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SUMMARY

Chronic pain presents a major unmet clinical prob-
lem. The development of more effective treatments
is hindered by our limited understanding of the
neuronal circuits underlying sensory perception.
Here, we show that parvalbumin (PV)-expressing
dorsal horn interneurons modulate the passage of
sensory information conveyed by low-threshold
mechanoreceptors (LTMRs) directly via presynaptic
inhibition and also gate the polysynaptic relay of
LTMR input to pain circuits by inhibiting lamina II
excitatory interneurons whose axons project into
lamina I. We show changes in the functional proper-
ties of these PV interneurons following peripheral
nerve injury and that silencing these cells unmasks
a circuit that allows innocuous touch inputs to acti-
vate pain circuits by increasing network activity in
laminae I–IV. Such changes are likely to result in the
development of tactile allodynia and could be tar-
geted for more effective treatment of mechanical
pain.

INTRODUCTION

Chronic pain represents a major global health problem,

affecting up to 20% of the adult population (Goldberg and

McGee, 2011). One significant obstacle to the development

of new therapies is our limited understanding of how neuronal

circuits in the spinal cord transmit and modulate sensory

information and how changes to these circuits result in altered

sensory experience, as seen in chronic pain. A critical compo-

nent of spinal sensory circuits is the role played by inhibitory

interneurons (Todd, 2010; Peirs and Seal, 2016; Moehring

et al., 2018), and the loss of spinal inhibition is believed to
526 Cell Reports 28, 526–540, July 9, 2019 ª 2019 The Author(s).
This is an open access article under the CC BY license (http://creative
underlie several forms of chronic pain (Yaksh, 1989; Ahmadi

et al., 2002; Moore et al., 2002; Miraucourt et al., 2007).

These interneurons comprise a heterogeneous population of

cells based on their morphological, electrophysiological, and

neurochemical properties and are thought to serve function-

ally distinct roles (Yasaka et al., 2010; Maxwell et al., 2007).

Most studies on spinal inhibition focus on postsynaptic inhibi-

tion, involving the release of GABA and/or glycine at axo-

dendritic and/or axosomatic synapses, but GABA release at

axoaxonic synapses is also known to mediate presynaptic

inhibition of primary afferent central terminals. Although ax-

oaxonic synapses have been described on the central termi-

nals of most types of primary afferents (Réthelyi et al., 1982;

Ribeiro-da-Silva and Coimbra, 1982; Todd, 1996; Hughes

et al., 2005) and a high incidence of such synaptic connec-

tions has been reported in lamina II (Duncan and Morales,

1978), identifying the cells that give rise to these synapses

has proven challenging. We have demonstrated that a

significant proportion of axoaxonic synapses on the central

terminals of myelinated afferents are derived from inhibitory

interneurons that express the calcium-binding protein par-

valbumin (PV), and that axoaxonic synapses are the pre-

dominant form of synaptic output from these cells (Hughes

et al., 2012). PV cells have since been shown to play a

key role in setting mechanical thresholds in normal and

chronic pain states (Petitjean et al., 2015), with the develop-

ment of nerve-injury-induced tactile allodynia reported to

occur in parallel with a reduction of PV-cell-derived post-

synaptic inhibitory input to protein kinase C g (PKCg) cells.

Since the contribution of PV-cell-mediated presynaptic inhibi-

tion of low-threshold mechanoreceptive (LTMR) afferents

was not considered in this circuit, the aim of our study was

to define the principal synaptic targets of inhibitory PV inter-

neurons, identify the primary sources of afferent input to

these cells, and establish whether the anatomical or physio-

logical properties of PV cells change with the development

of allodynia.
commons.org/licenses/by/4.0/).
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Figure 1. PV Cells in Laminae IIi and III Are a

Source of Axoaxonic Contacts onto Myelin-

ated Afferents

(A) The expression of tdTom (PVCre;Ai9; red) in the

spinal dorsal horn of the PVCre;Ai9 mouse mirrors

the distribution of PV-immunoreactive cells.

(B and C) All tdTom cells displayed either tonic

firing or initial bursting AP discharge patterns in

response to current injection (B, upper traces), as

well as a high incidence of the Ih subthreshold

current and associated voltage sag (B, lower

traces). Numbers at the base of bars in (C) are the

number of cells in each category.

(D) NB labeling of recorded neurons shows that

most cells displayed islet or central-cell-like

morphology (82.3%; 14/17), with the remaining

cells being of unclassified morphology. R-C

denotes orientation of the rostrocaudal axis.

(E) Demonstration of tdTom expression (red) in the

cell body of the NB-filled islet cell shown in (D) (NB,

green).

(F) Several axon terminals in lamina IIi and III

derived from this cell (green) contact boutons

labeled with VGLUT1 (blue).

(G) Table summarizing the incidence of NB-labeled

boutons from morphologically defined tdTom-

expressing cells in contact with VGLUT1-immu-

noreactive terminals.

Scale bars represent 100 mm (A and D), 25 mm (E),

and 5 mm (F).
RESULTS

PVCells in Laminae IIi and III Are aSource of Presynaptic
Inputs onto Several Classes of Myelinated LTMR
Afferent Fibers
PV axon terminals have been shown to form axoaxonic synap-

ses onto the central terminals of myelinated afferents (Hughes

et al., 2012), but the cells from which these boutons originate

have yet to be identified. To clarify this, we carried out targeted

whole-cell patch-clamp recordings with Neurobiotin (NB)-filled
electrodes from tdTomato (tdTom)-ex-

pressing cells in sagittal slices of lumbar

spinal cord from a PVCre;Ai9 mouse line

(Figure 1A). These cells showed either

tonic or initial bursting action potential

(AP) firing patterns in response to depola-

rizing current injections and a high inci-

dence of Ih and/or associated voltage

sag in response to membrane hyperpo-

larization (Figures 1B and 1C; Table S1).

Most cells showed islet or central-cell-

like morphology, with dendrites elon-

gated in the rostrocaudal axis of the

spinal cord (Figure 1D). Detailed analyses

of axon from 10 cells revealed that their

boutons contain the vesicular GABA

transporter (VGAT) and that these often

contact axon terminals labeled with

vesicular glutamate transporter type 1
(VGLUT1; Figure 1F). VGLUT1 is expressed in axon terminals

of both myelinated afferents and corticospinal projections, but

only those derived from LTMRs are contacted by multiple

VGAT boutons (Todd et al., 2003; Abraira et al., 2017). We found

that on average, 51.9% (±3.4%) of boutons in laminae IIi and III

from these cells were apposed to VGLUT1-expressing termi-

nals (Figure 1G). While this data identify PV cells in laminae II

and III as the source of axoaxonic inputs onto the central

terminals of myelinated LTMRs, it also implies that their axons

synapse onto dorsal horn neurons.
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Figure 2. Axoaxonic Contacts from PV Interneurons Target the Central Terminals of Several Classes of Myelinated Afferents

(A) The central terminals of Ab-hair afferents (labeled in the SplitCre; Ai34 mouse), Ad-hair afferents (labeled in the TrkBCreER; Ai35 mouse), myelinated glabrous

skin afferents (labeled with CTb), and C-LTMRs (labeled with antibodies to VGLUT3) each display distinctive patterns of arborization (green).

