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Abstract: Background

Polygenic Risk Score (PRS) analyses have become an integral part of biomedical
research, exploited to gain insights into shared aetiology among traits, to control for
genomic profile in experimental studies, and to strengthen causal inference, among a
range of applications. Substantial efforts are now devoted to biobank projects to collect
large genetic and phenotypic data, providing unprecedented opportunity for genetic
discovery and applications. To process the large-scale data provided by such biobank
resources, highly efficient and scalable methods and software are required.

Method

Here we introduce PRSice-2, an efficient and scalable software for automating and
simplifying polygenic risk score analyses on large-scale data. PRSice-2 handles both
genotyped and imputed data, provides empirical association P-values free from
inflation due to overfitting, supports different inheritance models and can evaluate
multiple continuous and binary target traits simultaneously. We demonstrate that
PRSice-2 is dramatically faster and more memory-efficient than PRSice and alternative
polygenic score software, LDpred and lassosum, while having comparable predictive
power. This combination of efficiency and power will be increasingly important as data
sizes grow and as the applications of PRS become more sophisticated; for example,
when incorporated into high-dimensional or gene-set based analyses.

Conclusion

PRSice-2 is written in C++, with an R script for plotting, and is freely available for
download from http://PRSice.info
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Major Comments:

1. The authors claim that their method is faster and more memory efficient than LDpred
and lassosum. However, the authors need to compare these methods in case of
prediction accuracy as well.

>> Thank you for your suggestion, which we think has now made our Technical Note
more comprehensive. We have now included a full simulation analysis investigating the
predictive accuracy of PRSice-2 compared to LDpred and lassosum (see Figure 3 and
Supplementary Figure 2).

2. I like to see experiments where the authors compare PRSice-2 with PRSice
performance.

>> We have now performed a comparison between PRSice-2 and PRSice-v1.25, both
in terms of speed and memory (predictive accuracy is the same given the same
underlying approach). Results can be found in Supplementary Figure 1,
Supplementary Table 1 and Supplementary Table 2

Minor Comments:

The authors need to comment regarding the case where we have multiple populations
in a study. For example Luna et al. Genetic epidemiology 2017 work discuss how to
solve this problem.

The authors need to mention some of their method limitations in the discussion section.

>> Thank you for your comment. We agree that differences in allele frequencies,
linkage disequilibrium and factors such as genetic drift and natural selection between
populations can reduce the generalisability of PRS analyses across populations and
produce misleading results, as suggested by Martin et. al. (2017) and as described in
our ‘Guide to performing polygenic risk score analyses’ (Choi, Mak, O’Reilly. 2018.
bioRxiv). We have now described this issue in our discussion, citing Duncan et al,
Luna et al, Martin et al and Choi et al, and we caution users to take extra care when
performing cross-population and family-wise PRS analyses.

Reviewer #2: This article reports the release of a new version of the PRSice software
for polygenic score calculation. The new version of the software boasts speed
enhancements that make it appealing for applications in the growing number of ultra-
large genetically-informed datasets including the UK Biobank, 23andMe and others.
Also important are features allowing for polygenic score computation from imputed
genotype datasets in which genotypes are represented as a probabilities rather than
discrete allele counts.

The data on speed are compelling. This alone is a good argument for why PRSice v1
users should upgrade to v2. But I found the article thinner on two other key questions
central to addressing whether those not already using PRSice v2 should take up
PRSice v2:
(1) Does the polygenic scoring method implemented within PRSice2 (additive
combination of SNPs with/without LD clumping) deliver comparably predictive scores to
other software, e.g. the LDPred and lassosum softwares?

>> Thank you for your comment and we agree that this is an important question. To
address this, we have now performed a comprehensive simulation analysis to
demonstrate the predictive power of PRSice-2 Vs LDpred and lassosum (see Figure 3
and Supplementary Figure 2).

