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Supplementary Note 1. Description of the sysSVM algorithm 

 
Motivation and rationale 
sysSVM (systems-level Support Vector Machine) is an algorithm to predict cancer 

genes in individual patients based on features derived from their molecular and 

systems-level properties. sysSVM builds on our previous efforts to identify novel 

cancer genes in each sample independently as opposed to focussing on recurrently 

altered genes across sample cohorts1. An approach based on sample-specific analysis 

is advantageous in the presence of highly heterogeneous cancers (such as 

esophageal adenocarcinoma) where the mutational landscape is highly variable 

across samples and recurrently altered genes are rare. sysSVM replaces the 

comparison of frequency of gene alterations across samples with the analysis of gene 

properties in individual samples, following the principle that genes contributing to 

cancer share similar properties. 

 
sysSVM implementation 
While several sources of true positive observations (i.e.  known cancer genes) are 

available, a set of true negative observations (i.e. non-cancer genes) is difficult to 

assemble. One possibility would be to rely on known false positives of driver prediction 

approaches2. However, these genes often have distinct properties (i.e. they are long 

genes with a biased sequence composition) and this would bias the predictor as they 

are not representatives of all non-cancer genes. To overcome this problem, sysSVM 

implements a one-class support vector machine for novelty detection that models the 

density of the data in the input feature space3. The strategy of a one-class SVM is to 

map the data to the feature space corresponding to the chosen kernel and separate 

them from the origin with the maximum margin but without using a negative set3. As a 

positive set, sysSVM uses all known cancer genes with damaging alterations in the 

sample cohort under study and it is based on several steps as detailed below and in 

Figure 1A. Training and prediction are done using linear, radial, sigmoid and 

polynomial kernels and, after identifying the best model in each kernel, genes are 

ranked in each sample individually using a combined score. sysSVM is implemented 

in R using the e1071 package4. 
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Step 1: Feature mapping 
Step 1 of sysSVM consists of mapping 34 features to all genes altered in the sample 

cohort under study. Ten of the 34 features derive from molecular properties and 24 

features derive from systems-level properties of known cancer genes (Supplementary 

Table 1). These 34 features are used to define the regions of the feature space where 

the known cancer genes reside. Twenty-two of them are categorical and 12 are 

continuous variables (Supplementary Table 1). 

 
Step 2: Model selection 
In step 2 of sysSVM, a grid search is performed to optimise the parameters used in 

each kernel:  

1) nu (all kernels), representing the upper bound on the fraction of outliers (i.e. training 

genes left outside the estimated region) and the lower bound on the fraction of support 

vectors. Values for nu range from 0.05 to 0.9 with a step of 0.05 for a total of 18 values; 

2) gamma (radial, sigmoid, and polynomial kernels), accounting for the influence of 

individual training points in the final model and defined as: 

 

! = 2$, where % ∈ {−7,−6,… , 4}	 (1) 

 

for a total of 12 values; 

3) degree (polynomial kernel), representing the degree of the polynomial kernel 

function with three possible values (3, 4, 9);  

The grid search results in 18 combinations of parameters for the linear kernel, 216 

combinations for the radial and sigmoid kernels and 648 combinations for the 

polynomial kernel, for a total of 1098 combinations.  

To identify the best combination of parameters for each kernel, a user-defined number 

of iterations of three-fold cross validations is performed (default = 10,000). At each 

iteration, the genes of the training set are randomly split into two subsets, one used for 

training (2/3 of the genes) and one as a test set (1/3 of the genes). Predictions are 

performed on the test set and the sensitivity of each set of parameters is computed. 

The distribution of sensitivity every n iterations (default = 100) is derived. The least 

variant model among the top five most sensitive models in each kernel (considering 

the mean sensitivity) is chosen as the best model for that kernel. To account for the 

effect of increasing number of cross validation iterations, at each increment of n cross 
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validations (default = 100), the selection of best models takes into account all previous 

cross-validation iterations.  

