

Supplementary Material

Manganese deficiency is required for high itaconic acid production from D-xylose in *Aspergillus terreus*

István S. Kolláth¹, Ákos P. Molnár¹, Áron Soós², Erzsébet Fekete¹, Erzsébet Sándor², Béla Kovács², Christian P. Kubicek³ and Levente Karaffa^{1*}

¹Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary

²Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary

³Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria

* Correspondence:

Dr. Levente Karaffa levente.karaffa@science.unideb.hu

Supplementary Table 1. Specific respiration rates (μ M min⁻¹ g_{DCW}^{-1}) of *Aspergillus terreus* NRRL 1960 cultures grown in 500-mL shake-flasks and 2-L bioreactors (fermentors) in IA-producing minimal medium with 1, 5 and 11% (w/v) initial D-xylose as the sole carbon source. Samples for assays were taken at the rapid growth and the stationary phase. Mn²⁺ concentrations were below 3 μ g/L⁻¹ in all cases.

Supplementary Material

Initial D-xylose (g L ⁻¹)	Shake-flask cultures		Bioreactor cultures	
	rapid growth phase	stationary phase	rapid growth phase	stationary phase
9.9 ± 0.8	28.6 ± 1.0	10.2 ± 0.8	29.1 ± 1.1	9.6 ± 1.1
51.1 ± 1.4	28.1 ± 1.3	9.3 ± 0.7	27.4 ± 1.2	10.2 ± 1.0
110.1 ± 0.9	29.6 ± 1.5	9.9 ± 1.0	30.4 ± 1.6	10.6 ± 1.3

.