependent variables (informal care cost and financial burden), taking into account the interaction between multiple independent variables. The significance of subgroups made by combinations of variables may not change significantly even if the population changes. Therefore, in this study, influence due to the difference between this sample and general public is not considered to be a practical problem. However, further research (e.g. a paper-based questionnaire survey mailed to the family caregivers association) to collect representative samples might be needed in the future. Second, it was impossible to measure the response rate in this study. Samples were collected from an online panel until the target number set in each age category was achieved. Third, we didn't consider the subjective burden of care and depressive symptoms. These mental burdens are considered to be important factors in explaining the actual state of care costs, and many previous studies in Japan have covered subjective costs [44–46]. In the future, in addition to the burden of time and money, it would be preferable to measure subjective burdens. Fourth, we couldn't measure the clinical dementia severity data measured by such as Mini Mental State Examination or Nueropsychiatric Inventory questionnaire. However, we used care-needs levels as substantial measurements of the severity data, which indicates individual requirements for amount of care determined by an evidence-based computer algorithm and expert panel. Fifth, we estimated informal care costs only by the opportunity cost approach. Some studies indicated results estimated by both opportunity cost approach and replacement cost approach. The opportunity cost approach might be underestimated in comparison to the replacement approach[9,37]

Conclusions

This study clarified the difference in dementia care costs between classified subgroups by considering the combination of the situations of both people with dementia and their caregivers. Informal care costs were related to caregivers' employment and cohabitation status rather to the situation of people with dementia. On the other hand, out-of-pocket payments for long-term care services were related to care-needs levels and family economic status. These classifications will be useful in understanding which situation

represents a greater economic burden, and helpful in improving the sustainability of the

Footnotes

- 409 Abbreviations
- 410 LTC: Long-Term Care
- 411 RUD: Resource Utilization in Dementia

dementia care system in Japan.

Competing interest

None declared.

412	ADL: Activities of Daily Life
413	IADL: Instrumental Activities of Daily Life
414	CHAID analysis: chi-square automatic interaction detection analysis
415	Authors' contribution
416	TN, SN and YI designed the study. All authors discussed for preparing the questionnaire.
417	TN mainly analyzed all data, and HU, SK, AW and YI advised for analysis. TN prepared
418	the draft of the manuscript, then all authors contributed to rewrite it. All authors read and
419	approved the final manuscript.
420	Funding sources
421	This study was financially supported by a Health Sciences Research Grant from the
422	Ministry of Health, Labour and Welfare of Japan (H27-ninntishou-ippan-001), the Japan
423	Foundation for Aging and Health (H27), and a Grant-in-Aid for Scientific Research from
424	the Japan Society for the Promotion of Science ([A]16H02634). The funders had no role
425	in the study design, data collection and analysis, decision to publish, or preparation of the
426	manuscript.

429	Acknowledgement
-----	-----------------

- None.
- Conflicts of interest
- None.
- Data sharing statement
- No additional data are available. When this study was approved by the ethics committee of
- Kyoto University Graduate School of Medicine (R0487), due to the sensitive issues, the
- raw data which we collected should not be treated outside of our laboratory.

438	Refe	erences
439	1	Ninomiya T, Kiyohara Y, Obara T, et al. A study on future estimation of the
440		elderly population of dementia in Japan Grant-in-Aid for Scientific Research for
441		Ministru of Health, Labor and Welfare in 2014(H26-Tokubetsu-Shitei-036).
442		2014. https://mhlw-
443		grants.niph.go.jp/niph/search/NIDD00.do?resrchNum=201405037A
444	2	Prince M, Wimo A, Guerchet M, et al. World Alzheimer Report 2015: the global
445		impact of dementia. 2015.https://www.alz.co.uk/research/world-report-2015
446		(accessed 3 Apr 2016).
447	3	Wimo A, Jönsson L, Fratiglioni L, et al. The societal costs of dementia in
448		Sweden 2012 - relevance and methodological challenges in valuing informal
449		care. Alzheimers Res Ther 2016; 8 :59. doi:10.1186/s13195-016-0215-9
450	4	Wimo A, Strauss E Von, Nordberg G. Time spent on informal and formal care
451		giving for persons with dementia in Sweden. <i>Heal Po</i> 2002; 61 :255–68.
452	5	Wimo A, Prince M. World Alzheimer Report 2010 THE GLOBAL ECONOMIC
453		IMPACT OF DEMENTIA.
454		2010.https://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive
455		Summary.pdf (accessed 3 Apr 2016).
456	6	Wimo A, Ali G, Wu Y, et al. The worldwide costs of dementia 2015 and