To account for the effect of the order of iterations, this cumulative assessment is 

repeated a number of times (default = 5) where the iterations of cross validation are 

randomly reordered. This produces m sets of best models (from a default of 5 re-

orderings of 100 increments, m = 500).  

 
Step 3: Training and prediction 
In step 3, all m sets of best models identified in step 2 are used for training using the 

whole training set. Cancer genes are then predicted in individual samples from all 

genes with damaging alterations (excluding the known cancer genes used for training) 

using each best model. To combine the resulting four sets of predictions (one from 

each kernel), a combined score (Sgs) for each altered gene (g) in each sample (s) is 

derived. Sgs takes into account the similarity of the features of gene (g) to those of the 

training set by summing up its rank in sample (s) in each kernel (i), (Rigs). Rigs is derived 

by sorting the decision values (indicative of the distance of the gene from the decision 

boundary that separates positive from negative sets) of kernel (i) within sample (s) so 

that high decision values correspond to top scoring genes. Sgs then corrects for the 

total number of altered genes in that sample and for the sensitivity of each kernel and 

applies a normalisation factor to scale the resulting value between 0 and 1: 

  

012 =
345167

89:;
<; ×	>?@9

A

9B6
C×45167(E;)

 (2) 

 

where Ns is the number of altered genes in sample (s); Rigs is the rank of gene (g) in 

sample (s) and kernel (i); and BMSi   is the sensitivity of the best model in kernel (i).  

Genes are ranked using Sgs and the top k genes in each patient (default top 10) are 

retained for further comparison. The m sets of best models produce m lists of top k 

genes (default = 500). The most frequent list of top k genes overall is selected as the 

final list of predicted cancer genes.  
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Supplementary Figure 1. Pairwise correlation between 34 features for classification 

 
Legend: For each pair of features, a Pearson correlation coefficient was measured 

considering all values of 17,078 genes. Only coefficient values between [-0.5, 0.5] and 

with FDR≤0.05 are shown. Positive correlations were observed between protein 

degree and betweenness as well as between highly connected (hub) and central 

proteins. These are known relationships between properties of nodes in a network. 

Other positive correlations were observed between the number of damaging 

alterations and the total number of exonic SNVs and indels; between gene length and 

protein domains; and between genes ubiquitously expressed and the number of 

tissues where they are expressed. We decided to keep all these features because they 

are complementary in their description of gene properties. 
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Supplementary Figure 2. tSNE plots of 34 properties of known cancer genes 
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Legend: For each property, a 2-D map of the high-dimensional data was rebuilt for the 

476 known cancer genes altered 4,091 times in the cohort of 261 EACs. Black curves 

represent the density of known cancer genes. For continuous or multi-value variables 

(truncating alterations, non-truncating damaging alterations, gain of function 

alterations, exonic SNVs and indels, gene copy number, gene length, protein domains, 

chromatin state, protein degree, protein betweenness, miRNA interactions, tissues 

where the gene is expressed) a colour code is reported. For categorical variables 

(gene gain, gene loss, gene translocation, gene inversion, gene insertion, gene 

duplication status, ohnolog, hub, central protein, old gene, origin in prokaryotes, origin 

in single cell eukaryotes, origin in opisthokonts, origin in metazoans, origin in 

vertebrates, origin in mammals, origin in primates, ubiquitously expressed, medium 

expressed, selectively expressed, specifically expressed, not expressed) genes are 

labelled according to whether they have (red) or not (grey) that property.  
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Supplementary Figure 3. sysSVM validation 
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Legend: a. Feature ranking using Recursive Feature Elimination (RFE)5. For each 

kernel, the distribution of the squared weight of each feature across 34 iterations is 

shown. The median value of the distribution is shown above each box. 