(B) The central terminals of myelinated LTMRs overlap extensively with PV cells (red) in laminae IIi and III, whereas C-LTMRs only overlap with the more dorsal

aspect of the PV plexus.

(C) The central terminals of all classes of LTMRs receive multiple contacts from VGAT boutons (blue); however, only myelinated LTMRs receive extensive input

from inhibitory PV terminals (double arrowheads).

(D and E) The mean number of VGAT terminals (D) and PV-VGAT terminals (E), respectively, in contact with each class of LTMR afferent.

(F and G) The mean percentage of axoaxonic contacts on to each class of afferent that are derived from PV cells (F) and of terminals from each afferent class that

have at least one contact from a PV-VGAT bouton (G), respectively. Bars in graphs showmeans across all animals, and individual points aremeans of each animal

(n = 3 animals per afferent group; 150 terminals analyzed per animal).

Scale bars represent 100 mm (A), 20 mm (B), and 2 mm (C).
Recent work has established that virtually all central terminals

from myelinated afferent fibers arborizing in the LTMR-recipient

zone (LTMR-RZ; laminae IIi–IV) are associated with inhibitory

axon terminals (Abraira et al., 2017) and that a significant propor-

tion of these inhibitory inputs express PV. This implies that all

LTMRs are under presynaptic control and that many of these

axoaxonic synaptic inputs are derived from PV cells. One inter-

pretation of this finding is that axoaxonic synapses from PV cells

target only specific classes of LTMR afferents. To address this,

we used tissue from SplitCre;Ai34 and TrkBCreER;Ai35 mouse

lines to label the central terminals of A~b and Ad-hair afferents,

respectively (Rutlin et al., 2014; Li et al., 2011). We also injected

CTb into the glabrous skin of the hindpaw of wild-type mice to

label myelinated afferents innervating non-hairy skin, and we

used an antibody to VGLUT3 to identify the central terminals of

unmyelinated LTMRs (C-LTMRs). We then quantified the inci-
528 Cell Reports 28, 526–540, July 9, 2019
dence of all axoaxonic contacts, including those derived from

PV cells, onto the central terminals of each fiber type (Figure 2).

These received, on average, three VGAT boutons per terminal

(Figures 2C and 2D; Table S2). While most myelinated LTMR

axons were apposed to inhibitory PV terminals, C-LTMR termi-

nals rarely received such inputs (Figures 2C and 2E–2G; Table

S2). We therefore conclude that PV-expressing interneurons

are a source of presynaptic inputs onto several classes of

myelinated LTMRs from both hairy and glabrous skin but rarely

target C-LTMRs.

PV Cells Are Innervated by Ab- and Ad-Hair Afferents, as
well as Myelinated Afferents from Glabrous Skin
PV cells have been shown to receive synaptic input from myelin-

ated afferent terminals arborizing in the LTMR-RZ (Hughes et al.,

2012; Abraira et al., 2017), but we know very little about which



Figure 3. Myelinated Hair Afferents Are a

Principal Source of Afferent Input to Inhibi-

tory PV Cells in Laminae IIi and III

(A and B) Representative examples of inhibitory PV

cells in tissue from SplitCre; Ai34 (A) or TrkBCreER;

Ai35 (B) mice. Higher magnification insets show

the presence of Pax2-immunolabelling (gray) in the

nuclei of these cells.

(C and D) Reconstructions of the individual inhibi-

tory PV interneurons shown in (A) and (B),

respectively, showing the relative positions of

contacts from VGLUT1-only (blue diamonds) and

Ab- (C) or Ad-hair (D) afferent terminals (magenta

circles) plotted onto their cell body and dendrites.

(E and F) Examples of dendrites from these PV-

expressing inhibitory interneurons receiving multi-

ple contacts from axon terminals that either ex-

press only VGLUT1 (blue, arrows), tdTom-labeled

boutons of Ab-hair afferents (red; arrowheads in E)

derived fromSplitCre;Ai34mice, or YFP-expressing

Ad-hair afferents (green; double arrowheads in F)

from TrkBCreER;Ai35 mice.

(G) Mean number of contacts from Ab- and Ad-hair

afferent terminals per inhibitory PV soma.

(H) Mean number of contacts from Ab- and Ad-hair

afferent terminals per 100 mm of dendrite of inhib-

itory PV interneurons.

(I) Relative proportion of all VGLUT1 terminals

contacting the soma and dendrites of inhibitory

PV cells that are derived from Ab- and Ad-hair

afferents.

Bars in (G)–(I) show means across all animals, and

individual points show the means of each animal.

n = 3 mice per afferent class, with three or four

inhibitory PV cells analyzed per mouse. Scale bars

represent 25 mm (A and B), 100 mm (C and D), and

5 mm (E and F).
classes of myelinated LTMRs innervate inhibitory PV interneu-

rons. To address this, we assessed the incidence of Ab and Ad

hair LTMR inputs onto inhibitory PV interneurons in laminae IIi

and III in tissue from SplitCre;Ai34 and TrkBCreER;Ai35 mice using

Pax2 immunoreactivity to identify inhibitory PV interneurons (Fig-

ures 3A and 3B). The somatodendritic arbors of individual Pax2-

expressing PV cells were reconstructed based on PV immuno-
labeling. All VGLUT1-expressing terminals

that apposed the reconstructed neurons

were plotted and counted, including those

derived from genetically labeled Ab- and

Ad-hair terminals (Figures 3C and 3D).

The dendrites of inhibitory PV cells

received a comparable number of den-

dritic and somatic contacts from both

Ab- and Ad-hair afferents (�4 per 100 mm

of dendrite and �1 per soma). These

account for 29% (Ab) and 35% (Ad) of all

VGLUT1 terminals onto dendrites and

21% (Ab) and 15% (Ad) of all VGLUT1 con-

tacts onto soma (Figures 3C–3I; Table S3).

In parallel studies, we found that virtually

all axon terminals from Ab- and Ad-hair
or myelinated afferents from glabrous skin that apposed the

dendrites of inhibitory PV cells formed excitatory synapses at

these sites, as determined by the presence of an intervening

Homer punctum (Gutierrez-Mecinas et al., 2016). Together, these

findings establish that inhibitory PV interneurons receive rich

monosynaptic input from several classes of myelinated LTMRs

derived from both hairy and glabrous skin.
Cell Reports 28, 526–540, July 9, 2019 529



Figure 4. PV Interneurons Are a Source of

Inhibitory Inputs to the Dendrites of Vertical

Cells and Axoaxonic Contacts toMyelinated

Afferents Contacting Those Vertical Cells

(A) An example of the characteristic morphology

and physiology of vertical cells filled with NB

(green) and analyzed in this study. These cells have

their cell body in lamina IIo, and most of their

dendritic arbor extends into deeper dorsal horn

laminae. Only vertical cells that showed delayed-

or gap-firing AP discharge patterns in response to

current injection (inset) and with axon arborizing in

lamina I (arrows) were included in this analysis. R-C

denotes orientation of the rostrocaudal axis.

