
1 
	

Supplementary	Information	
	
Supplementary	Table	S1:	Explanation	of	parameters	in	scaled	resource-explicit	
model.	*Analyses	which	altered	these	default	values	are	stated	in	the	results	or	in	figure	
legends.	
	
Parameter	
or	state	
variable	

Units	 Default	or	
initial	
value*	

Name	 Biological	Interpretation	

λx	 Cells	/	cell	 1.5	 production	 The	value	indicates	how	many	cells	can	be	
supported	by	growth	of	one	focal	cell.	E.g.	
λmet	=	5	indicates	that	every	time	S	grows	
one	cell,	5	E	cells’	worth	of	methionine	are	
excreted	by	S	into	the	environment	

kx	 Cell	
equivalents	

0.001	 Monod	half-
saturation	constant	

The	value	of	kx	determines	the	resource	
concentration	where	growth	rate	is	half-
maximum.		

μSmax	 (none)	 0.5	 Relative	growth	rate	 A	scaling	term	that	describes	
proportionally	how	large	S’s	growth	rate	is	
relative	to	E’s	

E	 Cells	 198	at	start	 E.	coli	population	size	 Number	of	E	cells	
	

S	 Cells	 198	at	start	 S.	enterica	population	
size	

Number	of	S	cells	
	

lcts	 Cell	
equivalents	

10,000	 lactose	
	

This	number	equals	how	many	E	cells	
could	be	grown	assuming	lcts	is	limiting.	

	
met	 Cell	

equivalents	
(variable)	 methionine	

	
This	number	equals	how	many	E	cells	
could	be	grown	assuming	met	is	limiting.	
	

ac	 Cell	
equivalents	

(variable)	 acetate	
	

This	number	equals	how	many	S	cells	could	
be	grown	assuming	ac	is	limiting.	
	

NH3	 Cell	
equivalents	

(variable)	 ammonia	
	

This	number	equals	how	many	E	cells	or	S	
cells	could	be	grown	assuming	NH3	is	
limiting.	
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Supplemental	Figures	
	

	
	