Features are sorted according to their rank, measured in terms of the iteration where 

each feature was eliminated (i.e. the leftmost feature in each plot was the last to be 

eliminated in the corresponding kernel). This is the reason why the top-ranking features 

do not necessarily have the highest median squared weight. b. Average distance from 

the center of the highest-density regions of known cancer genes for different score 

thresholds to define helper genes. For each gene set, the distance of each helper gene 

from the center was calculated and the mean of the distribution across the set was 

derived.  Comparison of sysSVM scores between known drivers and the rest of altered 

genes for 86 EACs from TCGA (c) and 21 EACs from Nones et al., 20146. (d). Starting 

from all altered genes, known drivers were identified as described in the Methods. All 

genes that are not expressed in healthy esophagus were removed from both gene 

sets. Distributions were compared using two tailed Wilcoxon rank-sum test. Lower and 

upper hinges and middle line of boxplots correspond to 25th, 75th and 50th percentiles. 

Upper and lower whiskers extend less than 1.5 times the interquartile range. 
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Supplementary Figure 4. Co-amplifications and features of known cancer drivers  
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a. Distribution of 79,261 amplified genes and 2,062 amplified helper genes across 261 

EACs. b. Distribution of 6,296 amplifications in the 952 genes across 261 EACs. Only 

2,062 times (corresponding to 250 EACs) are these genes considered helpers. c. Co-

amplified driver and helper genes in 261 EACs as a function of the total number of 

samples where they are altered. For each pair of drivers or helpers in the same 

chromosome, ASCAT breakpoints were used to assign whether they were in the same 

co-amplified segment. Only 1,345 gene pairs co-amplified in at least one sample are 

shown. The pairs TP53-SLC2A4 and TP53-SENP3 are co-amplified in 1 sample and 

altered in 197 samples are not shown. d. Distribution of known drivers across 261 

EACs. Mean (n = 7.5) and median (n = 7) of the distribution are consistent with recent 

reports7. e. Recurrence of cancer drivers across 261 EACs. Only samples acquiring 

alterations with a damaging effect are considered. f. Distribution of damaging 

alterations in 202 cancer drivers. Overall, these genes acquire 1,967 damaging 

alterations. Distribution of altered pathways (g) and altered samples (h) for known 

drivers and newly predicted helpers. Lower and upper hinges and middle line of 

boxplots correspond to 25th, 75th and 50th percentiles. Upper and lower whiskers 

extend less than 1.5 times the interquartile range. 
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Supplementary Figure 5. EAC clustering using pathways enriched in known drivers 
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Legend: Hierarchical clustering was performed as described in Methods and Figure 

2B and corresponds to that shown in Figure 2C for drivers, including the five clusters 

(1D-5D). Each row represents a sample and each column an enriched pathway. 

Samples were assigned to a given pathway if they had at least one altered known 

driver mapping to that pathway. Seventy-three universal pathways perturbed in at least 

50% of samples are coloured in light blue. 
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Supplementary Figure 6. Identification of the optimal number of clusters 

 
Legend: Silhouette analysis to measure clustering robustness of (a) known drivers 

and (b) helper genes. For each number of clusters between 3 and 10, clusters were 

derived from the dendrogram (Figure 2C) and the silhouette value8 was then calculated 

for each sample using the Euclidean distance between rows of the Jaccard matrix Aij. 

The number of clusters with the highest median silhouette value over all samples was 

chosen as the most robust clustering partition. 
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Supplementary Figure 7. EAC clustering using pathways enriched in helpers 
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Legend: Hierarchical clustering was performed as described in Methods and Figure 

2B and corresponds to that shown in Figure 2C for helpers, including the six clusters 

(1H-6H). Samples were assigned to a given pathway if they had at least one altered 

helper mapping to that pathway. Fifty-one of the 73 universal pathways perturbed in at 

least 50% of EACs are coloured in light blue. All other colours depict cluster-defining 

pathways. 
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Supplementary Figure 8. Cancer predisposition and comparison of helper genes 

 

Legend: a. Germline rare damaging variants in cancer predisposition genes in 261 

EAC patients and 503 Europeans from the 1000 Genomes Project. Of the 54 mutated 

predisposition genes, the ones altered in at least 1% of EAC patients (n=3) are shown. 