(2) What is the value added of being able to accommodate imputed genotype
probabilities rather than relying exclusively on discrete allele count data?

>> We thank the reviewer for this comment. We have now also performed an analysis
to compare the predictive power of PRS constructed from genotyped data, or from
imputed data either in terms of best-guess genotypes or dosage values. Briefly, the R2
for the Height PRS increased from 0.145 when using genotyped data to 0.152 when
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using best-guess imputed genotypes, and to 0.153 when using dosage data; likewise
the R2 for BMI increased from 0.0475 when using genotype data to 0.0529 when using
best-guess genotypes, and to 0.0535 when using dosage data.

I would suggest the following revisions:

Re PRSice2 vs. Alternative Softwares: The authors assert that the method of polygenic
score calculation implemented within PRSice2 generates scores that are comparably
predictive to two other methodologies, LDPred and LassoSum. It is my understanding
that these methods were developed and are in use precisely because they outperform
the method implemented in PRSice in terms of the prediction R-squared for the target
phenotype. It would improve the article if the authors could provide some empirical
evidence for the claim that their software delivers polygenic scores of comparable
accuracy to other methods. For example, comparison of PRSice2 scores to scores
generated from LDPred and lassosum for a set of traits would be helpful. I like the
choices of height and BMI. But it might also be sensible to consider a trait for which
existing GWAS are smaller/ polygenic predictions are less accurate, e.g. depression.

>> Please see above response

Re Imputed Genotype Probabilities vs. Allele Counts: The authors helpfully report that
PRSice2 scores computed with imputed data can improve prediction accuracy by
about 1 percentage point for height and BMI as compared to scores computed with
genotyped-only data. It would be helpful to add an element to this analysis. As I
understand it, the authors are comparing a genotyped-SNP-only polygenic score
computed from allele counts to an imputed-SNP polygenic score computed from
genotype probabilities. But these are not the only two possibilities. In much polygenic
score analysis, imputed SNP probabilities are converted to discrete genotypes using a
threshold (e.g. probability=0.9) to determine whether a given genotype can be
assigned to the SNP. Since this is common practice in the field, it seems to me that it
would be helpful to include this approach in the comparison.

>> Please see above response

Finally, I have one small quibble about language:

In the introduction, the authors assert that polygenic scores have proven clinical utility.
This is a bit of an overstatement. I think we can say that "provocative new data suggest
the potential for polygenic scores to be useful in clinical settings" or something similar.
The recent papers referenced by the authors are compelling. But the term clinical utility
has a specific meaning - that application of a tool improves patient outcomes (e.g. see
Torkamani et al. 2018 Nat Rev Genet). We are a long way off from that. Instead, the
evidence we have supports an argument for the clinical validity of extreme polygenic-
scores values for assessing disease risk.

>> We thank the reviewer for highlighting this and we entirely agree, that as worded,
this could have led readers to a conclusion that we do not agree with ourselves (ie. we
also believe that PRS are a long way off clinical utility at the individual-level). We have
now changed the introduction as follows (note mention of ‘stratified medicine’ in the
revised version, as opposed to personalized medicine):

“Polygenic Risk Score (PRS) analyses are beginning to play a critical role in biomedical
research, being already sufficiently powered to provide scientific insights and with the
potential to contribute to stratified medicine in the future [1-9].”

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics Yes
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Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 8 

Background: Polygenic Risk Score (PRS) analyses have become an integral part of biomedical 9 

research, exploited to gain insights into shared aetiology among traits, to control for genomic 10 

profile in experimental studies, and to strengthen causal inference, among a range of applications. 11 

Substantial efforts are now devoted to biobank projects to collect large genetic and phenotypic 12 

data, providing unprecedented opportunity for genetic discovery and applications. To process the 13 

large-scale data provided by such biobank resources, highly efficient and scalable methods and 14 

software are required.  15 

Method: Here we introduce PRSice-2, an efficient and scalable software for automating and 16 

simplifying polygenic risk score analyses on large-scale data. PRSice-2 handles both genotyped 17 

and imputed data, provides empirical association P-values free from inflation due to overfitting, 18 

supports different inheritance models and can evaluate multiple continuous and binary target traits 19 