(B and C) We assessed the incidence of contacts

from VGAT axon terminals (blue) on to vertical cell

dendrites in laminae IIi and III (green). In these

laminae, the dendrites of vertical cells receive

multiple contacts from both VGLUT1 axon termi-

nals (gray, asterisk in C) and VGAT-IR boutons

(blue; arrowhead in B). Many of the VGAT boutons

are derived from PV cells (red; double arrowheads

in B and C), and these inhibitory PV boutons often

appose VGLUT1 axon terminals (gray, asterisk in

C) that contact the same vertical cell and poten-

tially form triadic synaptic arrangements.

Scale bars represent 20 mm (A), 5 mm (B, D, and E),

and 50 mm (C).
Axons from PV Cells Mediate Two Distinct Forms of
Inhibition and Target Several Populations of Lamina II
Interneurons, Including Vertical Cells
Our anatomical studies on NB-filled tdTom cells identify the

central terminals of myelinated LTMR afferents as the principal

synaptic targets of inhibitory PV cells, although they are also

known to synapsewith the dendrites of both PV and non-PV cells

in lamina IIi (Hughes et al., 2012; Petitjean et al., 2015). Vertical

cells are one population that are likely to receive synaptic input

from both inhibitory PV interneurons and LTMR afferents since

their dendrites branch extensively in laminae II and III (Grudt

and Perl, 2002; Lu and Perl, 2005; Yasaka et al., 2014). Most of

these interneurons are glutamatergic (Maxwell et al., 2007) and

often have axon that arborizes in lamina I (Grudt and Perl,

2002; Lu and Perl, 2005; Yasaka et al., 2014) where they synapse

onto lamina I neurons, including those projecting to the spino-

parabrachial nucleus (Lu and Perl, 2005; Cordero-Erausquin

et al., 2009). Since the anatomical features of these cells position

them as a potential route for LTMR input into lamina I pain cir-

cuits under pathological conditions where spinal inhibition is

diminished (Lu et al., 2013; Yasaka et al., 2014), we aimed to

determine whether inhibitory synaptic inputs from PV cells are

involved in gating LTMR input to vertical cells.

We carried out blind whole-cell patch-clamp recording of

lamina II neurons from spinal cord slices to label vertical cells,

as no definitive neurochemical marker is currently known that

selectively defines this population (Sathyamurthy et al., 2018;

Häring et al., 2018). To be included in this anatomical analysis,

each recorded neuron had to display electrophysiological and

anatomical features consistent with those described previously

for vertical cells; specifically, we looked for delayed-firing AP

discharge patterns in response to current injections and a
530 Cell Reports 28, 526–540, July 9, 2019
defining morphology featuring a cone-shaped pattern of den-

dritic branching that extends in a ventral direction (Grudt

and Perl, 2002; Yasaka et al., 2010, 2014). Only vertical cells

with axon that arborized in lamina I were analyzed (Figure 4A).

The total number of VGAT-, PV-VGAT-, and VGLUT1-express-

ing boutons in contact with vertical cell dendrites that arbor-

ized in laminae IIi and III was determined in five NB-filled

vertical cells. The cumulative length of vertical cell dendrite

analyzed was 6,608.7 mm (mean, 1,321.7 mm; range, 792.1–

2,423.4 mm). The number of VGAT contacts onto the dendrites

in these laminae was 253 terminals per cell (±16.7; range, 196–

299), of which 27.7% ± 1.2% were derived from PV cells (Fig-

ure 4B). We found that 13.1% ± 1.9% of all VGAT contacts

onto vertical cell dendrites also apposed VGLUT1 terminals

that contacted vertical cell dendrites (Figure 4C), and these

associations are likely to form triadic synaptic connections

commonly associated with central terminals of myelinated

afferents (Todd, 1996; Watson et al., 2002). Of these putative

triadic arrangements, most (61.8% ± 3.7%) were derived

from PV cells, and these account for 29.2% ± 4.4% of all PV-

VGAT boutons that contact vertical cell dendrites. The mean

number of VGLUT1 terminals found in contact with vertical

cell dendrites was 59.2 ± 7.9%, of which 96.1% ± 1.8% were

defined as being derived from primary afferents based on their

direct association with multiple VGAT contacts (Abraira et al.,

2017). Most of these myelinated afferent terminals (62.5% ±

7.6%) were in contact with a PV-VGAT bouton, whether in a

triadic arrangement with the labeled vertical cell or not. These

anatomical arrangements imply that individual PV interneurons

have the capacity to mediate two distinct forms of inhibition,

presynaptic inhibition of LTMR afferents and postsynaptic inhi-

bition of vertical cell dendrites.



Figure 5. PV Cells in PVCre;Ai32 Mice Mediate Both Light-Evoked Presynaptic and Postsynaptic Inhibition

(A) Schematic showing the recording setup.

(B) PV-photostimulation-evoked oEPSCs (left) that were reduced and/or abolished at an elevated temperature (right; n = 15; 4 mice) as highlighted by group

data plots.

(C) PV-photostimulation-evoked oEPSCs (left) were abolished by a conditioning stimulus to fatigue primary afferent synapses (right, 1 s DR stimulation at 20 Hz)

as highlighted by the group data plot (n = 18; 8 mice).

(legend continued on next page)
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To determine whether the PV-cell-derived contacts onto both

LTMR inputs and vertical cells represent functional synapses, we

performed ex vivo optogenetic experiments in spinal cord slices

from PVCre;Ai32 mice (Figure 5A). Presynaptic inhibition has

traditionally been difficult to assess directly, as it represents

the activation of axoaxonic synapses, leading to GABA-medi-

ated primary afferent depolarization (PAD). Under in vivo condi-

tions, PAD inhibits release of glutamate from afferent central

terminals; however, when the temperature is lowered, PAD

can evoke glutamate release from these terminals, producing

excitatory postsynaptic potentials (EPSPs) in motor neurons

(Eccles andWillis 1963). This phenomenon can also be detected

in vitro, with photostimulation of ChR2-expressing GABAergic

interneurons also causing temperature-dependent optically

evoked excitatory postsynaptic currents (oEPSCs) between pro-

prioceptive afferents and motor neurons (Fink et al., 2014). Here,

we have adopted the same approach to study axoaxonic synap-

ses fromPV interneurons onto the central terminals of cutaneous

afferents. PV-cell-mediated oEPSCs could be reliably recorded

at room temperature (23�C) but were abolished by elevating

recording bath temperature to 34�C (EPSCindex; 0.24 ± 0.06;

p < 0.001, paired t test, n = 15; 4 mice; Figure 5B). The necessity

for afferent function to generate polysynaptic oEPSCs was

also tested using high-frequency dorsal root stimulation (1 ms

at 20 Hz) to fatigue afferents (Figure 5C). Under these condi-

tions, oEPSCs were significantly reduced and in many cases

abolished, confirming the involvement of afferent terminals

(EPSCindex; 0.36 ± 0.09, p < 0.001, paired t test, n = 15; 8 mice).