Fisher testing did not reveal any gene to be enriched in EAC patients compared to 

1000 Genomes samples. Comparison of enriched pathways between top ten and (b) 

top five or (c) top 15 scoring genes in each sample. Gene set enrichment analysis 

using top five and top 15 scoring genes led to 71 and 223 enriched pathways, 
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respectively (FDR <0.01). Comparison of sample positions in the clustering 

dendrgrams of top 10 and (d) top five or (e) top 15 scoring genes in each sample. 

Complete linkage hierarchical clustering with Euclidean distance was used to group 

261 EACs according to pathways enriched in the different datasets of helpers. The 

dendrogram of top 10 scoring genes corresponds to that shown in Figure 2C. 
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Supplementary Figure 9. Flow cytometry gating strategy and pseudocolour plots 

 
 

Legend: a. Firstly, cells were separated from debris using SSC-A and FSC-A. 

Secondly, single cells were separated from doublets by plotting DAPI-H against DAPI-

A. Thirdly, barcoded populations within the same sample were gated to separate them, 

using 488-A plotted against DAPI-A. b. Cell cycle gates were made by plotting EdU-

647-A against DAPI-A and separating G1, S and G2 populations. Then, S phase cells 

were further gated into four gates, called S1-S4. Cell cycle gates were copied exactly 

for each cell population within the sample. c,d,e. Pseudocolour plots corresponding to 

those in Figure 4D, E and F respectively. For each plot, 8000 events are shown. For 

each gate, the percentage of cells in the gate is shown. 
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Supplementary Table 1. Description of sysSVM features. 
 

Gene property Feature for classification Type Cancer gene feature Operational definition Genes  

Copy number 
variation 

Gene gain Molecular (categorical) NA CN >= 2*sample ploidy 13,622 
(79,216) 

Gene loss Molecular (categorical) NA  CN = 0 1,117 
(3,089) 

Gene copy number (n) Molecular (continuous) NA Somatic copy number (ASCAT) 17,078 
(116,989) 

Structural 
variation 

Gene translocation Molecular (categorical) NA Somatic translocation event (Manta) 5,577 
(11,137) 

Gene inversion Molecular (categorical) NA Somatic inversion event (Manta) 5,546 
(10,320) 

Gene insertion Molecular (categorical) NA Somatic insertion event (Manta) 519 (646) 

SNVs and indels 

Truncating alterations (n) Molecular (continuous) NA Stopgain, stoploss, frameshift alterations 
(ANNOVAR) 

1,992 
(2,471) 

Non-truncating damaging 
alterations (n) Molecular (continuous) NA Damaging non-frameshift, nonsynonymous, 

splicing alterations (dbNSFP) 
7,287 
(15,508) 

Gain of function alterations (n) Molecular (continuous) NA Gain of function (OncodriveClust) 170 (614) 

All exonic SNVs and indels (n) Molecular (continuous) NA Silent and non-silent alterations (ANNOVAR) 8,359 
(18,941) 

Gene length Gene length (l) Systems-level (continuous) CGs tend to be long1 Length of the longest isoform (RefSeq) 17,078 
Gene 
duplication  Gene duplication status Systems-level (categorical) TSGs are enriched in 

single-copy genes9 
Mapping on >1 gene locus for ≥60% of protein 
length 17,078 

Whole genome 
duplication Ohnolog Systems-level (categorical) OGs are enriched in 

ohnologs10 
Gene duplicate retained after whole genome 
duplications 17,078 

Protein domains Protein domains (n) Systems-level (continuous) CGs are enriched in multi-
domain proteins11 Number of protein domains (CDD)  17,039 

Chromatin state Chromatin state Systems-level (continuous) CGs localise preferentially 
in open chromatin12 

Chromatin state from Hi-C experiment in K562 
cells.  14,959 

Protein-protein 
interaction 
network 

Protein degree (n) Systems-level (continuous) CGs encode preferentially 
protein hubs9 