Manuscript Click here to access/download;Manuscript;20190313-PRSice2-
reply.docx
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simultaneously. We demonstrate that PRSice-2 is dramatically faster and more memory-efficient 20 

than PRSice and alternative polygenic score software, LDpred and lassosum, while having 21 

comparable predictive power. This combination of efficiency and power will be increasingly 22 

important as data sizes grow and as the applications of PRS become more sophisticated; for 23 

example, when incorporated into high-dimensional or gene-set based analyses. 24 

Conclusion: PRSice-2 is written in C++, with an R script for plotting, and is freely available for 25 

download from http://PRSice.info 26 

Keywords: Polygenic Risk Score, GWAS, Imputation 27 

 28 

Polygenic Risk Score (PRS) analyses are beginning to play a critical role in biomedical research, 29 

being already sufficiently powered to provide scientific insights and with the potential to contribute 30 

to stratified medicine in the future [1–9]. The increasing availability of genetic data from regional 31 

and national biobank projects [10–12] have allowed more powerful PRS to be calculated. 32 

However, the calculation of PRS, which involves parameter optimization [13–16], can be a 33 

computationally intensive process, especially for large datasets and when multiple analyses are 34 

conducted.  35 

 36 

To fully utilize the power of large datasets and to facilitate future method and application 37 

developments, at scale, we have performed a major overhaul of our original PRSice software [13], 38 

to produce PRSice-2. All code has been re-written in C++ and code from PLINK-1.9 [17] has been 39 

incorporated to optimize computation. As a result of the consistent language and switch to 40 

objected-oriented code, different analytical components of the code can communicate directly, 41 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://prsice.info/


 3 

without, for example, the generation of intermediate files, such as those containing PRS 42 

corresponding to each P-value threshold, or post-processed genotype files. This has generated a 43 

substantial speed-up, a lower processing burden and a reduction in disk space requirement in 44 

PRSice-2. In addition, a separate plotting script was implemented in R. Separate tasks are 45 

organized into functions and are, thus, more amenable to tailored extensions by users. Finally, a 46 

range of user-options were incorporated into PRSice-2 to increase flexibility and improve 47 

usability.  48 

 49 

Features of PRSice-2 50 

PRSice-2 utilizes the same standard approach to PRS calculation as PRSice, involving clumping 51 

Single Nucleotide Polymorphisms (SNPs) (thinning SNPs according to linkage disequilibrium and 52 

P-value) and then performing P-value thresholding, known as the “C+T” method [14], and retains 53 

the majority of the features of its predecessor [13], including automatic strand flipping, clumping 54 

[18], and calculation and evaluation of PRS under few (‘fastscore’) or many (‘high-resolution 55 

scoring’) P-value thresholds.  56 

 57 

When compared to PRSice, PRSice-2 streamlines the entire PRS analysis pipeline without 58 

generating intermediate files, and performs all the main computations in C++, leading to a drastic 59 

speed-up in runtime and reduction in memory burden (see Supplementary Figure 1). Extraction 60 

and exclusion of samples and SNPs are also implemented, allowing PRS analysis to be performed 61 

directly on a subset of the input data without performing pre-filtering.  62 

Briefly, the main features of PRSice-2 are: 63 
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 4 