Using a similar approach, high-frequency photostimulation

of PV cells was capable of fatiguing PAD-evoked neurotrans-

mitter release and reducing dorsal root evoked EPSC amplitude

(EPSCindex: 0.53 ± 0.09, p < 0.001, paired t test, n = 16; 8 mice;

Figure 5D). Importantly, dorsal root evoked EPSC amplitudes

were unaffected by high-frequency photostimulation in cells

that lacked oEPSCs (EPSCindex: 0.91 ± 0.07, p = 0.247, paired

t test, n = 6; 5 mice; Figure 5D), suggesting their afferent input

was not ‘‘gated’’ by PV-cell-mediated presynaptic inhibition.

The duration of PV-cell-mediated presynaptic inhibition was

also tested by varying the timing of a single PV-photostimulation

pulse preceding dorsal root stimulation (Figure 5E). Prior PV

activation and the resulting presynaptic inhibition caused a

prominent time-dependent reduction in electrically evoked

excitatory postsynaptic current (eEPSC) amplitude, which lasted
(D) DR-eEPSC amplitude (left) is reduced after a conditioning photostimulati

inhibitory synapse (right). This effect was limited to cells that exhibited an oEPSC

plot; n = 6; 5 mice).

(E) DR-eEPSCs recorded before (black trace) and after (red traces) preconditioni

to �500 ms). DR-eEPSC amplitude is diminished at short preconditioning interv

conditioning �500-ms trial. Data were fitted with a Boltzmann function, yielding a

(F) Morphology of a recorded vertical cell (gray), filled with NB. Insets show examp

inhibitory synapses (gephyrin; gray) on to the dendrites of the recorded cell (arrow

delayed AP discharge during depolarizing current step injections (left; lower, 2

(right; �100 mV to �40, �30, and �20 mV, respectively).

(G and H) Representative PV-photostimulation evoked oIPSCs (G; strychnine an

vertical cells (n = 5; 4 mice).

(I) Plots show oIPSC latency and jitter are low, consistent with amonosynaptic con

a polysynaptic circuit. *p < 0.05 by paired t test.

Scale bars represent 50 mm (D) and 2 mm (insets).
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up to 500 ms (EPSCindex: 0.12 ± 0.09, p < 0.001; 0.32 ± 0.23,

p < 0.001; 0.60 ± 0.27, p = 0.004; 0.66 ± 0.20, p = 0.004;

0.70 ± 0.16, p = 0.007; 0.91 ± 0.07, p = 0.051 for preceding

PV + interneuron (IN) photostimulation �20, �50, �100, �200,

�300, and �500 ms, respectively, paired t test; n = 9, 8, 8,

7, 6, and 5; 2 mice). Therefore, we can attribute the suppression

of dorsal root (DR)-evoked responses to the PV-mediated pre-

synaptic inhibition.

In a subset of experiments, the morphology of recorded cells

was recovered (n = 36), and five were subsequently classified

as vertical cells (Figure 5F). All vertical cells showed A-type

potassium currents (five out of five) and received polysynaptic

inward oEPSCs (membrane potential �70 mV), indicative of

afferent input gated by presynaptic inhibition (Figure 5H). These

responses were abolished by bicuculline (oEPSCindex; 0.08 ±

0.02; p < 0.001, paired t test, n = 5; 4 mice), consistent with

the role for GABAA receptors in presynaptic inhibition and PAD

(Eccles et al., 1963). When membrane potential was adjusted

to �40 mV, PV photostimulation caused short-latency optically

evoked inhibitory postsynaptic currents (oIPSCs) that were

abolished by bicuculline and strychnine (Figure 5G). These

oIPSCs exhibited short latencies (�4 ms) and low-onset jitter

(�0.5 ms; Figure 5I) consistent with monosynaptic PV cell input.

This contrasts the PAD-evoked oEPSCs, which had longer la-

tencies (�12 ms) and greater onset jitter (�1.2 ms; Figure 5I).

Together, these findings provide functional confirmation that

PV cells provide powerful, convergent inhibition of vertical cells

via both direct postsynaptic inhibition as well as presynaptic in-

hibition of myelinated afferent drive.

PV Cells Do Not Undergo Significant Structural Changes
following Peripheral Nerve Injury
Given the behavioral evidence implicating PV cells in mechanical

allodynia (Petitjean et al., 2015), we aimed to determine whether

the anatomical and electrophysiological properties of these cells

were altered in mice that had undergone the spared nerve injury

(SNI) model of neuropathic pain (Decosterd and Woolf, 2000)

and had developed mechanical hypersensitivity (Figure 6A).

We first aimed to determine whether peripheral axotomy re-

sulted in a loss of PV interneurons in denervated regions of the

spinal dorsal horn.We focused specifically in regions where axo-

tomized afferents from the tibial and common peroneal nerve

terminate, as any central changes resulting as a consequence
on of PV cells (1 s photostimulation at 20 Hz) to fatigue the presynaptic

(left plot; n = 16; 8 mice), but not in cells where no oEPSC was observed (right

ng PV cell photostimulation delivered at varying intervals (1-ms pulse, �20 ms

als (�20 ms to �100 ms) but approximates the baseline response in the pre-

half recovery time of 62.5 ms (right; n = at least 5 for each time point; 2 mice).

les of YFP-expressing PV terminals (green) making excitatory (Homer; gray) and

s). R-C denotes rostrocaudal axis orientation. Recorded vertical cell displayed

0-pA steps), and A-type potassium currents during a voltage step protocol

d bicuculline sensitive) and oEPSCs (H; bicuculline sensitive) recorded from

nection, whereas longer latency and higher jitter for oEPSCs are consistent with



Figure 6. Anatomical and Electrophysiological Features of PV Cells in Allodynic Mice

(A) PVCre;Ai9mice that have undergone unilateral SNI (n = 11) develop pronounced punctate tactile allodynia in the skin region innervated by the sural nerve during

the first postoperative week, which persists throughout the test period (****p < 0.0001 for contralateral versus ipsilateral at all post-surgery time points, two-way

ANOVA with Sidak’s post-test of multiple comparisons).

(B) CTbwas injected into the glabrous skin region innervated by the sural nerve (ipsilateral to the nerve injury) to label themyelinated afferents that evoke the tactile

allodynia (n = 3 animals). The central terminals of these afferents (green) overlap extensively with the plexus of tdTom-expressing PV cells (red) in laminae IIi and III,

and receive multiple contacts from VGAT boutons (blue), many of which are derived from PV cells (arrow).

(C) Targeted whole-cell patch-clamp recordings from tdTom cells (red) were made in spinal cord slices both ipsilateral (n = 20) and contralateral (n = 16) to the

nerve injury and within the central territories of the tibial and common peroneal nerves. NB (green) was included in the recording electrode for post hoc

confirmation of tdTom expression in recorded cells.

