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Descriptive Data

mean standard deviation range
accuracy 0.45 0.29 0–1
frequency 2.78 1.01 0–5.86

number of competitors 22.52 7.89 3–44
clustering coefficient 0.29 0.1 0–1

Integer Linear Programs to choose subsets of words

In the main text, we describe an algorithm to identify two sets A and B that are different with respect to
an explanatory variable x (A comes from the part of the population with “low” x, and B from the “high”
x subset) and such that A and B are balanced with respect to a given list of control variables. In Figure 2,
we describe how we compute the balanced subsets A and B, using an integer linear program (ILP). For an
introduction to integer linear programming, see Papadimitriou and Steiglitz (1982). In Figure 2, we use the
following ILP, for randomly chosen weights a and b:

minimize
n
∑
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aiqi + bizi subject to the constraints that
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qi = k |A| = k

∑
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∑
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c1i qi −

∑
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c1i zi < δk A doesn’t exceed B in dimension 1 by more than δ

∑

i
c1i zi −

∑
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c1i qi < δk B doesn’t exceed A in dimension 1 by more than δ
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∑
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cdi qi −

∑
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cdi zi < δk A doesn’t exceed B in dimension d by more than δ

∑

i
cdi zi −

∑

i
cdi qi < δk B doesn’t exceed A in dimension d by more than δ

Here the idea is that, after generating random weights ai for each “low” word and bi for each “high”
word, we select the balanced sets of low and high words that are lightest with respect to the chosen weights.
The weights a and b describe the “cost” of selecting particular words; by randomly choosing those weights
differently from run to run of our ILP algorithm, different words have high cost in different runs of the
algorithm, so the balanced pairs of subsets we compute consequently differ across the algorithm’s runs.

In Figure 1, we carefully choose balanced sets to maximize the apparent effect of the explanatory variable
by using the response variable as the guide to choosing sets, instead of randomly chosen weights: we seek
the balanced sets of low and high words that are most different with respect to the response variable. To do
so, we use a very similar ILP, but with a different objective function:

maximize

n
∑

i=1

riqi − r′izi

where

ri =

{

x(word i) if word i is in the low set

0 otherwise
r′i =

{

x(word i) if word i is in the high set

0 otherwise,

where x(word i) denotes the response-variable value for word i. The remainder of the calculation is exactly
as described in Figure 2.

27



Computational complexity of finding balanced subsets

We claim that finding balanced sets A and B is an intractable problem, in general. Here is a precise statement
and outline of a proof, using a reduction from SubsetSum, a standard NP-complete problem (Garey &
Johnson, 1979; Kleinberg & Tardos, 2005). Thus we would not expect to identify an efficient algorithm to
solve the balanced subset problem; hence, the Integer Linear Program is an appropriate approach to solving
the problem.

The specific algorithmic problem that we wish to solve (as described in the main text) is the following:

Definition 1. The BalancedSubset problem is defined as follows.

Input: two sets A ⊆ R
d and B ⊆ R

d of d-dimensional vectors, a positive integer k ∈ Z, and a
tolerance δ ≥ 0.

Output: do there exist subsets A′ ⊆ A and B′ ⊆ B, with |A| = |B| = k, such that, for every
dimension i ∈ {1, 2, . . . , d},
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≤ δ?

To demonstrate the hardness of the general BalancedSubset problem, we will prove the hardness
of a special case of it. Specifically, we consider the EqualHalves problem, which is the special case of
BalancedSubset in which:

• d = 1: there is only one control dimension.
• δ = 0: the tolerance is zero (so we have to find subsets that match exactly in that one dimension).
• c1(x) > 0 for all x: the values of all points in that one control dimension are strictly positive.
• |A| = |B| = 2k: the given sets are identical in cardinality, precisely twice that of the desired subsets.

Here is the formal definition of EqualHalves:

Definition 2. The EqualHalves problem is defined as follows.

Input: two sets of positive integers A, B with |A| = |B| = n = 2k. (We permit duplicates in A

and B.)

Output: do there exist subsets A′ ⊂ A and B′ ⊂ B, both with size k and with equal sums?

We will prove the hardness of EqualHalves via reduction from SubsetSum; from this fact, we conclude
the hardness of its generalization BalancedSubset.

Theorem 3. The EqualHalves problem is NP-Complete.

Proof. Via reduction from SubsetSum. An instance of the SubsetSum problem consists of a set of positive
integers X = {x1, x2, . . . , xm} and a target sum W . The goal is to determine whether there is an X ′ ⊆ X

whose sum is W . Without loss of generality, we can assume that
∑

x∈X
> W . SubsetSum is well known

to be an NP-complete problem (Garey & Johnson, 1979; Kleinberg & Tardos, 2005). (We permit duplicates
in X, which doesn’t affect the hardness of the problem.)

Given such an instance 〈X,W 〉 of SubsetSum, construct an EqualHalves instance as follows. Define
A to be the union of X and m− 2 zeroes. Define B to contain W and 2m− 3 zeroes. We claim that 〈X,W 〉
is a yes-instance of SubsetSum if and only if 〈A,B〉 is a yes-instance of EqualHalves.

(=⇒) Suppose A′ and B′ is a solution to 〈A,B〉. The set A′ must have a positive sum because strictly
fewer than half of the elements of A are zero, and thus B′ must contain W . Therefore the sum of elements
in A′ is W . Removing any zeroes from A′ yields a subset of X whose sum is W .

(⇐=) Suppose X ′ is a solution to 〈X,W 〉. Generate A′ by adding zeroes to X ′ until |A′| = m− 1. Let
B′ be W plus m− 2 zeroes. Both sets have size m− 1 and sum W .
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frequency competitiors, clustering coefficient 0.168 0.048 0.030 0.058 0.034
competitors frequency, clustering coefficient 0.459 0.276 0.234 0.318 0.281
clustering coefficient frequency, competitors 0.979 0.965 0.959 0.962 0.958

Figure S1: The result of 5000 runs of our ILP, with k = 50 words per subset, δ = 0.05 tolerance for
control variables, and ρ = 0.5 (dichotomizing on the median). All points shown in panels (A), (B), and
(C) are as in Figure 3 from the main text, except that here each panel controls for the explanatory
variables shown in the other two panels. [In the main text, we analyze the effect of (A) word frequency on
accuracy; (B) the number of competitors on accuracy (controlling for frequency); and (C) clustering
coefficient on accuracy (controlling for frequency and number of competitors). Here, we analyze the effect
of (A) word frequency on accuracy (controlling for number of competitors and clustering coefficient); (B)
the number of competitors on accuracy (controlling for frequency and clustering coefficient); and (C)
clustering coefficient on accuracy (controlling for frequency and number of competitors). The results are
qualitatively identical to the results in the main text.] Panels (A), (B), and (C) are the analogue of
Figure 3, and Panel (D) is the analogue of Figure 4.
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