1. Handles large-scale PRS analyses of both genotyped and imputed data 64 

2. Computes empirical association P-values to account for over-fitting 65 

3. Can perform PRS analyses on a large number of target phenotypes simultaneously 66 

4. Provides several options for imputing missing genotypes 67 

5. Allows calculation of PRS based on different inheritance models, including additive, 68 

dominant, recessive and heterozygous models 69 

6. Automatically generates dummy variables for categorical covariates 70 

7. Can perform regression to estimate relative effect/risk corresponding to samples in user-71 

defined stratum of the population. Can output quantile and strata plots 72 

8. Amenable to user extensions, such as relating to input data format, regression modelling 73 

and output 74 

 75 

Handling of Imputed data 76 

Genotypes are typically represented as the discrete counts of the minor or effect allele (0, 1 or 2), 77 

for single nucleotide polymorphisms (SNPs), in each individual. Genotypes not included in the 78 

genotyping chip can, potentially, be imputed and are usually either recorded as a set of three 79 

probabilities corresponding to the probability of each of the possible genotypes [19], or based on 80 

these, as the expected genotype (a real number between 0 and 2 known as the “dosage”) [19] or as 81 

the “best-guess” (most probable) genotype. While any of these data formats can be exploited in 82 

PRS analyses, the most common approach is to use the “best-guess” genotype for each individual. 83 

However, this approach does not account for the uncertainty in the imputed genotype.  84 

 85 
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 5 

Currently, most PRS software only support input of the genotyped format. Therefore, users need 86 

to generate a large intermediate file containing the best-guess genotypes and discard any 87 

information related to imputation uncertainty. To reduce the storage space requirement, and to 88 

incorporate imputation uncertainty into PRS analyses, PRSice-2 implements support for the BGEN 89 

imputation format. PRSice-2 can directly process the BGEN imputed format and either convert to 90 

best-guess genotypes or dosages when calculating the PRS, without generating a large intermediate 91 

file. While PRS based on best-guess genotypes are calculated as for genotyped input, dosage based 92 

PRS are calculated as 93 

 94 

 

𝑃𝑅𝑆 = (∑ 𝛽𝑖 (∑ 𝜔𝑖𝑗 × 𝑗

2

𝑗=0

)

𝑚

𝑖

) 

(1) 

where 𝜔𝑖𝑗 is the probability of observing genotype 𝑗 , where j  {0,1,2}, for the 𝑖𝑡ℎ SNP, 𝑚 is the 95 

number of SNPs and 𝛽𝑖 is the effect size of the 𝑖𝑡ℎ SNP estimated from the relevant base GWAS 96 

data.  97 

 98 

The ability to perform PRS analyses directly on imputed data can be particularly useful when the 99 

base GWAS and target samples are genotyped on a different platform, as then there can be a small 100 

fraction of overlapping SNPs. For example, of the 725,459 post-QC SNPs (see Supplementary 101 

Material) in the UK Biobank genotype data [10], only 31% (222,956) of those were found in the 102 

GIANT Height and Body Mass Index (BMI) GWAS [20,21]. The use of imputed SNPs increases 103 

the number of overlapping SNPs to 2,121,036 SNPs. To assess the gain in power when using 104 

imputed vs un-imputed data, we performed PRS analyses on height and BMI using UK Biobank 105 
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 6 

genotyped and imputed data, with GWAS summary statistics provided by the GIANT consortium 106 

[20,21]. Age, sex, UK Biobank genotyping batch, UK Biobank assessment centre and 40 principle 107 

components were first regressed out from the phenotype and the standardized residuals were used 108 

instead.  109 

 110 

We performed a linear regression using PRSice-2, with the UK Biobank data as target sample 111 

using the default parameters. When calculating PRS from the “best-guess” genotype, the “best-112 

guess” genotype is defined as the genotype having an imputation probability of 0.9 or above. If 113 

there is no such genotype, then the SNP is considered to be missing for the individual. In addition, 114 

for the imputed data, we filtered out SNPs with imputation quality score less than 0.8. With height 115 

as the outcome and PRS for height as predictor, we observed an increase in phenotypic variance 116 

explained (R2) of the PRS from 0.145 when using genotyped data to 0.152 when using best-guess 117 

imputed genotypes, and 0.153 when using dosage data; likewise, the R2 for BMI increased from 118 