(D) Plot of the relative positions of all cells recorded from the contra- and ipsilateral sides.

(E) The incidence of AP firing patterns in tdTom cells is similar on both the contra- and ipsilateral sides, with the exception of two single-spiking neurons that are

seen ipsilateral to the nerve injury. Numbers at the base of bars are number of cells in each category.

(F) The tonic rheobase is significantly higher in tdTom neurons ipsilateral to nerve injury (*p < 0.05 by unpaired Student’s t test; bars in graph are means from all

cells, and individual data points from each cell are overlaid; n = 14 cells contralateral, 15 ipsilateral).

(G) Example traces of AP output in response to current injection from tonic-firing cells on the contra- and ipsilateral sides.

(H) Input and/or output relationship of tonic-firing tdTom neurons, demonstrating a significantly reduced firing frequency in response to 100 and 120pA current

injection on the ipsilateral side (*p < 0.05 by two-way ANOVA with Sidak’s post-test of multiple comparisons; data are shown as mean ± SEM; n = 14 cells

contralateral, 15 ipsilateral).

Scale bars represent 100 mm (B and C); insets, 10 and 2 mm, respectively.
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of peripheral nerve injury would most likely be evident here. The

expression of prostatic acid phosphatase (PAP) immunolabeling

is depleted in injured afferents, and we used this to map the so-

matotopic representation of afferents from the axotomized tibial

and common peroneal nerves (Figures S2A and S2B). We found

a total of 214 tdTom cells (range, 41–73) in the denervated area

ipsilateral to the nerve injury, and 184 (range, 34–62) in the corre-

sponding regions of the contralateral dorsal horn (n = 4mice, two

sections analyzed per mouse). This equates to a mean of 53.5 ±

6.9 cells per animal ipsilateral to SNI versus 46.0 ± 6.7 on the

contralateral side; these means did not differ significantly (p =

0.32 by paired t test; Figure S2C). Therefore, in agreement with

previous findings (Petitjean et al., 2015), we find no evidence of

a loss of PV cells in denervated regions of the spinal cord after

peripheral nerve transection.

Peripheral axotomy has been shown to result in a change in

the glomerular appearance of central terminals from non-pepti-

dergic C-fibers and a loss of axoaxonic synapses (Castro-Lopes

et al., 1990; Bailey and Ribeiro-da-Silva, 2006). We aimed to

address whether similar structural changes occurred on the

central terminals of myelinated afferents from skin territories

showing heightened mechanical sensitivity following SNI. To

label these afferents, we injected CTb into glabrous skin inner-

vated by the sural nerve of three PVCre;Ai9 mice that showed

mechanical hypersensitivity to static and/or punctate stimula-

tion (Figure 6A). The resulting pattern of CTb labeling in the

spinal cord was restricted to the central one-third of the dorsal

horn in mid-L5 segment (Figure 6B). We found that 53.3% ±

0.9% of these CTb-labeled terminals in lamina IIi received

contacts from VGAT boutons that also expressed tdTom (100

CTb-labeled terminals per animal). The mean number of VGAT

boutons in contact with the CTb-labeled terminals was 3.8 ±

0.01, and the average number of VGAT boutons that expressed

tdTom was 0.7 ± 0.02. These PV-boutons account for 17.7% ±

0.4% of the total VGAT contacts onto CTb-labeled central

terminals. Control experiments, where CTb was injected into

the glabrous skin of naive mice, were conducted in parallel

(n = 3 animals). The majority of CTb-labeled central terminals

from myelinated afferents innervating glabrous skin in naive

animals also received contacts from VGAT and PV boutons

(54.0% ± 9.8%; 150 boutons per animal). These were associ-

ated with 3.1 ± 0.01 VGAT boutons, of which 0.8 ± 0.2 ex-

pressed PV. In these control animals, PV boutons account for

25.9% ± 5.7% of the total VGAT contacts onto CTb-labeled

central terminals. The differences seen in the mean number of

tdTom and VGAT boutons in contact with individual CTb termi-

nals, the mean percentage of CTb terminals in contact with

tdTom and VGAT boutons, and the mean percentage of axoax-

onic contacts that express tdTom between control and SNI

groups were not statistically significant (p = 0.47, 0.95, and

0.22, respectively; unpaired t tests).

It has been reported that the number of tdTom boutons

forming inhibitory synapses onto the cell bodies of PKCg cells

in lamina II of PVCre;Ai14 mice decreased after peripheral nerve

injury (Petitjean et al., 2015). Since this study focused on the

cell bodies of PKCg cells specifically, we determined the inci-

dence of inhibitory PV-cell-derived synapses onto both the

somata and dendrites of PKCg cells in naive mice and those
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that had undergone SNI 4 weeks earlier (Figure S3). For analysis

of sections from nerve-injured animals, only cells in denervated

regions, determined by the depletion of PAP immunolabeling in

adjacent sections, were included. We found no significant differ-

ences between naive and SNI mice in the incidence of inhibitory

PV inputs onto PKCg cell bodies (p = 0.76 by unpaired t test of

means and p = 0.9996 for Kolmogorov-Smirnov test of cumula-

tive distribution; Figures S3F and S3G; Table S4) or in the propor-

tion of total somatic inhibitory input onto PKCg cells derived from

PV boutons (p = 0.65 by unpaired t test; Table S4). The incidence

and distribution of all other non-PV inhibitory inputs to the soma

were also unchanged following SNI (p = 0.96 by unpaired t test of

means and p = 0.9888 for Kolmogorov-Smirnov test of cumula-

tive distribution; Figures S3I and S3J; Table S4). The dendritic

arbors of a subset of PKCg cells from each animal were partially

reconstructed, and the incidence of inhibitory synaptic inputs

(including those derived from PV interneurons) onto these was

also compared. There were no significant differences between

naive and SNImice in either the density of PV inhibitory synapses

onto PKCg cell dendrites (p = 0.40, unpaired t test; Figure S3H)

or in the proportion of total inhibitory synapses derived from PV

cells (p = 0.29, unpaired t test; Table S4). The density of dendritic

inhibitory inputs from boutons lacking PV was also unchanged

between naive and SNI mice (p = 0.81, unpaired t test; Fig-

ure S3K). The average dendritic length reconstructed did not

differ significantly between the two groups (p = 0.93 by unpaired

t test; Table S4). Taken together, these data suggest that struc-

tural changes in synaptic connectivity are unlikely to contribute

significantly to the loss of PV-cell-mediated inhibition implicated

in the development of mechanical hypersensitivity following

peripheral nerve injury.