Figure	S1.	The	scaled	ecological	model	can	recapitulate	the	coexistence	patterns	
observed	in	experiments	and	genome-scale	metabolic	models.	Invasion-from-rare	
simulations	were	conducted	using	the	scaled	model	with	parameters	similar	to	our	
experimental	system,	in	which	E	is	the	less	generous	partner	(λac	=	0.4)	compared	to	S	(λmet	
=	7.3)	and	S	grows	at	approximately	half	the	maximum	growth	rate	of	E	(µSmax	=	0.5).	All	
panels	show	the	change	in	frequency	of	E	over	the	initial	E	frequency.	lctst=0	=	10000	for	all	
simulations.	NH3t=0	=	15520	(non-limiting)	in	(A-C)	but	is	limiting	(NH3t=0	=	705)	in	(D-F).	
In	(A,D),	mett=0	=	act=0	=	1,	to	“jumpstart”	the	mutualism.	In	(B,E)	mett=0	=	1	and	act=0	=	
4110	(making	S	independent).	In	(C,F)	mett=0	=	10000	and	act=0	=	1	(making	E	
independent).	The	inset	in	(F)	shows	that	E	increases	in	frequency	even	when	abundant,	
meaning	S	is	not	able	to	coexist	with	E.		
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Figure	S2.	The	product	of	the	cross-fed	nutrient	production	parameters	must	by	
greater	than	one	to	sustain	mutualism.	Results	of	simulations	with	excess	NH3	and	10	
units	of	acetate	initially	present	to	“jumpstart”	the	mutualism.	The	x-axis	shows	the	
product	of	the	two	production	rate	parameters.	The	y-axis	shows	the	percent	of	the	lactose	
that	was	consumed.	When	this	y	value	is	<	100%,	production	of	cross-fed	nutrients	is	too	
low	to	sustain	growth,	and	met	and	acetate	run	out.	When	this	value	is	>	100%,	production	
of	cross-fed	nutrients	sustains	growth	and	lactose	limits	the	system.	In	these	simulations,	
µE,max	=	2	µS,max.	
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Figure	S3.	Simulated	effect	of	initial	acetate	and	NH3	concentrations	on	the	ability	of	
a	faster-growing	obligate	cross-feeding	species	to	coexist	with	its	nutrient	supplier.	
Results	of	simulations	across	many	initial	values	of	NH3	and	ac.	In	all	simulations,	St=0	=	
198,	Et=0	=	2,	lctst=0	=	10000,	µSmax	=	0.5,	and	λac	=	λmet	=	1.5.	(A)	Whether	E	can	increase	in	
frequency	and	invade	from	rare.	(B)	The	net	effect	of	E’s	presence	on	S,	calculated	by	
comparing	S’s	yield	in	the	presence	/	absence	of	E.	The	net	effect	of	S	on	E	due	to	E’s	
dependence	on	met,	which	is	absent	in	the	environment.	(C-F)	show	whether	different	
nutrients	run	out	in	the	simulations	((C)	=	NH3,	(D)	=	lcts,	(E)	=	met,	(F)	=	ac).	
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Figure	S4:	Growth	rate	and	a	shared	limiting	nutrient	determine	whether	an	obligate	
species	can	coexist	in	continuous	culture.	To	extend	the	generality	of	our	results,	we	ran	
simulations	similar	to	the	scaled	ecological	model	main	text	simulations,	but	using	a	
chemostat	model	instead	of	a	batch	culture	model.	The	equations	were	the	same	as	in	the	
scaled	model,	except	that	chemostat	terms	were	added	to	cause	continuous	dilution	of	all	
state	variables	as	well	as	continuous	resource	replenishment	from	a	reservoir.	Using	
lactose	as	an	example,	the	resource	equations	gained	two	terms,	which	change	the	equation	
from	dlcts	/	dt	=	-µE	to	dlcts	/	dt	=	-µE	-D*lcts	+	D	*	lctsreservoir.	D	is	the	dilution	constant	
(/hr),	and	lctsreservoir	is	the	concentration	of	lactose	in	the	reservoir	(in	cell	equivalents).	
Species	equations	were	similarly	modified,	except	the	reservoir	concentrations	=	0.	D	=	0.5	
/	hr	for	all	simulations.		Our	simulations	had	two	starting	conditions:	abundant	NH3	(left)	
and	a	low	ammonia	concentration	that	resulted	in	NH3	limiting	the	growth	of	the	
ecosystem	(right).	The	initial	values	for	the	abundant	NH3	case	were:	lcts	=	10000	cell	
equivalents,	met	=	12500	cell	equivalents,	ac	=	0	cell	equivalents,	NH3	=	50000	cell	
equivalents.	When	NH3	was	limiting,	NH3	=	7500	cell	equivalents.	The	reservoir	
concentrations	equaled	these	initial	values.	As	in	the	main	text,	λmet	=	λac	=	1.5.	Initial	
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population	sizes	were	independent	(E)	=	198	cells	and	obligate	(S)	=	2	cells.	The	half-
saturation	constants	k,	which	applied	to	all	resources	/	species	for	a	given	simulation,	are	
shown	in	the	figure.	We	then	tested	many	values	of	µobligate,	and	measured	the	equilibrium	
concentrations	of	the	obligate,	which	are	the	plotted	values.	Similar	to	the	main	text,	when	
NH3	was	abundant,	the	obligate	could	grow	slower	than	the	independent	and	still	coexist.	
However,	when	NH3	limited	system	productivity,	the	growth	rate	of	the	obligate	must	be	
higher	than	the	independent’s	growth	rate	to	persist.	Higher	k	values	made	it	more	difficult	
to	survive	the	dilution	pressure	in	general,	but	didn’t	qualitatively	alter	the	influence	of	
growth	rate	and	NH3	limitation.	 
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Figure	S5:	The	interaction	between	production	of	cross-fed	nutrients	and	the	half-
saturation	constant	on	coexistence	of	an	obligate	cross-feeder.	This	figure	is	related	to	
Figure	5B,	with	additional	data	showing	how	k	can	affect	coexistence.	The	k	value	was	used	
for	all	resources	for	all	species	in	a	given	simulation.	The	data	here	where	k	=	0.001	and	the	
regime	is	parasitic	(bottom	row)	are	the	same	data	as	in	Fig.	5B.	The	rows	show	different	
initial	values	which	correspond	to	the	starred	locations	in	Figure	4A.	The	x-axis	is	the	
relative	“generosity,”	or	the	ratio	of	the	production	terms.	The	panels	(left-to-right)	are	in	
order	of	increasing	relative	growth	rate	of	the	obligate	species,	and	the	colors	are	the	half-
saturation	parameter.	The	y-axis	shows	the	change	in	frequency	of	the	invading	obligate	
cross-feeder,	from	an	initial	frequency	of	0.01.	In	other	words,	a	positive	change	indicates	
successful	invasion	and	therefore	coexistence,	whereas	a	negative	change	indicates	
extinction.	In	the	commensal	(top)	and	mutualistic	(middle)	regimes,	k	does	not	influence	
the	change	in	the	obligate	species’	frequency.	Neither	does	the	generosity	affect	
coexistence,	although	it	does	affect	the	final	frequency.	In	contrast,	in	the	parasitic	regime,	
k	and	generosity	interact.	As	described	in	the	main	text,	when	k	is	very	small,	generosity	
does	not	matter	because	the	obligate	species	is	usually	growing	at	its	maximum	growth	
rate.	In	contrast,	when	k	is	larger,	the	obligate	species	will	grow	more	slowly	when	ac	
concentrations	are	low,	making	it	more	difficult	to	invade.	This	results	in	situations	like	the	
blue	dots	in	the	bottom-right	panel,	where	despite	having	a	higher	maximum	growth	rate,	
the	obligate	species	cannot	invade	when	the	independent	species	has	low	generosity	and	
the	half-saturation	constant	is	non-negligible.		
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Figure	S6:	Support	for	the	FFG	hypothesis	using	the	phenomenological	model	of	
Hoek	et	al.	(2016).	Here,	we	modify	a	recently	published	phenomenological	model	which	
examined	the	effect	of	simultaneously	feeding	both	species	in	an	obligate	mutualism.		We	
change	the	model	slightly	to	feed	only	one	at	a	time,	then	determine	the	influence	of	growth	
rate	on	whether	the	obligate	can	survive.	We	chose	this	model	specifically	because	it	is	has	
two	simultaneous	interactions	occurring:	a	direct	mutualistic	effect	that	each	species	can	
have	on	the	other’s	growth	rate,	and	a	negative	effect	the	species	have	due	to	a	shared	
carrying	capacity,	which	we	interpret,	following	Hoek	et	al	.	(2016),	as	competition	for	
shared	nutrients,	like	NH3.	The	model	is:	
	