457		comparisons with 2010. Alzheimer's Dement 2016;:1–7.
458		doi:10.1016/j.jalz.2016.07.150
459	7	Jönsson L, Lin P-J, Khachaturian AS. Special topic section on health economics
460		and public policy of Alzheimer's disease. <i>Alzheimer's Dement</i> 2017; 13 :201–4.
461		doi:10.1016/j.jalz.2017.02.004
462	8	Nakabe T, Sasaki N, Uematsu H, et al. The personal cost of dementia care in
463		Japan: A comparative analysis of residence types. Int J Geriatr Psychiatry
464		2018; 33 :1243–52. doi:10.1002/gps.4916
465	9	Ku L-JE, Pai M-C, Shih P-Y. Economic Impact of Dementia by Disease
466		Severity: Exploring the Relationship between Stage of Dementia and Cost of
467		Care in Taiwan. <i>PLoS One</i> 2016; 11 :e0148779.
468		doi:10.1371/journal.pone.0148779
469	10	Leicht H, Heinrich S, Heider D, et al. Net costs of dementia by disease stage.
470		Acta Psychiatr Scand 2011; 124 :384–95. doi:10.1111/j.1600-0447.2011.01741.x
471	11	Leicht H, König H-H, Stuhldreher N, et al. Predictors of Costs in Dementia in a
472		Longitudinal Perspective. <i>PLoS One</i> 2013; 8 :e70018.
473		doi:10.1371/journal.pone.0070018
474	12	Farré M, Haro JM, Kostov B, et al. Direct and indirect costs and resource use in

475		dementia care: A cross-sectional study in patients living at home. Int J Nurs Stud
476		2016; 55 :39–49.
477	13	Ministry of Internal Affairs and Communications. Survey on Time Use and
478		Leisure Activities in 2016. 2017.
479		http://www.stat.go.jp/data/shakai/2016/pdf/gaiyou2.pdf (accessed 6 Mar 2018).
480	14	Wimo A, Jonsson L, Zbrozek A. The Resource Utilization in Dementia (RUD)
481		instrument is valid for assessing informal care time in community-living patients
482		with dementia. J Nutr Health Aging 2010;14:685–
483		90.http://www.ncbi.nlm.nih.gov/pubmed/20922346 (accessed 3 Feb 2016).
484	15	Wimo A, Gustavsson A, Jonsson L, et al. Application of resource utilization in
485		dementia (RUD) instrument in a global setting. Alzheimer's Dement 2013;9:429-
486		35. doi:10.1016/j.jalz.2012.06.008
487	16	Mesterton J, Wimo A, By A, et al. Cross sectional observational study on the
488		societal costs of Alzheimer's disease. Curr Alzheimer Res 2010;7:358-
489		67.http://www.ncbi.nlm.nih.gov/pubmed/19939223 (accessed 11 Jun 2018).
490	17	Ministry of Health Labour and Welfare. Mechanism and procedures for
491		cartification of care-needs levels. https://www.mhlw.go.jp/file/05-Shingikai-
492		11901000-Koyoukintoujidoukateikyoku-Soumuka/0000126240.pdf (accessed 12