Peripheral Nerve Injury Reduces the Excitability of
Spinal PV Cells
We then aimed to determine whether the physiological proper-

ties of PV neurons differ in mechanically hypersensitive PVCre;Ai9

mice following SNI. Whole-cell patch-clamp recordings target-

ing tdTom cells in transverse spinal cord slices were restricted

to the regions corresponding to tibial and common peroneal

nerve territories (Figure S2A). We recorded from 20 cells in

axotomized regions of the ipsilateral dorsal horn and 16 cells in

corresponding locations of the contralateral (intact) dorsal horn

(Figures 6C and 6D). Cells from the contralateral dorsal horn dis-

played similar electrophysiological properties to those recorded

in naive PVCre;Ai9 mice, showing predominantly tonic-firing

discharge patterns in response to current injection and Ih
currents (Figures 6E–6G; Table S1). Furthermore, the passive

membrane properties of cells recorded from the ipsilateral and

contralateral dorsal horns did not differ (Table S1). The incidence

of AP discharge patterns was also broadly similar between the

two sides (Figure 6E), but significant differences were seen in

the AP discharge properties of those PV cells capable of repet-

itive firing in the ipsilateral dorsal horn. The amplitude of current

injection needed to maintain tonic firing for the entire stimulus in

tonic-firing PV cells (which we term the ‘‘tonic rheobase’’) was

significantly higher ipsilateral to the SNI when compared to those

in the contralateral dorsal horn (59.3pA ± 9.1 contralateral versus

94.7pA ± 13.9 ipsilateral; p = 0.045 by unpaired Student’s t test;



Figure 7. Silencing PV Interneurons with AAV.flex.TeLC Results in

Increased Network Activity in Laminae I–IV following Innocuous

Tactile Stimulation

(A–D) Plots of the distribution of cFOS-labeled cells in laminae I–IV following

brush and punctate stimulation of hairy and glabrous skin over the hindpaw

and lower limb of PVCre mice that had undergone unilateral intraspinal in-

jections of AAV.flex.TeLC (TeLC; A) or AAV.flex.GFP (B) into lumbar segments

L3–L5, naive PVCremice (C) that had undergone the same hindpaw stimulation,

and naive PVCre mice not subjected to the hindpaw stimulation protocol (D).

The location of individual cFOS cells in representative sections from each

experimental group is depicted, with cells in each lamina denoted by colored

circles: lamina I (dark green); IIo (red), IIi (bright green); III and IV (blue).

(E) Representative section from a TeLC-treated mouse following the stimula-

tion protocol. Cells are widely distributed across the dorsal horn, with a high

incidence of cells in superficial laminae.

(F and G) The incidence of cFOS cells is significantly higher in TeLC animals

(red) than in any of the control groups, both in the superficial (F) and deeper

laminae (G). The incidence of cFOS labeling in control animals did not differ

significantly between groups (n.s., p > 0.05; **p < 0.01; one-way ANOVA with

Tukey’s post-test of multiple comparisons).

Scale bars represent 187 mm (A–D), 100 mm (E), and 50 mm (F).
Figures 6F and 6G; Table S1). In addition, the current-frequency

relationship for AP discharge was altered in tonic-firing PV cells,

with discharge frequency in response to 100- and 120-pA cur-

rent injection significantly lower on the ipsilateral side (contralat-

eral versus ipsilateral = 56.4 ± 6.6 Hz versus 35.4 ± 4.1 Hz at

100 pA, 62.4 ± 6.6 Hz versus 40.9 ± 4.2 Hz at 120 pA; p =

0.042 and 0.034, respectively, by two-way ANOVA with Sidak’s

post-test for multiple comparisons; Figures 6G and 6H; Table

S1). These results show that PV cells within the denervated dor-
sal horn territory have reduced excitability across a number of

measures when compared to PV cells in the intact contralateral

dorsal horn. Such a shift would likely result in a reduction of PV-

cell-mediated inhibition.

Silencing Neurotransmission in Spinal PV Cells Results
in Aberrant Patterns of LTMR Afferent Input Processing
in the Dorsal Horn
The significance of inhibition mediated by PV interneurons in

setting mechanical thresholds has been established. Selective

ablation of spinal PV interneurons leads to the development of

mechanical hypersensitivity, whereas the chemogenetic activa-

tion of these cells in allodynic mice restores normal mechanical

thresholds (Petitjean et al., 2015). However, the route through

which LTMR input activates spinal pain circuits remains poorly

understood. One hypothesis proposes that a loss of spinal inhi-

bition leads to the polysynaptic activation of lamina I pain projec-

tion neurons (Torsney andMacDermott, 2006; Keller et al., 2007),

with vertical cells being identified as a likely route through which

LTMR input is relayed (Lu et al., 2013). Data generated from our

anatomical and electrophysiological experiments support this

idea and implicate PV cells as a central component in gating

LTMR input to lamina I via this route. To address this more

directly, we aimed to determine whether silencing PV cells re-

sulted in altered network activity of lamina I neurons in response

to innocuous tactile stimulation.We used unilateral intraspinal in-

jection of an adeno-associated virus (AAV) coding for Cre-

dependent expression of tetanus toxin light chain (TeLC) to

selectively block synaptic transmission from PV cells in the L3–

L5 segments (Foster et al., 2015) and looked for the expression

of cFOS as a marker of cell activation following simultaneous

unilateral hindpaw stimulation of hairy and glabrous skin

LTMRs. In all animals injected with AAV.flex.TeLC, innocuous

peripheral manipulation produced robust cFOS immunolabel-

ing throughout laminae I–IV of the ipsilateral dorsal horn, with

10.6% ± 1.3% and 7.6% ± 0.9% of these cells being found in

lamina I and lamina IIo, respectively (Figures 7A and 7E). In

contrast, cFOS immunolabeling was rarely seen in laminae I

and II of control animals with functionally intact PV neurons

(AAV.flex.EGFP-injected stimulated mice, naive stimulated

mice, and naive unstimulated mice; Figures 7B–7D). The inci-

dence of cFOS cells did not differ between any of the control

groups within any of the lamina divisions analyzed (lamina I,

IIo, IIi and laminae III–IV; p > 0.05 for all comparisons, one-way

ANOVA with Tukey’s test for multiple comparisons; Figures 7F

and 7G). In contrast, a significant increase in the incidence of

cFOS cells was observed in AAV.flex.TeLC-injected mice

compared to all control groups and across all lamina divisions

(p < 0.01 for all comparisons, one-way ANOVA with Tukey’s

test for multiple comparisons; see Figures 7F and 7G). These

findings demonstrate that PV-cell-mediated inhibition plays a

crucial role in gating LTMR-evoked recruitment of lamina I

neurons.

DISCUSSION

Our study demonstrates that inhibitory PV interneurons in

laminae IIi and III of the spinal dorsal horn are a major source
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of axoaxonic inputs onto the central terminals of myelinated

LTMRs from both hairy and glabrous skin. We also show that

these interneurons gate the passage of LTMR afferent input

both by GABA-mediated presynaptic inhibition and by inhibit-

ing the postsynaptic targets of these afferents through the

release of GABA and glycine. The postsynaptic targets of

LTMRs under inhibitory control from PV-expressing interneu-

rons include vertical cells. Under normal circumstances, PV-

cell-mediated inhibition of these cells, and of their LTMR input,

is likely to play a central role in segregating LTMR afferent input

from pain circuits. However, the anatomical features of vertical

cells position them to act as a potential route for LTMR input

into lamina I, where, under pathological conditions, the loss

of PV-cell-mediated inhibition could unmask this relay circuit,

leading to the polysynaptic activation of pain circuits. We

demonstrate the potency of this pathway by silencing PV cells

using viral vectors and showing that innocuous tactile manipu-

lation results in aberrant activation of neurons in laminae I and

IIo. Consistent with this model, we also show PV cell excit-

ability is downregulated in a neuropathic model, which would

compromise the pre- and postsynaptic inhibitory gating medi-

ated by these cells. Under such circumstances, the aberrant

recruitment of vertical cells following LTMR input would help

explain the cellular basis of tactile allodynia associated with

neuropathic pain.