Number of connections in the protein-protein 
interaction network 13,268 

Hub  Systems-level (categorical) Top 25% most connected proteins  3,398 

Protein betweenness (n) Systems-level (continuous) CGs encode preferentially 
central proteins9 

Centrality in the protein-protein interaction 
network 13,268 

Central protein Systems-level (categorical) Top 25% most central proteins  3,361 
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miRNA 
interaction 
network 

miRNA interactions (n) Systems-level (continuous) 
CGs tend to be regulated 
by a larger number of 
miRNAs10 

Number of miRNAs interacting with the gene 10,689 

Evolutionary 
origin 

Old gene Systems-level (categorical) 

TSGs are enriched in old 
genes and OGs are 
enriched in genes 
originated in Metazoans10 

The gene originated before metazoans 10,493 

Origin in prokaryotes Systems-level (categorical) Oldest ortholog found in prokaryotes 3,646 

Origin in single cell eukaryotes Systems-level (categorical) Oldest ortholog found in eukaryotes 6,605 

Origin in opisthokonts Systems-level (categorical) Oldest ortholog found in opisthokonts 242 

Origin in metazoans Systems-level (categorical) Oldest ortholog found in metazoans 2,738 

Origin in vertebrates Systems-level (categorical) Oldest ortholog found in vertebrates 2,003 

Origin in mammals Systems-level (categorical) Oldest ortholog found in mammals 1,010 

Origin in primates Systems-level (categorical) Oldest ortholog found in primates 110 

Expression 

Ubiquitously expressed Systems-level (categorical) 

CGs are enriched in genes 
ubiquitously expressed1,11 

Gene is expressed in ≤29/30 tissues 11,052 

Medium expressed Systems-level (categorical) Gene is expressed in 3-28 tissues 3,819 

Selectively expressed  Systems-level (categorical) Gene is expressed in 2-3 tissues 614 

Specifically expressed Systems-level (categorical) Gene is expressed in 1 tissue 682 

Not expressed Systems-level (categorical) Gene is expressed in 0 tissues 561 
Tissues where the gene is 
expressed (n) Systems-level (continuous) Number of tissues  16,728 

 
Legend: Listed are 10 molecular and 24 systems-level features used in sysSVM. For each of them, described are: the original gene 

property, whether it is categorical or continuous, its operational definition (see Methods) and the number of unique and redundant (in 

brackets) genes in 261 EACs. The description of systems-level properties of cancer genes is also given. For all systems-level 

properties, except gene length, duplication status and ohnologs, the number of unique genes before imputation is given (see 

Methods). CG = cancer gene; TSG = tumour suppressor gene; OG = oncogene; WGD = whole genome duplication; n = number; l = 

length.
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Supplementary Table 2: Selection of best models and final list of helper genes 
 

Best 
model 

(n) 

Linear 
kernel 

Radial 
kernel 

Sigmoid 
kernel 

Polynomial  
kernel 

List of top 
10 genes 

Occurrence 
over 500 

nu nu g nu g nu g degree n ID times (n) % 
1 0,05 0,05 0,03 0,05 4 0,05 0,03 3 1 952_A 207 41,4 
2 0,05 0,05 0,03 0,05 4 0,05 0,06 3 22 952_C 1 0,2 
2 0,05 0,05 0,03 0,05 4 0,05 0,06 3 2 952_B 161 32,2 
3 0,05 0,05 0,03 0,05 4 0,05 0,13 3 2 952_B 161 32,2 
3 0,05 0,05 0,03 0,05 4 0,05 0,13 3 5 951_B 19 3,8 
4 0,05 0,05 0,03 0,05 4 0,05 0,25 3 2 952_B 161 32,2 
4 0,05 0,05 0,03 0,05 4 0,05 0,25 3 5 951_B 19 3,8 
5 0,05 0,05 0,03 0,05 4 0,05 1,00 3 2 952_B 161 32,2 
6 0,05 0,05 0,03 0,05 4 0,05 4,00 3 2 952_B 161 32,2 
7 0,05 0,05 0,03 0,05 4 0,05 8,00 3 2 952_B 161 32,2 
8 0,05 0,05 0,03 0,05 4 0,05 16,00 3 2 952_B 161 32,2 
9 0,05 0,05 0,03 0,05 4 0,05 0,02 3 3 951_A 43 8,6 
9 0,05 0,05 0,03 0,05 4 0,05 0,02 3 10 950 3 0,6 