		dX	=	rx	*	X	*	((Y	+	a)	/	(Y	+	a	+	k))	*	(1	-	X	-	Y)	-	d	*	X	
		dY	=	ry	*	Y	*	(X	/	(X	+	k))	*	(1	-	X	-	Y)	-	d	*	Y	
	
X	and	Y	are	the	two	species,	rx	and	ry	are	their	maximum	growth	rates,	and	k	is	the	half-
saturation	constant	which	here	influences	how	the	presence	of	the	other	species	affects	the	
mutualist’s	growth.	a	is	the	nutrient	abiotically,	and	continuously,	supplied	to	X.	d	is	the	
dilution	rate.	Like	Hoek	et	al.	(2016),	we	set	d	=	0.5	and	rx	=	1.0.	We	set	k	=	0.15.	The	
maximum	population	size	is	1.		
	
For	these	figures,	we	analytically	determined	the	ability	of	Y	to	invade	a	steady-state	
community	of	X.	This	involved	finding	the	steady-state	concentration	of	X	by	setting	dX	=	0,	
which	yields:	
	
X*	=	([(rx	*	a)/(a	+	k)]	-	d)	/	[(rx	*	a)/(a	+	k)]	
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We	then	plug	this	X*	into	dY/Y	to	calculate	the	per-capita	growth	rate	of	Y.	We	also	assume	
Y	=	0	for	the	competition	term,	since	it	is	invading	and	therefore	has	a	negligible	
population.	If	dY	>	0,	Y	can	invade	the	system	and	coexist.	Consistent	with	Hoek	et	al.	
(2016),	this	model	predicts	that	X	requires	a	minimum	resource	supply	a	to	survive	at	all	
(panel	A).	If	Y	has	the	same	growth	rate	as	X,	then	Y	can	invade	when	X	has	a	moderate	
resource	supply	(panel	B).	For	example,	it	can	invade	when	a	=	0.25,	because	the	growth	
rate	is	>	0.		We	therefore	set	a	=	0.25,	and	re-assess	dY	/	Y	for	multiple	values	of	ry,	to	learn	
how	the	relative	growth	rates	influence	coexistence.	We	see	that	when	the	independent	
grows	faster	than	the	obligate	(when	ry	/	yx	<	1),	the	obligate	cannot	invade,	because	its	
growth	rate	is	<	0	(panel	C).	If	we	set	k	=	0.001,	to	make	it	negligible	as	in	most	of	the	
resource-explicit	simulations	in	the	main	text,	then	the	growth	rate	ratio	where	coexistence	
can	occur	occurs	almost	exactly	where	the	growth	rates	are	equal	(panel	D).		
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Supplemental	Experimental	Procedures	
	
Scaling	of	the	General	Ecological	Model	
	
1.	The	original	model	
	
First,	the	growth	rates	functions,	which	specify	biomass	growth	of	each	species	as	a	
function	of	that	species’	population	size	and	the	concentrations	of	their	required	nutrients.		
	