0.0475 when using genotype data to 0.0529 when using best-guess genotypes, and to 0.0535 when 119 

using dosage data. These results exemplify the potential gain in predictive power when using 120 

dosage data compared to using genotyped or best-guess genotype data. However, given the modest 121 

increases in predictive power, users may wish to perform first-pass analyses on genotyped-only 122 

data before application to the more computationally intensive imputed data. A further challenge in 123 

exploiting imputed data is that there are numerous imputed formats in use in the field. While it is 124 

difficult to support all imputed formats, PRSice-2 adopts a modular approach, which allows simple 125 

incorporation of supports for additional data formats (eg. vcf) in the future.  126 

 127 
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Calculation of Empirical P-value 128 

All approaches to PRS calculation involve parameter optimisation in generating the final 129 

prediction model, and are thus vulnerable to overfitting [14]. The best strategy to avoid overfitting 130 

is to evaluate performance in an independent validation sample, but such a sample is not always 131 

available. Alternatively, if the primary aim is to assess evidence for an association to test a 132 

hypothesis, then we can calculate an empirical P-value corresponding to the association of the 133 

optimized PRS, with the Type 1 error rate controlled [13].  134 

 135 

In PRSice-2, to obtain the empirical P-value, the target trait values are permuted across the sample 136 

of individuals k times (default = 10,000) and the PRS analysis is repeated on each set of permuted 137 

phenotypes. Thus, on each permutation, the “best-fit PRS” is obtained as that most associated with 138 

the target trait across the range of P-value thresholds considered, and the empirical P-value is 139 

calculated as:  140 

 𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑃 =  
∑ 𝐼(𝑃𝑛

𝑁
𝑛=1 < 𝑃𝑜) + 1

𝑁 + 1
 (2) 

where 𝑁 is the number of permutations performed, I(.) is the indicator function, which takes a 141 

value of 0 if the “best-fit PRS” of permutation n is smaller than the observed P-value, Po, and 142 

where pseudo-counts of 1 are added to the numerator and denominator to avoid empirical P-values 143 

of 0 and reflecting (conservatively) counting the observed trait configuration as one potential null 144 

permutation [22]. While the empirical P-values for association will be controlled for the Type 1 145 

error rate, since the same process of parameter optimisation is performed explicitly under the null 146 

hypothesis, the observed phenotypic variance explained, R2, remains unadjusted and is affected by 147 

overfitting. Therefore, it is imperative to perform out-of-sample prediction, or cross-validation, to 148 
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 8 

evaluate the predictive accuracy of PRS when using PRSice-2, and ideally the former given the 149 

problems of generalisability observed with PRS [14]. 150 

 151 

Analysis of PRS strata 152 

While PRS on most complex traits presently have limited power to accurately predict risk at the 153 

individual-level, which will remain the case for low-moderate heritability traits irrespective of 154 

GWAS sample sizes, recent studies have demonstrated that individuals at the tails of PRS 155 

distribution can have substantially higher disease risk than those of the general population. Thus, 156 

these individuals may provide useful subjects for experimental follow-up, while in clinical settings 157 

it could be more efficacious to employ different risk management strategies, in terms of screening 158 

or interventions, for example, for individuals with extreme PRS [1–3].  159 

 160 

We have implemented a strata analysis feature in PRSice-2 to aid the calculation of relative 161 

phenotypic risk of individuals between strata. Briefly, the 𝑁 individuals of the target sample are 162 

first aggregated into 𝑀 different strata based on their PRS. An N x (𝑀 − 1) design matrix is then 163 

generated using dummy coding, such that an individual is coded 1 in the column that corresponds 164 

to their PRS stratum and whereby a user-defined stratum is the reference group (or the median 165 

stratum by default). A linear regression (for quantitative traits) or logistic regression (for binary 166 

traits) will then be performed to estimate the phenotypic difference or relative risk, respectively, 167 

of each stratum versus the reference. The set of corresponding beta-coefficients (linear) or the odds 168 

ratio (logistic), can then be visualized with the strata plot (Figure 1). This allow users to assess 169 

whether individuals in the extreme stratum have a substantially higher phenotypic risk when 170 

compared to the reference stratum. 171 
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 9 