10 0,05 0,05 0,03 0,05 8 0,05 0,02 3 23 934_B 1 0,2 
10 0,05 0,05 0,03 0,05 8 0,05 0,02 3 4 934_A 28 5,6 
11 0,05 0,05 0,03 0,05 8 0,05 0,03 3 4 934_A 28 5,6 
12 0,05 0,05 0,03 0,05 8 0,05 0,06 3 4 934_A 28 5,6 
13 0,05 0,05 0,03 0,05 8 0,05 0,25 3 4 934_A 28 5,6 
14 0,05 0,05 0,03 0,05 8 0,05 0,50 3 4 934_A 28 5,6 
15 0,05 0,05 0,03 0,05 8 0,05 1,00 3 4 934_A 28 5,6 
16 0,05 0,05 0,03 0,05 8 0,05 16,00 3 4 934_A 28 5,6 
17 0,05 0,05 0,03 0,05 4 0,05 0,50 3 5 951_B 19 3,8 
18 0,05 0,05 0,03 0,05 4 0,05 2,00 3 5 951_B 19 3,8 
19 0,05 0,05 0,03 0,05 16 0,05 0,06 3 6 929_A 8 1,6 
20 0,05 0,05 0,03 0,05 16 0,05 0,25 3 6 929_A 8 1,6 
20 0,05 0,05 0,03 0,05 16 0,05 0,25 3 18 931 1 0,2 
21 0,05 0,05 0,03 0,05 16 0,05 2,00 3 6 929_A 8 1,6 
22 0,05 0,05 0,03 0,05 16 0,05 4,00 3 6 929_A 8 1,6 
23 0,05 0,05 0,03 0,05 16 0,05 16,00 3 6 929_A 8 1,6 
24 0,05 0,05 0,03 0,05 2 0,05 0,02 3 21 916 1 0,2 
24 0,05 0,05 0,03 0,05 2 0,05 0,02 3 7 915 5 1 
25 0,05 0,05 0,03 0,05 2 0,05 0,25 3 7 915 5 1 
26 0,05 0,05 0,02 0,05 4 0,05 0,02 3 9 929_B 3 0,6 
26 0,05 0,05 0,02 0,05 4 0,05 0,02 3 18 931 1 0,2 
26 0,05 0,05 0,02 0,05 4 0,05 0,02 3 8 928 4 0,8 
27 0,05 0,05 0,02 0,05 4 0,05 8,00 3 8 928 4 0,8 
28 0,05 0,1 0,02 0,05 16 0,05 0,25 3 11 920 3 0,6 
29 0,05 0,05 0,02 0,05 16 0,05 0,02 3 12 926_A 2 0,4 
30 0,05 0,05 0,01 0,05 2 0,05 0,25 3 13 898 1 0,2 
31 0,05 0,05 0,01 0,05 16 0,05 0,25 3 14 911 1 0,2 
32 0,05 0,05 0,02 0,05 0,5 0,05 0,06 3 15 907 1 0,2 
33 0,05 0,05 0,02 0,05 1 0,05 0,06 3 16 909 1 0,2 
34 0,05 0,05 0,02 0,05 2 0,05 0,25 3 17 906 1 0,2 
35 0,05 0,05 0,02 0,05 8 0,05 0,02 3 19 926_B 1 0,2 
36 0,05 0,05 0,03 0,05 0,5 0,05 0,02 3 17 906 1 0,2 
37 0,05 0,05 0,03 0,05 1 0,05 0,25 3 20 919 1 0,2 
38 0,05 0,1 0,02 0,05 2 0,05 0,02 3 24 908 1 0,2 

