Supplementary information:

REV-ERBα and **REV-ERBβ** function as key factors regulating Mammalian Circadian Output

Ryosuke Ikeda^{1,2}, Yoshiki Tsuchiya^{1,*}, Nobuya Koike¹, Yasuhiro Umemura¹, Hitoshi Inokawa¹, Ryutaro Ono¹, Maho Inoue¹, Yuh Sasawaki¹, Tess Grieten¹, Naoki Okubo², Kazuya Ikoma², Hiroyoshi Fujiwara², Toshikazu Kubo², & Kazuhiro Yagita^{1,*}

¹Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.

²Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.

Supplementary Fig. S1 Sequence of mRNA demonstrates a deletion of the targeted exon. cDNA was synthesized from total RNA extracted from WT and KO cells and CRISPR-targeted regions were amplified by PCR and sequenced.

Supplementary Fig. S2 Expression rhythms of *Hnf1b*. mRNA expression levels of *Hnf1b* in WT and KO cells are plotted with blue and red lines, respectively. *Hnf1b* is cycling in WT but not in KO.