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Abstract: Background

Polygenic Risk Score (PRS) analyses have become an integral part of biomedical
research, exploited to gain insights into shared aetiology among traits, to control for
genomic profile in experimental studies, and to strengthen causal inference, among a
range of applications. Substantial efforts are now devoted to biobank projects to collect
large genetic and phenotypic data, providing unprecedented opportunity for genetic
discovery and applications. To process the large-scale data provided by such biobank
resources, highly efficient and scalable methods and software are required.

Method

Here we introduce PRSice-2, an efficient and scalable software for automating and
simplifying polygenic risk score analyses on large-scale data. PRSice-2 handles both
genotyped and imputed data, provides empirical association P-values free from
overfitting effects, supports different inheritance models and can evaluate multiple
continuous and binary target traits simultaneously. We demonstrate that PRSice-2 is
significantly faster than alternative polygenic score software, LDpred and lassosum,
which will be increasingly important as data sizes grow and as the applications of PRS
become more sophisticated, e.g. when incorporated into high-dimensional or gene-set
based analyses.

Conclusion

PRSice-2 is written in C++, with an R script for plotting, and is freely available for
download from http://PRSice.info
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Abstract 7 

Background: Polygenic Risk Score (PRS) analyses have become an integral part of biomedical 8 

research, exploited to gain insights into shared aetiology among traits, to control for genomic 9 

profile in experimental studies, and to strengthen causal inference, among a range of applications. 10 

Substantial efforts are now devoted to biobank projects to collect large genetic and phenotypic 11 

data, providing unprecedented opportunity for genetic discovery and applications. To process the 12 

large-scale data provided by such biobank resources, highly efficient and scalable methods and 13 

software are required.  14 

Method: Here we introduce PRSice-2, an efficient and scalable software for automating and 15 

simplifying polygenic risk score analyses on large-scale data. PRSice-2 handles both genotyped 16 

and imputed data, provides empirical association P-values free from overfitting effects, supports 17 

different inheritance models and can evaluate multiple continuous and binary target traits 18 

simultaneously. We demonstrate that PRSice-2 is significantly faster than alternative polygenic 19 
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score software, LDpred and lassosum, which will be increasingly important as data sizes grow and 20 

as the applications of PRS become more sophisticated, eg. when incorporated into high-21 

dimensional or gene-set based analyses. 22 

Conclusion: PRSice-2 is written in C++, with an R script for plotting, and is freely available for 23 

download from http://PRSice.info 24 

Keywords: Polygenic Risk Score, GWAS, Imputation 25 

Polygenic Risk Score (PRS) analyses are beginning to play a critical role in biomedical research, 26 

proving to have both scientific and clinical utility [1–9]. The increasing availability of genetic data 27 

from regional and national biobank projects [10–12] have allowed more powerful PRS to be 28 

calculated. However, the calculation of PRS, which involves parameter optimization [13–16], can 29 

be a computationally intensive process, especially for large datasets and when multiple analyses 30 

are conducted. To fully utilize the power of large datasets and to facilitate future method and 31 

application developments, at scale, we have performed a major overhaul of our original PRSice 32 

software [13], to produce PRSice-2. All code has been re-written in C++ and code from PLINK-33 

1.9 [17] that minimised computation has been incorporated. As a result of the consistent language 34 

and switch to objected-oriented code, different analytical components of the code can 35 

communicate directly, without, for example, the generation of intermediate files, such as those 36 

containing PRS corresponding to each P-value threshold, or post-processed genotype files. This 37 

has generated a substantial speed-up and reduction in disk space requirement in PRSice-2. In 38 

addition, a separate plotting script was implemented in R. Separate tasks are organized into 39 

functions and are, thus, more amenable to tailored extensions by users. Finally, a range of user-40 

options were incorporated into PRSice-2 to increase flexibility and improve usability.  41 
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Features of PRSice-2 42 

PRSice-2 retains the majority of the features of its predecessor PRSice [13], including automatic 43 

strand flipping, single nucleotide polymorphism (SNP) thinning according to linkage 44 

disequilibrium (LD) and P-value, known as clumping [18], and calculation and evaluation of PRS 45 

under few (‘fastscore’) or many (‘high-resolution scoring’) P-value thresholds.  46 