PV Interneurons in Laminae IIi and III Are a Source of
Axoaxonic Inputs to Myelinated LTMRs
Presynaptic inhibition was first described in group Ia muscle af-

ferents (Frank and Fuortes, 1957; Eccles et al., 1961, 1962), with

anatomical evidence of axoaxonic synapses (presynaptic bou-

tons [P-boutons]) onto these afferent terminals emerging later

(Conradi et al., 1983). We identified the source of these P-bou-

tons as a population of interneurons in the deep medial dorsal

horn (Hughes et al., 2005), and these have since been shown

to contribute to the smooth execution of movement during

locomotion (Fink et al., 2014). Axoaxonic synapses have also

been described on the central terminals of several classes of

cutaneous afferents (Réthelyi et al., 1982; Ribeiro-da-Silva

and Coimbra, 1982; Todd, 1996; Watson et al., 2002; Watson,

2004); however, the interneuron populations that give rise to

these presynaptic inputs have remained elusive.

Here, we provide direct evidence that axoaxonic synapses

onto the central terminals of myelinated afferents in laminae IIi

and III arise from local PV interneurons. Most of the PV cells

in these laminae are inhibitory interneurons that co-express

GABA and glycine (Laing et al., 1994; Abraira et al., 2017), but

these have been shown to be distinguishable from the excit-

atory population by linear discriminant analyses based on

morphological features (Abraira et al., 2017). By defining the

principal targets of inhibitory PV interneurons as the central

terminals of myelinated LTMRs, we conclude that these inter-

neurons are likely to play a direct role in tuning, gating, and

prioritizing our responsiveness to the tactile environment

(Abraira and Ginty, 2013). The added insight that PV cells regu-

late LTMR input from glabrous skin, as well as both Ab- and

Ad-hair afferents from hairy skin, suggests that the loss of

pre- and postsynaptic inhibition to these afferents and their
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synaptic targets is likely to contribute to the development

of both the static (punctate) and dynamic forms of allodynia

seen clinically (Ochoa and Yarnitsky 1993; Field et al., 1999;

Dhandapani et al., 2018).

PV Cells Mediate Presynaptic Inhibition of Myelinated
LTMRs and Postsynaptic Inhibition of Vertical Cells
Here, we demonstrate that selective activation of a discrete

population of dorsal horn inhibitory interneurons gates sensory

input from myelinated LTMRs through the simultaneous presyn-

aptic inhibition of the afferents and postsynaptic inhibition of

vertical cells. The strength of PV interneuron-mediated presyn-

aptic inhibition in our experiments is emphasized by the ability

of a single brief photostimulation to abolish, or substantially

reduce (�90% block), afferent-mediated EPSCs for hundreds

of milliseconds, consistent with previous work on presynaptic

inhibition in the ventral horn (Eccles et al., 1961; Hubbard and

Willis 1962; Takeuchi and Takeuchi 1962).

LTMR afferents that are under presynaptic control from PV

interneurons are known to innervate several classes of dorsal

horn interneurons (Hughes et al., 2012). Here, we show that PV

interneurons mediate both presynaptic inhibition of LTMR affer-

ents synapsing onto vertical cells and postsynaptic inhibition of

the same vertical cells. Consistent with these observations, we

report a high incidence of putative triadic arrangements of inhib-

itory PV terminals, dendrites of vertical cells, and inputs to these

vertical cells from myelinated primary afferent terminals. Synap-

tic triads are a common feature of boutons that form axoaxonic

synapses (Ribeiro-da-Silva et al., 1985; Todd, 1996) and have

been shown to involve PV-expressing boutons (Hughes et al.,

2012). Our findings show that PV interneurons presynaptically

suppress LTMRs while simultaneously inhibiting a postsynaptic

target of that same afferent input. From a biological standpoint,

this is consistent with the importance of ensuring that innocuous

signals are prevented from exciting nociceptive circuits and

causing pain. We conclude that both the presynaptic inhibition

of cutaneous afferents and the postsynaptic inhibition of vertical

cells mediated by PV interneurons have a profound influence

in gating the passage of LTMR input in the dorsal horn under

normal conditions.

This interpretation is in line with experiments that established

PV-cell-mediated inhibition as an important factor in the devel-

opment of touch-evoked pain-like behaviors in neuropathic

mice (Petitjean et al., 2015). This study focused on the PV-medi-

ated inhibition of PKCg cells and reported a loss of inhibitory PV

inputs to these cells after peripheral nerve injury. It was proposed

that the resulting disinhibition unmasked a circuit through which

LTMR input is relayed through PKCg cells and ultimately to lam-

ina I. We find no evidence for changes in either the total inhibitory

synaptic input to PKCg cells or the number of inhibitory synaptic

inputs derived fromPV cells following peripheral nerve injury (see

below), but we do find that the incidence of inhibitory inputs,

including those derived from PV interneurons, is similar on

both PKCg cells and vertical cells and that inhibitory PV cell

excitability is reduced following nerve injury. We reason that if

a reduction in PV-mediated inhibition of PKCg cells under path-

ological conditions allows LTMR input to be relayed to lamina I,

then this would also disinhibit both vertical cells and the LTMR



input they receive. This would result in the unmasking of a more

direct (disynaptic) route where LTMR input activates lamina I

pain circuits and would form the neurological basis of touch-

evoked mechanical hypersensitivity.

Changes in Membrane Excitability, rather than
Structural Plasticity, Underlie PV Cell Disinhibition
following Peripheral Nerve Injury
In agreement with previous reports, we found no loss of PV cells

in dorsal horn regions corresponding to the termination zones

of axotomized afferents in the SNI model (Petitjean et al.,

2015), but in contrast to this earlier study, we found no change

in the incidence of inhibitory PV synapses onto the cell body

and dendrites of PKCg cells. It is possible that this discrepancy

is due to subtle differences in the SNI models used, but it re-

mains to be established how sparing afferents from the tibial

nerve (Petitjean et al., 2015) results in the loss of PV synapses

onto PKCg cells, whereas sparing afferents from the sural nerve

(this study) does not. We also analyzed the incidence of inhib-

itory PV boutons on the central terminals of intact myelinated

sural afferents in allodynic mice and again found no change,

implying that axo-axonic synapses also persist. Together with

previous data showing that GABA levels, GABAA receptor sub-

unit expression, and VGAT labeling do not change following

peripheral axotomy (Polgár and Todd, 2008), we conclude

that PV-cell-mediated inhibition is unlikely to be compromised

by significant changes in synaptic connectivity, presynaptic

transmitter levels, or neurotransmitter receptor expression.