Figure 1 172 

Figure 1 Strata plot generated by PRSice-2. The X-axis shows the range of different quantiles (eg. (80,90] corresponds to those 173 

individuals with PRS between the 80%-ile – 90%-ile of the population), and the Y-axis shows the odds ratio (OR) when comparing 174 

PRS from different quantiles with the reference quantile (here, (40,60]).  175 

Benchmarking 176 

Here we perform a simulation study to compare the performance of PRSice-2 to alternative 177 

polygenic score software lassosum [15] and LDpred [16], in terms of runtime, memory usage 178 

and predictive power.  179 

 180 

Quantitative traits with heritability (ℎ2) of 0.2, 0.4, 0.6 and 0.8 were simulated with the UK 181 

Biobank genotype data (post-QC) as input. Briefly, each quantitative trait was simulated based 182 

on the following linear model: 183 

 𝑌 = 𝑋𝛽 + 𝜀 (3) 

where 𝑋 is the unstandardized genotype matrix corresponding to 385,794 individuals (rows) and 184 

560,173 SNP genotypes (columns). The 𝛽 vector corresponds to the effect size associated with 185 

each SNP, with  100, 1k, 10k, 100k and 560,173 (all SNPs) randomly selected to be causal SNPs 186 

with effect size 𝛽~𝑁(0,1), 𝛽 = 0 otherwise, and 𝜀 represents the random error, which follows 187 

𝜀~𝑁 (0, √
𝑣𝑎𝑟(𝑋𝛽)(1−ℎ2)

ℎ2 ). To control for batch effects and population structure in the genotype 188 

data, a regression of batch, UK Biobank assessment centre and 40 PCs against the simulated trait 189 

were performed as follows: 190 

 𝑌 = 𝐵𝑎𝑡𝑐ℎ + 𝐶𝑒𝑛𝑡𝑟𝑒 + 40 𝑃𝐶𝑠 + 𝜀 (4) 

The standardized residuals were then used as the final simulated trait. 20k samples were 191 

randomly selected as the base sample and used to generate the GWAS summary statistics. 100, 192 

1k, 10k and 100k samples independent from the base were then randomly selected as the target 193 

sample. PRS analyses were then performed on these base and target data using the latest version 194 

of lassosum (v0.4.3), LDpred (v1.0.0) and PRSice 2 (v2.1.8), on servers equipped with two 10 195 

core Intel Haswell E5-2660 v3 @ 2.60GHz and 128GB of RAM. Default parameters of each 196 
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 10 

program were used. The runtime and memory usage of each program were measured using the 197 

Linux time command and the predictive power of the methods was assessed according to 198 

phenotypic variance explained (R2). The entire process was repeated 10 times to obtain an 199 

estimated distribution of runtime, memory usage and predictive power.  200 

 201 

Figure 2 shows the runtime and memory usage of PRSice-2, lassosum and LDpred. Based on 202 

these simulation results, PRSice-2 is the most efficient software in all settings (Figure 2a), 203 

significantly faster than lassosum (P = 3.06e-49, one sided t-test) and LDpred (P = 9.06e-86, one 204 

sided t-test). Specifically, PRSice-2 can complete the full PRS analysis on 100k samples within 8 205 

minutes (Supplementary Table 1), which is 78x faster than the 9 hours 21 minutes required by 206 

lassosum, and 109x faster than the 13 hours 7 minutes required by LDpred. Likewise, PRSice-2 207 

requires significantly less memory (Figure 2b) than lassosum (P = 1.13e-150, one sided t-test) 208 

and LDpred (P = 1.21e-139, one sided t-test), requiring less than 500MB of memory for 100k 209 

samples, as opposed to 11.6GB required by lassosum and 38.1 GB required by LDpred 210 