493		Feb 2019).
494	18	Lin H-R, Otsubo T, Imanaka Y. Survival analysis of increases in care needs
495		associated with dementia and living alone among older long-term care service
496		users in Japan. BMC Geriatr 2017; 17 :182. doi:10.1186/s12877-017-0555-8
497	19	Mauskopf J, Mucha L. A Review of the Methods Used to Estimate the Cost of
498		Alzheimer's Disease in the United States. Am J Alzheimer's Dis Other
499		Dementias 2011; 26 :298–309. doi:10.1177/1533317511407481
500	20	Quentin W, Sg R, Luppa M, et al. Cost-of-illness studies of dementia: a
501		systematic review focusing on stage dependency of costs. Acta Psychiatr Scand
502		2010; 121 :243–59. doi:10.1111/j.1600-0447.2009.01461.x
503	21	Schaller S, Mauskopf J, Kriza C, et al. The main cost drivers in dementia: a
504		systematic review. Int J Geriatr Psychiatry 2015;30:111–29.
505		doi:10.1002/gps.4198
506	22	Wimo A, Winblad B, Jönsson L. An estimate of the total worldwide societal
507		costs of dementia in 2005. Alzheimer's Dement 2007;3:81–91.
508		doi:10.1016/j.jalz.2007.02.001
509	23	Johannesson M, Borgquis L, Jönsson B, et al. The costs of treating hypertension -
510		an analysis of different cut-off points. <i>Health Policy (New York)</i> 1991; 18 :141–

511		50. doi:10.1016/0168-8510(91)90095-F
512	24	Costa N, Ferlicoq L, Derumeaux-burel H, et al. Comparison of Informal Care
513		Time and Costs in Different Age-Related Dementias: A Review. Biomed Res Int
514		2013; 2013 :1–15.
515	25	Åkerborg Ö, Lang A, Wimo A, et al. Cost of Dementia and Its Correlation With
516		Dependence. J Aging Health Published Online First: 26 January 2016.
517		doi:10.1177/0898264315624899
518	26	Bergvall N, Brinck P, Eek D, et al. Relative importance of patient disease
519		indicators on informal care and caregiver burden in Alzheimer's disease. Int
520		Psychogeriatrics 2011;:73–85. doi:10.1017/S1041610210000785
521	27	Rattinger G, Schwartz S, Mullins C, et al. Dementia severtiy and the longitudinal
522		costs of informal care in the Cache County population. Alzheimer's Dement
523		2015; 11 :946–54.
524	28	Gustavsson A, Brinck P, Bergvall N, et al. Predictors of costs of care in
525		Alzheimer's disease: a multinational sample of 1222 patients. Alzheimers Dement
526		2011;7:318–27. doi:10.1016/j.jalz.2010.09.001
527	29	Gervès C, Chauvin P, Bellanger MM. Evaluation of full costs of care for patients
528		with Alzheimer 's disease in France: The predominant role of informal care.

529		Health Policy (New York) 2014;116:114–22. doi:10.1016/j.healthpol.2014.01.001
530	30	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
531		disease: GERAS study baseline results. <i>Alzheimers Dement</i> 2015; 11 :933–45.
532		doi:10.1016/j.jalz.2015.02.005
533	31	Hurd MD, Martorell P, Delavande A, et al. Monetary Costs of Dementia in the
534		United States. N Engl J Med 2013; 368 :1326–34. doi:10.1056/NEJMsa1204629
535	32	Dodel R, Belger M, Reed C, et al. Determinants of societal costs in Alzheimer's
536		disease. Alzheimer's Dement 2015;11:933–45.
537	33	Peña-Longobardo L, Oliva-moreno J. Economic valuation and determinants of
538		informal care to people with Alzheimer's disease. Eur J Heal Econ
539		2015; 16 :507–15. doi:10.1007/s10198-014-0604-6
540	34	André Hajek , Christian Brettschneider, Annette Ernst, Tina Posselt, Birgitt
541		Wiese, Jana Prokein, Siegfried Weyerer, Jochen Werle, Angela Fuchs et al.
542		Longitudinal predictors of informal and formal caregiving time in community-
543		dwelling dementia patients. Soc Psychiatry Psychiatr Epidemiol 2015;:1–10.
544	35	Tokyo Metropolitan Government. The Long-term Care Insurance System: Long-
545		term Care Service Costs to Be Paid by th User.
546		http://www.fukushihoken.metro.tokyo.jp/kourei/koho/kaigo_pamph.files/p.10kai