µE	=	µE(E,	µEmax,	lcts,	met,	NH3)	=	(E	µEmax)	min	[(lcts	/	(lcts	+	klcts)),	(met	/	(met	+	
kmet)),(NH3	/	(NH3	+	kNH3))]	
	
µS	=	µS(S,	µSmax,	ac,	NH3)	=	(S	µSmax)	min	[	(ac	/	(ac	+	kac)),	(NH3	/	(NH3	+	kNH3))]	
	
In	the	above	equations,	the	kx	parameters	signify	the	concentration	of	x	at	which	growth	is	
half-maximum.	The	µXmax	parameters	signify	the	maximum	possible	growth	rate	(/hr)	
species	x	can	attain.		
	
The	above	growth	rate	functions	drive	each	species'	growth:		
	
dE	/	dt	=	µE	
	
dS	/	dt	=	µS	
	
Resources	are	either	consumed	during	growth	or	produced	during	growth:	
	
dlcts	/	dt	=	-γlctsµE	
	
dNH3	/	dt	=	-γNH3µE	-	γNH3µS	
	
dmet	/	dt	=	-γmetµE	+	λmetµS	
	
dac/	dt	=	λacµE	-	γacµS	
	
In	the	resource	equations,	the	γx	parameters	signify	the	number	of	units	of	resource	x	
which	are	consumed	during	growth	of	one	unit	of	the	relevant	species,	and	the	λx	
parameters	signify	the	number	of	units	of	resource	x	which	are	produced	during	growth	of	
one	unit	of	the	relevant	species.		
	
The	species	E	and	S	are	in	units	of	cells,	the	resources	are	in	units	of	grams,	and	therefore	
the	γs	and	λs	are	in	units	of	grams	per	cell.		
	
2.	The	scaling	
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First,	we	scale	the	resources	from	units	of	grams	/	cell,	to	equivalent	cell	units,	by	dividng	
the	resources	by	the	associated	consumption	parameter	γ:	
	
ac*	=	ac	/	γac,		met*	=	met	/	γmet,		lcts*	=	lcts	/	γlcts,		NH3*	=	NH3	/	γNH3	
	
Next,	we	scale	the	production	parameters	(λs)	by	the	consumption	parameters	(γs),	which	
allows	us	to	consider	production	in	terms	of	the	number	of	cells	of	one	species	which	can	
be	supported	by	the	growth	of	one	cell	of	the	other	species:	
	
λac*	=	λac	/	γac,		λmet*	=	λmet/	γmet	
	
These	scaled	production	parameters	are	in	units	of	cells	/	cell,	i.e.	are	unitless.	For	
intuition,	if	λac*	=	2,	then	for	each	cell	of	E	grown,	enough	acetate	is	produced	to	support	
growth	of	2	S	cells.		
	
Next,	the	half-saturation	parameters	(k)	must	be	scaled	to	keep	the	units	consistent.	This	is	
also	done	by	scaling	by	the	consumption	parameters	(γs),	such	that	the	scaled	half-
saturation	parameters	describe	how	many	cells'	worth	of	resources	are	present	when	
growth	is	at	half-maximum:	
	
klcts*	=	klcts	/	γlcts,		kac*	=	kac	/	γac,			kmet*	=	kmet	/	γmet,		kNH3*	=	kNH3	/	γNH3	
	
Using	the	chain	rule	and	substitutions	of	the	above	scaled	parameters,	we	can	remove	the	
consumption	terms	from	our	resource	equations,	for	example	resulting	in	the	ammonia	
equation	now	specified	as:	
	
dNH3*	/	dt	=	-µE	-µS	
	
The	growth	rate	functions	(µx)	were	similarly	adjusted,	to	take	in	scaled	resource	variables	
and	half-saturation	parameters.		
	
The	final	scaling	we	do	is	to	scale	time	by	E's	maximum	growth	rate.	We	do	this	because	we	
are	interested	in	the	effect	of	relative	growth	rates	between	E	and	S,	not	their	absolute	
growth	rates,	which	only	change	the	time	scale	but	not	the	species	ratios.	We	scale	time	by	
doing:	
	
t*	=	t	µEmax	
	
And	then	scale	S's	maximum	growth	rate	by	E's:	
	
µSmax*	=	µSmax	/	µEmax	
	
With	these	scalings	we	can	remove	E's	maximum	growth	rate	and	are	only	left	with	the	
relative	growth	rate	µSmax*	in	S's	growth	equation.	For	clarity,	in	the	main	text,	we	omit	the	
asterisks	from	variable	names.		
	



12 
	

 