(Supplementary Table 2). Likewise, PRSice-2 outperforms PRSice-v1.25, requiring 200x less 211 

time and 7x less memory for a target sample size of 10k (similar memory for small target 212 

samples. See Supplementary Figure 1, Supplementary Tables 1,2 for details). As data size grows, 213 

or when more sophisticated PRS analyses are performed at scale [5,23], these gains in 214 

computational efficiency could become even more important. 215 

 216 

Figure 2a Figure 2b 

Figure 2 Performance of the three PRS software on simulated data. a) Average run time (in minutes) required to complete the 217 

entire analysis, across 10 repeats, when applied to different sizes of target sample. b) Average memory (in GB) required for the 218 

different software to process the different sizes of target sample.  219 

Figure 3 shows the predictive power of PRSice-2 when compared to lassosum and LDpred for 220 

quantitative traits with heritability of 0.6 and target sample size of 10k (see Supplementary 221 

Figure 2 for comparisons across all settings). Consistent with previous findings [15,24,25], 222 

PRSice-2 has comparable predictive power to lassosum and LDpred, generating PRS with 223 

predictive power higher than that of LDpred but not as high as lassosum. These results are 224 
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inherently dependent on modelling assumptions and we provide these only as an approximate 225 

guide of performance in settings that match our assumptions. We provide our simulation code 226 

(https://github.com/choishingwan/PRSice-paper-script) for others to inspect and repeat our 227 

analyses.  228 

 229 

While PRS generated by PRSice-2 do not appear to fully optimize predictive accuracy, the 230 

simple approach and typically fewer SNPs exploited allows for easier interpretation of the results 231 

compared to methods that use all SNPs [26]. Moreover, the efficiency and predictive power of 232 

PRSice-2 makes it an ideal tool to perform PRS analyses at scale. 233 

 234 

Figure 3 235 

Figure 3 Predictive accuracy of the three PRS software for a simulated trait with heritability h2=0.6 and target sample size of 236 
10k. The Y-axis represents the trait variance explained (R2) by the PRS generated from each software, while the X-axis 237 
corresponds to the number of causal SNPs for the simulated trait. Full results of the comparison study are shown in 238 
Supplementary Figure 2. 239 

Discussion 240 

We have introduced PRSice-2, a software for the automation of polygenic risk score (PRS) 241 

analyses applied to large-scale genotype-phenotype data. Our results demonstrate that PRSice-2 is 242 

the most efficient among some of the leading PRS software, outperforming lassosum [15] and 243 

LDpred [16]. As data sizes increase and more complicated PRS analyses, such as multi-trait or 244 

gene-set based PRS analyses, become common, the efficiency advantages of PRSice-2 will 245 

become increasingly important.  246 

 247 

Over-fitting is a concern for all approaches to PRS analyses [14]. To control for the Type 1 error 248 

rate caused by over-fitting when exploiting PRS for hypothesis testing, PRSice-2 implements the 249 

calculation of empirical P-values. 250 
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 251 

PRSice-2 implements a standard approach for performing PRS analyses. For PRS analyses 252 

performed in family data or across diverse populations, for instance, results should be interpreted 253 

carefully [14] and extensions of the standard PRS approach or alternatives may be required [14,27–254 

29] to generate more informative results. 255 

 256 

Availability and requirements 257 

Project Name PRSice-2 

Project home page http://prsice.info 

Operating systems  

(pre-compiled versions) 

Linux (64-bit) 

OS X (64-bit Intel) 

Windows (64-bit) 

Programming language C++, R (version 3.2.3+) 

Other requirements  

(when recompiling) 

GCC version 4.8+, zlib  

License 

GNU General Public License version 3.0 

(GPLv3) 

Any restrictions to use by non-academics None 

RRID SCR_017057 
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