Supplementary Materials

Thermodynamic and Structural Study on the Formation of Inorganic Anion Complexes with a Series of Tetrazine-Based Ligands

Matteo Savastano,^a Celeste García-Gallarín,^b Claudia Giorgi,^a Paola Gratteri,^c Maria Dolores López de la Torre,^b Carla Bazzicalupi,^{a*} Antonio Bianchi,^{*a} Manuel Melguizo^{*b}

^a Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.

^b Department of Inorganic and Organic Chemistry, University of Jaén 23071, Jaén, Spain.

^c Department NEUROFARBA – Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.

Table S1. Selected contacts (Å) in the $H_2L3(ClO_4)_2$ $^{2}H_2O$ crystal structure. Esd in parentheses.

N1-C4	3.414(9)
O3–C5	3.36(1)
C8–O6	3.08(1)
C3–O5	3.306(8)
C6–O4	3.561(8)
02–03	2.843(7)
01–02	2.830(7)
H1–O2	1.98(7)

Table S2. Selected contacts (Å) in the $H_2L4(ClO_4)_2 \cdot 2H_2O$ crystal structure. Esd in parentheses.

N5-04	2.766(4)
04–011	2.832(4)
04–014	2.814(4)
O12–C15	3.171(4)
O12–C16	3.255(4)
O14–C8	3.208(5)
O13–C15	3.177(5)
O13–C2	3.387(5)
O14–C9	3.218(4)
C17–O23	3.172(4)
O3–C9	3.197(4)
023–03	2.939(4)
O22–C6	3.245(4)
021–03	2.847(4)
N6-03	2.721(4)

Table S3. Selected contacts (Å) in the $H_2L3(PF_6)_2$ crystal structure. Esd in parentheses.

C3–F1B/F1A	3.284(9)/3.32(1)
C6–F3B/F3A	3.37(1)/3.37(1)
C8–F3B/F3A	3.29(1)/3.39(1)
C7–F5B/F5A	3.05(1)/2.95(1)
C5–F5B/F5A	3.17(1)/3.09(1)
C3–F6B/F6A	3.172(7)/3.129(.008)
C8–F6B/F6A	3.266(8)/3.297(.009)

Table S4. Selected contacts (Å) in the $H_2L3(PF_6)_2$ 2H_2O crystal structure. Esd in parentheses.

C5-F2	3.308(5)
C8–F1	3.153(5)
C8–.F6	3.162(5)
C4–F5	3.157(5)
C6–F3	3.269(5)

Figure S1. FTIR (ATR) of L3.

Figure S2. ¹H-NMR (CDCl₃, 400 MHz) spectrum of L3.

Figure S3. ¹³C-NMR (CDCl₃, 100 MHz) spectrum of L3.

Figure S4. HRMS (Q-TOF/ESI) spectrum of L3.

Figure S5. FTIR (ATR) of L4.

Figure S6. ¹H-NMR (CDCl₃, 400 MHz) spectrum of L4.

Figure S7. ¹³C-NMR (CDCl₃, 100 MHz) spectrum of L4.

Figure S8. HRMS (Q-TOF/ESI) spectrum of L4.

Figure S9. (a) Displacement of an atom A from the centre (centroid) of the tetrazine ring. (b) Frequency of shorter anion-ring contacts, for each anion, in the $d_{plane} vs d_{offset}$ plane. (c) Frequency of all anion-ring contacts in the $d_{plane} vs d_{offset}$ plane.

Figure S10. Correlation between d_{plane} and $d_{centroid}$ distances in the crystal structures of L1-L4 anion complexes.

Figure S11. Hyperbolic fitting for the first and the second series of protonation constants $(\log K)$ of L1-L4 ligands.

Figure S12. Calculated conformation for the $[L1(H_2O)]$ adduct.

Figure S13. Calculated conformations for the $[L2(H_2O)]$ adduct: a) chair conformation, b) planar conformation.

Figure S14. Calculated conformations for the $[L3(H_2O)]$ adduct: a) chair conformation, b) planar conformation.

Figure S15. Calculated conformations for the [L4(H₂O)] adduct: a) planar conformation, H-bond; b) planar conformation, lone pair- π .

Figure S16. Calculated conformations for the $[H_2L1(H_2O)]^{2+}$ adduct: a) boat conformation, b) chair conformation.

Figure S17. Calculated conformations for the $[H_2L2(H_2O)]^{2+}$ adduct: a) chair conformation, b) planar conformation.

Figure S18. Calculated conformations for the $[H_2L3(H_2O)]^{2+}$ adduct.

Figure S19. Calculated conformation for the $[H_2L4(H_2O)]^{2+}$ adduct: a) planar conformation, H-bond; b) planar conformation, lone pair- π .

Figure S20. ¹H NMR spectra of L3 recorded in D_2O (pH 4) in the absence and in the presence of increasing amounts of ClO_4^- .

Figure S21. ¹H NMR spectra of L3 recorded in $D_2O(pH 4)$) in the absence and in the presence of increasing amounts of PF_6^- .

Figure S22. ¹H NMR spectra of L4 recorded in D_2O (pH 4) in the absence and in the presence of increasing amounts of ClO_4^- .

Figure S23. ¹H NMR spectra of L4 recorded in $D_2O(pH 4)$) in the absence and in the presence of increasing amounts of PF_6^- .