547		gohoken-english.pdf (accessed 12 Feb 2019).
548	36	Huei-Ru Lin, Tetsuya Otsubo and YI. The Effects of Dementia and Long-Term
549		Care Services on the Deterioration of Care-needs Levels of the Elderly in Japan.
550		Medicine (Baltimore) 2015; 94 :1–7.
551	37	Michael D. Hurd, Paco Martorell, Adeline Delavande, Kathleen J. Mullen and
552		KML. Monetary Costs of Dementia in the United States. N Engl J Med
553		2013; 368 :1326–34. doi:10.1056/NEJMsa1204629.Monetary
554	38	Ministry of Health Labour and Welfare. Reference case examples of long-term
555		care insurance services for constructing community-based integrated care system.
556		2016. https://www.mhlw.go.jp/file/06-Seisakujouhou-12300000-
557		Roukenkyoku/guidebook-bunkatu1.pdf (accessed 12 Feb 2019).
558	39	König H, Leicht H, Brettschneider C, et al. The Costs of Dementia From the
559		Societal Perspective : Is Care Provided in the Community Really Cheaper than
560		Nursing Home Care ? <i>JAMDA</i> 2014; 15 :117–26.
561		doi:10.1016/j.jamda.2013.10.003
562	40	Eysenbach G. Improving the quality of Web surveys: the Checklist for Reporting
563		Results of Internet E-Surveys (CHERRIES). J Med Internet Res 2004;6:e34.
564		doi:10.2196/jmir.6.3.e34

565	41	Eysenbach G, Wyatt J. Using the Internet for Surveys and Health Research. J
566		Med Internet Res 2002;4:e13. doi:10.2196/jmir.4.2.e13
567	42	Fujihara S, Inoue A, Kubota K, et al. Caregiver Burden and Work Productivity
568		Among Japanese Working Family Caregivers of People with Dementia. <i>Int J</i>
569		Behav Med 2018;:1–11. doi:10.1007/s12529-018-9753-9
570	43	van Gelder MMHJ, Bretveld RW, Roeleveld N. Web-based Questionnaires: The
571		Future in Epidemiology? Am J Epidemiol 2010;172:1292–8.
572		doi:10.1093/aje/kwq291
573	44	Washio S, Toyoshima Y, Yamazaki R, et al. [Factors related to the care burden
574		of family caregivers - focusing on the care burden of caregivers of elderly who
575		needs nursing care -]. Japanese J Clin Exp Med = Rinshou to Kenkyuu
576		2012; 89 :1687–91.
577	45	Arai Y, Kumamoto K, Mizuno Y, et al. Depression among family caregivers of
578		community-dwelling older people who used services under the Long Term Care
579		Insurance program: a large-scale population-based study in Japan. Aging Ment
580		Health 2014; 18 :81–91. doi:10.1080/13607863.2013.787045
581	46	Washio S, Nogami Y, Motoyama S, et al. [Long-Term Care Insurance Act
582		amendment and care burden of family caregivers for elderly who need long-term

care at home]. Japanese J Clin Exp Med = Rinshou to Kenkyuu 2015;**92**:75–9.

Figure 1: Selection process for the analysis

This diagram shows the flow of participants who we focused on.

Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs

The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 3: Classification tree of chi-square automatic interaction detection for outof-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

Figure 4: Classification tree of chi-square automatic interaction detection for outof-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily

Living; SD, Standard deviation; LTC, Long-term care

Table 1 Characteristics of people with dementia and caregivers

People with	Dementia	N=1383
	Age, mean±SD, y	81.8±10.3
	Sex, n (%)	
	Female	922 (66.7)
	Male	461 (33.3)
	Care-needs level, n (%)	` ,
	Support-Needs Level 1-2	253 (18.3)
	Care-Needs Level 1	310 (22.4)
	Care-Needs Level 2	335 (24.2)
	Care-Needs Level 3	258 (18.7)
	Care-Needs Level 4	122 (8.8)
	Care-Needs Level 5	105 (7.6)
	ADL/IADL functional capabilities	100 (7.0)
	ADL score (0-6), mean±SD	3.2±2.0
	IADL score (0-7), mean±SD	1.3 ± 1.6
	Ratio of copayments for healthcare services, n(%	
	10%	961 (69.5)
	20%	137 (9.9)
	30%	157 (9.9)
	Unknown	137 (11.4) 128 (9.3)
	Types of Dementia, n(%)	120 (7.3)
	Alzheimer's disease	751 (54.3)
Caregivers	Alzheimer s'disease	731 (34.3)
Caregivers	Age, mean \pm SD	52.2±13.1
	Sex, n (%)	32.2-13.1
	Female	530 (38.3)
	Male	853 (61.7)
	Relationship, n (%)	833 (01.7)
	Mother	575 (41.6)
	Mother-in-law	
	Father	169 (12.2)
	Father-in-law	288 (20.8)
		90 (6.5)
	Spouse	99 (7.2)
	Sibling	11 (0.8)
	Child	10 (0.7)
	Friend	5 (0.4)
	Other (including grandparents)	136 (9.8)
	Contribution level for caregiving, n (%)	205 (20.0)
	1-20%	395 (28.6)
	21-40%	355 (25.7)
	41-60%	241 (17.4)
	61-80%	166 (12.0)
	81-100%	226 (16.3)
	Currently employed, n (%)	532 (38.5)

SD: Standard deviation, ADL: Activities of Daily Living, IADL: Instrumental Activities

of Daily Living

Table 2 Daily informal care time and personal costs of dementia care sorted by care-needs levels

			Support-	Care-need	Care-need	Care-need	Care-need	Care-need
			required level	level 1	level 2	level 3	level 4	level 5
Informal care	ADL	Mean [SD]	2.56 [3.23]	2.23 [2.54]	2.92 [2.90]	3.44 [2.90]	3.99 [2.40]	4.60 [3.85]
time (hours/day)		Median [IQR]	1.67 [2.00]	1.50 [2.50]	2.00 [3.00]	3.00 [3.50]	4.00 [3.00]	3.33 [4.00]
, ,	IADL	Mean [SD]	2.35 [2.62]	2.46 [3.05]	2.88 [3.26]	2.82 [2.92]	3.03 [2.59]	3.45 [3.77]
		Median [IQR]	2.00 [2.00]	1.50 [2.00]	2.00 [2.00]	2.00 [2.50]	2.00 [3.13]	2.00 [4.00]
Personal cost	Informal	Mean [SD]	1518 [2017]	1271 [1526]	1754 [1982]	2181 [2220]	2112 [2104]	2672 [2314]
of dementia care (US\$)	care cost	Median [IQR]	747 [1646]	709 [1440]	1090 [1697]	1366 [2459]	1535 [1466]	1939 [2240]
`	OPP for	Mean [SD]	148 [190]	158 [174]	244 [209]	313 [217]	301 [202]	318 [218]
	LTC services covered by insurance	Median [IQR]	49 [172]	49 [123]	172 [319]	368 [441]	368 [196]	368 [441]
	OPP for	Mean [SD]	158 [336]	95 [156]	278 [695]	303 [543]	241 [579]	352 [998]
	care services not covered by insurance	Median [IQR]	49 [172]	49 [172]	49 [368]	172 [319]	49 [368]	49 [368]

ADL: Activities of Daily Living, IADL: Instrumental Activities of Daily Living, SD: Standard deviation, IQR: Interquartile range

OPP: Out-of-pocket payments LTC: Long-term care

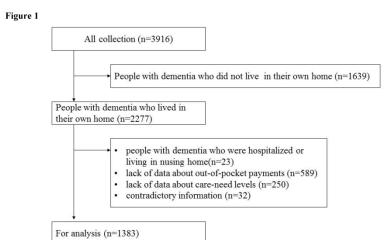


Figure 1: Selection process for the analysis This diagram shows the flow of participants who we focused on.