When compared to PRSice, PRSice-2 streamlines the entire PRS analysis pipeline without 47 

generating intermediate files, and performs all the main computations in C++, leading to a drastic 48 

speed-up in runtime and reduction of storage space. Extraction and exclusion of samples and SNPs 49 

are also implemented, allowing PRS analysis to be performed directly on a subset of the input data 50 

without performing pre-filtering.  51 

Briefly, the main new features of PRSice-2 are: 52 

1. Handles large-scale PRS analyses of both genotyped and imputed data. 53 

2. Computes empirical association P-values to account for over-fitting. 54 

3. Can perform PRS analyses on extensive number of target phenotypes simultaneously. 55 

4. Provides several options for imputing missing genotypes. 56 

5. Allows calculation of PRS based on different inheritance models, including additive, 57 

dominant, recessive and heterozygous models. 58 

6. Automatically generates dummy variables for categorical covariates. 59 

7. Can perform regression to estimate relative effect/risk corresponding to samples in user-60 

defined stratum of the population. Can output quantile and strata plots.  61 

8. Amenable to user extensions, such as relating to input data format, regression modelling 62 

and output.  63 
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 4 

Handling of Imputed data 64 

Genotypes are typically represented as the discrete counts of the minor or effect allele (0, 1 or 2), 65 

for single nucleotide polymorphisms (SNPs), in each individual. Genotypes not included in the 66 

genotyping chip can, potentially, be imputed and are usually either recorded as a set of three 67 

probabilities corresponding to the probability of each of the possible genotypes [19], or based on 68 

these, as the expected genotype (a real number between 0 and 2 known as the “dosage”) [19] or as 69 

the “best guess” (most probable) genotype. While any of these data formats can be exploited in 70 

PRS analyses, the most common approach is to use the “best-guess” genotype for each individual. 71 

However, this approach ignores the uncertainty in the imputed genotype.  72 

Currently, most PRS software only support input of the genotyped format. Therefore, users need 73 

to generate a large intermediate file containing the best-guess genotypes and discard any 74 

information related to imputation uncertainty. To reduce the storage space requirement, and to 75 

incorporate imputation uncertainty into PRS analyses, PRSice-2 implements support for the BGEN 76 

imputation format. PRSice-2 can directly process the BGEN imputed format and either convert to 77 

best-guess genotypes or dosages when calculating the PRS, without generating a large intermediate 78 

file. While PRS based on best-guess genotypes are calculated as for genotyped input, dosage based 79 

PRS are calculated as 80 

 81 

 

𝑃𝑅𝑆 = (∑ 𝛽𝑖 (∑ 𝜔𝑖𝑗 × 𝑗

2

𝑗=0

)

𝑚

𝑖

) 

(1) 
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 5 

where 𝜔𝑖𝑗 is the probability of observing genotype 𝑗 , where j  {0,1,2}, for the 𝑖𝑡ℎ SNP, 𝑚 is the 82 

number of SNPs and 𝛽𝑖 is the effect size of the 𝑖𝑡ℎ SNP estimated from the relevant base GWAS 83 

data.  84 

The ability to perform PRS analyses directly on imputed data can be particularly useful when the 85 

base GWAS and target samples are genotyped on a different platforms, as then there can be a small 86 

fraction of overlapping SNPs. For example, of the 725,459 post-QC SNPs (see Supplementary 87 

Material) in the UK Biobank genotype data [10], only 31% (222,956) of those were found in the 88 

GIANT Height and Body Mass Index (BMI) GWAS [20,21]. The use of imputed SNPs increases 89 

the number of overlapping SNPs to 2,121,036 SNPs. To assess the gain of power when using 90 

imputed vs un-imputed data, we performed PRS analyses on Height and BMI using UK Biobank 91 

genotyped and imputed data, with GWAS summary statistics provided by the GIANT consortium 92 

[20,21]. Age, UK Biobank genotyping batch, UK Biobank assessment centre and 40 principle 93 

components were first regressed out from the phenotype and the standardized residuals were used 94 

instead. In the linear regression, performed by PRSice-2 in the UK Biobank data as target sample 95 

using the default parameters, with height as outcome and PRS for height as predictor, we observed 96 

an increase in phenotypic variance explained (R2) by the PRS from 0.141 (genotyped) to 0.152 97 

(dosage), and likewise for BMI of 0.0456 to 0.0535.  98 

However, a challenge with imputed data is that there are numerous imputed formats in the field. 99 

While it is difficult to support all imputed formats, PRSice-2 adopts a modular approach, which 100 

allows simple incorporation of supports for additional data formats (eg. vcf) in the future.  101 