 
Legend: Shown are the parameters of the 38 unique best models in the four kernels 

and 24 associated unique lists of top 10 genes. These lists are named using the 

number of genes that compose them, followed by a letter where the same number (but 

not the same genes) was found multiple times. The number of times and corresponding 
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frequency that each set of best models and list of top 10 genes was found over 500 

sets and lists are also shown.  
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Supplementary Table 3: List of oligos used in the study 
 

Experiment Gene/ 
Protein Oligo Sequence Protein  

position 

CRISPR 
gene editing 

ABI2 
(Q9NYB9) 
  
  
  

ABI2_crRNA1 (Sigma-Aldrich) GGCAACACTTGCTAAGGAT S57-A62 

ABI2_crRNA2 (Sigma-Aldrich) GCCTATCTGATAAACACCT A62-T67 

ABI2_crRNA3 (Sigma-Aldrich) AGATTCCATCCTTCGTAGC Q82-S88 

ABI2-203366920 (Synthego) UGCUAAGGAUUGGGUGGUGU Y53-A59 

ABI2-203366926 (Synthego) AACACUUGCUAAGGAUUGGG T55-V61 

NCOR2 
(Q9Y618) 
  
  
  

NCOR2_crRNA1 (Sigma-Aldrich) TCGCTGCGGGCGGCCGACA L361-H370 

NCOR2_crRNA2 (Sigma-Aldrich) ACCCGCTCAATGGCTAATG R581-A590 

NCOR2_crRNA3 (Sigma-Aldrich) ACAGCGCCATCACATACCG S1227-G1235 

NCOR2-124486566 (Synthego) GUCCCCUCCUGCAGGACGUC T35-V37 

NCOR2-124486567 (Synthego) UGUCCCCUCCUGCAGGACGU T35-V38 

TP53 
(P04637) 

TP53+7676265 (Synthego) CCAUUGCUUGGGACGGCAAG P34-D41 

TP53+7676266 (Synthego) CAUUGCUUGGGACGGCAAGG P34-M40 

Non Target  
Control  
(NTC) 

NTC_crRNA1 GATACGTCGGTACCGGACCG NA 
NTC_crRNA2 GTAACGCGAACTACGCGGGT NA 
NTC_crRNA3 GTCGACGTTATTGCCGGTCG NA 
NTC_crRNA4 GGAAACCTACGTCGACGAAT NA 

NTC_crRNA5 GCTCTCGTACGGCGCGTATC NA 

MiSeq NCOR2 

NCOR2_forward1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCCTCGACGTAAACCACCC NA 

NCOR2_reverse1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCACACTTCTCCTCTGGGG NA 

NCOR2_forward2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTAGGTAGCGCTGGGATT NA 

NCOR2_reverse2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGACAGACGACACCTCAGG NA 

NCOR2_forward3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGGGTTATAAGATGGGCTGG NA 

NCOR2_reverse3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTCCCTCTGCGTTGAAAC NA 



 25 

NCOR2_forward4  TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTCCTCACCGTTCATTCCC NA 

NCOR2_reverse4  GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCAGGACTTGGGCTTATCT NA 

ABI2 

ABI2_forward1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGACTCAGCAGAATCGTTG NA 

ABI2_reverse1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCCAGCATTACAGATAGCCT NA 

ABI2_forward2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGACTCAGCAGAATCGTTG NA 

ABI2_reverse2  GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCTGGGATGCCTGGATATC NA 

TP53 
TP53_forward TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCTGGCATTCTGGGAGCTT NA 

TP53_reverse GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAAGCGAAAATTCCATGGGAC NA 

Quantitative 
RT-PCR MCM7 

MCM7_forward ATCGGATTGTGAAGATGAAC NA 

MCM7_reverse CTTTTCGTAGAAATCCTCCTC NA 

 
Legend: Reported are the DNA and RNA sequences of the oligos used in this study. * = selected for knockdown experiment. NA = 

not applicable.
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