338x190mm (300 x 300 DPI)

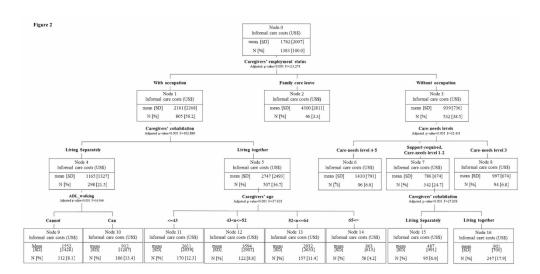


Figure 2: Classification tree of chi-square automatic interaction detection for informal care costs
The dendogram illustrates the combinations of independent variables to clarify who need or provide more informal care.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

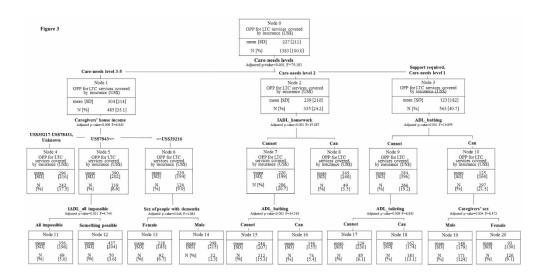


Figure 3: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC insurance services.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

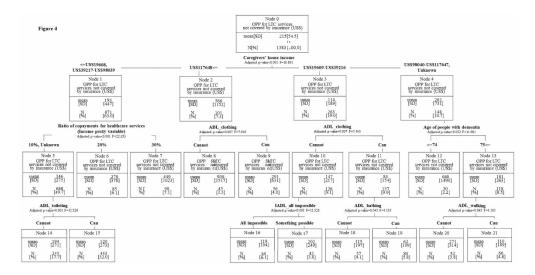


Figure 4: Classification tree of chi-square automatic interaction detection for out-of-pocket payments for LTC services not covered by insurance

The dendogram illustrates the combinations of independent variables to clarify who need more LTC services without insurance.

Abbreviations: ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; SD, Standard deviation; LTC, Long-term care

600x300mm (300 x 300 DPI)

STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

	Item No	Recommendation
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract - p.1-2
		(b) Provide in the abstract an informative and balanced summary of what was done
		and what was found $-$ p.2-3
Introduction		and what was round pizes
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported -
Background/rationale	2	p.4-5
Objectives	3	State specific objectives, including any prespecified hypotheses – p.5
Methods		
Study design	4	Present key elements of study design early in the paper – p.5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,
		exposure, follow-up, and data collection – p.6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of
		participants – p.6 and p.10
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect
		modifiers. Give diagnostic criteria, if applicable – p.6-10
Data sources/	8*	For each variable of interest, give sources of data and details of methods of
measurement		assessment (measurement). Describe comparability of assessment methods if there is
		more than one group – p.6, 9
Bias	9	Describe any efforts to address potential sources of bias – p.18-19
Study size	10	Explain how the study size was arrived at – p.6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,
		describe which groupings were chosen and why – p.11-12
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding
		- p.11-12
		(b) Describe any methods used to examine subgroups and interactions – p.11-12
		(c) Explain how missing data were addressed-p.10
		(d) If applicable, describe analytical methods taking account of sampling strategy –
		Non applicable
		(e) Describe any sensitivity analyses – Non applicable
Results		(a) Describe any sensitivity analyses Tron approach
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially
	-	eligible, examined for eligibility, confirmed eligible, included in the study,
		completing follow-up, and analysed – p.12-13
		(b) Give reasons for non-participation at each stage – Non applicable
		(c) Consider use of a flow diagram - Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and
		information on exposures and potential confounders – p.13 and Table 1
		(b) Indicate number of participants with missing data for each variable of interest –
		Non applicable
Outcome data	15*	Report numbers of outcome events or summary measures – Table 2
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and
	10	their precision (eg, 95% confidence interval). Make clear which confounders were
		adjusted for and why they were included –p.12-13
		adjusted for and why they were included -p.12-13

		(b) Report category boundaries when continuous variables were categorized – Non
		applicable (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period – Non applicable
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses – p.13, Figure2-4
Discussion		
Key results	18	Summarise key results with reference to study objectives - p,14-15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or
		imprecision. Discuss both direction and magnitude of any potential bias – p.18-19
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence – p.15-18
Generalisability	21	Discuss the generalisability (external validity) of the study results –p.18-19
Other information		<u></u>
Funding	22	Give the source of funding and the role of the funders for the present study and, if
		applicable, for the original study on which the present article is based - p.21

^{*}Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.