 102 
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 6 

Calculation of Empirical P-value 103 

All approaches to PRS calculation involve parameter optimisation in generating the final 104 

prediction model, and are thus vulnerable to overfitting [14]. The best strategy to avoid overfitting 105 

is to evaluate performance in an independent validation sample, but such a sample is not always 106 

available. Alternatively, if the primary aim is to assess evidence for an association to test a 107 

hypothesis, then we can calculate an empirical P-value corresponding to the association of the 108 

optimized PRS, with the Type 1 error rate controlled [13].  109 

In PRSice-2, to obtain the empirical P-value, the target trait values are permuted across the sample 110 

of individuals k times (default = 10,000) and the PRS analysis repeated on each set of permuted 111 

phenotypes. Thus, on each permutation, the “best-fit PRS” is obtained as that most associated with 112 

the target trait across the range of P-value thresholds considered, and the empirical P-value is 113 

calculated as:  114 

 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑃 =  
∑ 𝐼(𝑃𝑛

𝑁
𝑛=1 < 𝑃𝑜) + 1

𝑁 + 1
 (2) 

where 𝑁 is the number of permutations performed, I(.) is the indicator function, which takes a 115 

value of 0 if the “best-fit PRS” of permutation n is smaller than the observed P-value, Po, and 116 

where pseudo-counts of 1 are added to the numerator and denominator to avoid empirical P-values 117 

of 0 and reflecting (conservatively) counting the observed trait configuration as one potential null 118 

permutation [22]. While the empirical P-values for association will have controlled for the Type 1 119 

error rate, since the same process of parameter optimisation is performed explicitly under the null 120 

hypothesis, the observed phenotypic variance explained R2 remain unadjusted and affected by 121 

overfitting. Therefore, it is imperative to perform out-of-sample prediction, or cross-validation, to 122 
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evaluate the predictive power of PRS when using PRSice-2, and ideally the former given the 123 

problems of generalisability observed with PRS [14]. 124 

 125 

Analysis of PRS strata 126 

While PRS on most complex traits presently have limited power to predict individual risk across 127 

the population, which will remain limited for low-moderate heritability traits irrespective of 128 

GWAS sample sizes, recent studies have demonstrated that individuals at the tails of PRS 129 

distribution have substantially higher disease risk compared to those of the general population. 130 

Thus, it could be more efficacious to employ a different risk management strategy, in terms of 131 

screening or interventions, for example, to individuals with extreme PRS [1–3].  132 

We implemented the strata analysis feature in PRSice-2 to assist the calculation of relative 133 

phenotypic risk of individuals within different strata. Briefly, assuming there are 𝑁 individuals, 134 

they will first be aggregated into 𝑀 different strata based on their PRS. A 𝑀 row by 𝑁 − 1 column 135 

design matrix were then generated using dummy coding, using a user defined stratum as the 136 

reference group (or the median stratum by default). A linear regression (for quantitative traits) or 137 

logistic regression (for binary traits) will then be performed to obtain the relative phenotypic risk 138 

of each stratum against the reference, represented by the beta-coefficient (or the odds ratio for 139 

binary outcome, which can then be visualized using the strata plot (Figure 1). This allow users to 140 

test whether individuals at the extreme stratum have a substantially higher phenotypic risk when 141 

compared to the reference stratum. 142 
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 8 

Figure 1 143 

Figure 1 Strata plot generated by PRSice-2. The X-axis shows the range of different quantiles (eg. (80,90] corresponds to those 144 

individuals with PRS between the 80%-ile – 90%-ile of the population), and the Y-axis shows the coefficient of regression when 145 

comparing PRS from different quantiles with the reference quantile (here, (40,60]).  146 

Benchmarking 147 

PRSice-2 utilizes the standard approach to PRS calculation involving clumping SNPs and then 148 

performing the P-value thresholding strategy, known as the “C+T” method [14]. Studies [15,23] 149 

have shown that this approach has comparable predictive power to more complex methods such 150 

as lassosum [15] and LDpred [16]. As data size grows, or when more sophisticated PRS analyses 151 

are performed at scale [5,24], then computational efficiency becomes more important.  152 

Here, we compared the runtime and memory usage of PRSice-2 versus lassosum [15] and LDpred 153 

[16]. We simulated a phenotype for each individual in the UK biobank based on genetic effect 154 

sizes drawn from a standard normal distribution plus error. 100, 1k, 10k and 100k samples were 155 

then randomly selected from the UK biobank and used as the target data. PRS analyses were then 156 

performed using lassosum (v0.4.1), LDpred (v0.9.1) and PRSice 2 (v2.1.4), on servers equipped 157 

with two 10 core Intel Haswell E5-2660 v3 @ 2.60GHz and 128GB of RAM. Default parameters 158 

of each program were used. Runtime and memory usage of each program were measured using 159 

the Linux time command. The entire process was repeated 5 times to obtain an estimated 160 

distribution of runtime and memory usage.  161 

Our simulation results demonstrated that PRSice-2 is the most efficient software in all settings 162 

(Figure 2a) and that the memory usage scales well with the number of samples (Figure 2b). 163 

Specifically, PRSice-2 can complete the full PRS analysis on 100k samples within an average of 164 

8 minutes (Supplementary Table 1), significantly faster than lassosum (P = 2.5e-6, two tailed t-165 
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 9 

test), which takes an average 6 hours 13 minutes, and LDpred (P = 7.2e-5, two tailed t-test), which 166 

takes approximately 19 hours. Similarly, with 100k target samples, PRSice-2 requires less than 167 

600MB of memory (Supplementary Table 2), which is significantly less than the 7.35 Gb required 168 

by lassosum (P = 9.6e-12, two tailed t-test) and the 51.2 Gb required by LDpred (P = 1.7e-34, two 169 

tailed t-test). With its quick runtime and low memory usage, PRSice-2 can perform PRS analyses 170 

at scale on a desktop computer.  171 

Figure 2a Figure 2b 

Figure 2 Performance of the three PRS software. a) Average run time (in minutes) required to complete the whole analysis when 172 

different number of target samples were used. B) Average memory (in GB) required for the software to process different number 173 

of target samples.  174 

Discussion 175 

We have introduced PRSice-2, a software for the automation of polygenic risk score (PRS) 176 

analyses in large-scale genetic-phenotype data. Our results demonstrates that PRSice-2 is the most 177 

efficient among the leading PRS software, outperforming lassosum [15] and LDpred [16]. As data 178 

sizes increase and more complicated PRS analyses, such as multi-trait or gene-set based PRS 179 

analyses, become common, the efficiency advantages of PRSice-2 will become increasingly 180 

important.  181 

Over-fitting is a concern for all approaches to PRS analysis [14]. To control for the Type 1 error 182 

rate caused by over-fitting when exploiting PRS for hypothesis testing, PRSice-2 implements the 183 

calculation of empirical P-values. 184 
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Availability and requirements 185 

Project Name PRSice-2 

Project home page http://prsice.info 

Operating systems  

(pre-compiled versions) 

Linux (64-bit) 

OS X (64-bit Intel) 

Windows (64-bit) 

Programming language C++, R (version 3.2.3+) 

Other requirements  

(when recompiling) 

GCC version 4.8+, zlib  

License GNU General Public License version 3.0 

(GPLv3) 

Any restrictions to use by non-academics None 
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A guide to performing polygenic risk score analyses 
(For submission as a Technical Note) 
 
27th November 2018 
 
Dear Editor 
 
Polygenic Risk Score (PRS) analyses have become an integral part of biomedical research, with 
promising clinical and scientific utility. Substantial efforts are now devoted to biobank projects 
to collect large genetic and phenotypic data, providing unprecedented opportunity for genetic 
discovery and application. However, the increased data size poses a substantial computational 
challenge to existing PRS tools, calling for the development of more efficient and scalable 
software. 
 
Here, we present PRSice-2, a complete overhaul of our popular PRS software PRSice (Euesden et 
al. 2015; 286 citations, 150 citations in 2018). We have re-written the PRSice code in C++, making 
all code class/function based and thus more amenable to (user) extensions, have incorporated 
parts of the high performance PLINK-1.9 (Chang et al. 2015) algorithm where optimal, have 
extended data format options (eg. to BGEN), and via dramatic speed-ups and reductions in disk 
space requirement have made PRSice-2 now suitable for biobank scale data. A range of user-
options and new features were also implemented in PRSice-2, providing increased flexibility and 
improved usability.  
 
We present a performance comparison, demonstrating that PRSice-2 has a superior runtime 
compared to other leading PRS software, lassosum (Mak et al. 2017) and LDpred (Vilhjálmsson 
et al. 2015), having 45x and 143x faster runtime for PRS analyses performed on 10k samples. For 
the same data, PRSice-2 only requires 563Mb of memory, 13x less than the 7.35Gb required by 
lassosum and 90x less than the 51.2Gb required by LDpred. With its quick runtime and low 
memory usage, PRSice-2 can perform PRS analyses at scale on a desktop computer.  
 
PRSice-2 is an open-source software, under GPL-3.0 license, with clear documentation 
(https://goo.gl/MFNvZX) and active support (https://goo.gl/Bb4hDT), making PRSice-2 arguably 
the most user-friendly PRS software. Given the popularity of PRSice, and the efficiency and 
functionality improvements of PRSice-2, we believe that our release and description of PRSice-2 
would be ideally suited to GigaScience as a ‘Technical Note’. We look forward to hearing back 
from you on this 
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