We do, however, find significant differences in the excitability

of tonic-firing PV cells in denervated territories, with larger cur-

rent injections required to elicit sustained ‘‘tonic’’ AP discharge

and lower discharge frequencies once they are recruited.

Earlier studies in a mouse sciatic nerve constriction injury

model have reported no difference in the firing patterns of

GAD67-EGFP cells in lamina III (Gassner et al., 2013), whereas

targeted recordings of lamina II cells identified impaired excit-

atory drive (Leitner et al., 2013). These observations differ to

what we see in the PV interneurons, but this may be reconciled

by our targeted study of a more restricted population. Indeed, it

was reported that only 3% of lamina III cells recorded in the ex-

periments studying firing patterns expressed PV (Gassner et al.,

2013). Consistent with our findings, lamina II islet cells, which

are likely to include PV cells, show decreased membrane excit-

ability and altered firing patterns in a rat model of chronic pain

(Balasubramanyan et al., 2006). This supports our proposal that

a change in neuronal excitability alone, irrespective of any asso-

ciated structural changes, is sufficient to reduce GABAergic

tone centrally, producing a loss of inhibition and resulting in

the development of a chronic pain state (Laird and Bennett

1992; Moore et al., 2002; Baba et al., 2003).

Our finding that TeLC-mediated silencing of PV interneurons

increases network activity in both laminae IIo and I after innoc-

uous mechanical stimulation provides additional support for

this proposal. The pattern of cFOS labeling in thesemice implies

that lamina I pain circuits and vertical cells are recruited when

PV interneurons are silenced. This is in line with previously

described models of dorsal horn processing (Lu and Perl,

2005; Torsney and MacDermott, 2006; Keller et al., 2007; Ya-
saka et al., 2014) and serves to demonstrate the importance

of PV-cell-mediated inhibition in segregating LTMR input from

pain circuits. Extending this model to the level of regional

sensory processing, the PV cells we have recorded in the SNI

model will also have lost most, if not all, afferent input, further

compromising the recruitment of these interneurons. This

reduction (or loss) of afferent induced (feed-forward) inhibition

within the denervated regions is likely to have relevance beyond

the denervated zone. Specifically, the axonal and dendritic

arbors of PV cells are substantial, with many expanding across

somatotopically distinct boundaries (Swett and Woolf, 1985;

Takahashi et al., 2003). This configuration positions PV interneu-

rons to provide inhibition to spinal circuits of adjacent skin terri-

tories (commonly referred to as ‘‘surround inhibition’’) and, by

extension, allows peripheral-nerve-injury-related disinhibition

to also impact sensory processing in adjacent (intact) skin terri-

tories, leading to allodynia.

Conclusions
Recent studies implicating distinct spinal circuits in the develop-

ment of mechanical hypersensitivity focus solely on the loss, or

impairment, of postsynaptic inhibition (Lu et al., 2013; Duan

et al., 2014; Foster et al., 2015; Petitjean et al., 2015; Peirs

et al., 2015). Collectively, they serve to demonstrate that several

distinct circuits are likely to contribute to these chronic pain

states, and this level of complexity reflects the difficulty we

face in developing effective treatments. Although the aberrant

recruitment of vertical cells to relay information to lamina I pain

circuits is a prominent feature common to many of these models

(Peirs and Seal, 2016; Moehring et al., 2018), the modulation

of afferent input from mechanically hypersensitive skin regions

has been overlooked.

Our study highlights the importance of both pre- and postsyn-

aptic inhibition arising from PV interneurons in the processing of

mechanosensory information. Furthermore, the microcircuit we

describe provides a direct route for the relay of LTMR input to

lamina I that is normally under strong inhibitory control. This con-

nectivity highlights how PV-interneuron-mediated inhibition

helps segregate LTMR and pain circuits for normal sensory

perception but can also produce allodynia when these connec-

tions fail under pathological conditions. By extension, our work

identifies both inhibitory PV interneurons and vertical cells as po-

tential targets for restoring normal sensory processing following

the development of tactile allodynia.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Targeted whole-cell patch-clamp recordings in vitro

B Photoactivation of PV cells: optogenetic studies

ex vitro

B Tissue preparation for immunocytochemistry
Cell Reports 28, 526–540, July 9, 2019 537



d SURGICAL PROCEDURES AND BEHAVIORAL TESTING

B Transganglionic labeling of glabrous skin afferents

B Mouse model of chronic pain: peripheral nerve injury

B Intraspinal AAV injections for silencing of PV cells

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2019.06.040.

ACKNOWLEDGMENTS

We thank Prof. Sylvia Arber and Prof. Hongkui Zheng for the gift of the PVCre

and Ai9 mice, respectively, and Prof. Hanns Ulrich Zeilhofer and Dr. Hendrik

Wildner for the AAV1.flex.TeLC-FLAG and AAV.flex.EGFP. We also thank

Christine Watt and Robert Kerr for expert technical assistance and Prof. An-

drew Todd for helpful comments on the manuscript. This work was supported

by the Biotechnology and Biological Sciences Research Council, UK (grants

BB/J000620/1 and BB/P007996/1 to D.I.H.), the NHMRC Australia (grants

631000 and 1043933 to B.A.G. and R.J.C.), the Hunter Medical Research

Institute (to B.A.G. and R.J.C.), the NIH (grant NS97344 to D.D.G.), and

JSPS KAKENHI (grant 26670289 to T.Y.).

AUTHOR CONTRIBUTIONS

D.I.H. and B.A.G. conceived the study. M.W. provided antibodies. V.E.A.,

A.L.Z., E.D.K., and D.D.G. provided tissue from SplitCre and TrkBCreER mice.

K.A.B., M.A.G., T.Y., A.C.D., R.P.G., E.P., R.J.C., B.A.G., and D.I.H. performed

the research. K.A.B., M.A.G., T.Y., A.C.D., D.P.H.O., R.P.G., B.A.G., and D.I.H.

analyzed data. D.I.H., B.A.G., K.A.B., and M.A.G. wrote the manuscript, with

input from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 10, 2018

Revised: March 29, 2019

Accepted: June 10, 2019

Published: July 9, 2019

REFERENCES

Abraira, V.E., andGinty, D.D. (2013). The sensory neurons of touch. Neuron 79,

618–639.

Abraira, V.E., Kuehn, E.D., Chirila, A.M., Springel, M.W., Toliver, A.A., Zimmer-

man, A.L., Orefice, L.L., Boyle, K.A., Bai, L., Song, B.J., et al. (2017). The

cellular and synaptic architecture of the mechanosensory dorsal horn. Cell

168, 295–310.e19.

Ahmadi, S., Lippross, S., Neuhuber, W.L., and Zeilhofer, H.U. (2002). PGE(2)

selectively blocks inhibitory glycinergic neurotransmission onto rat superficial

dorsal horn neurons. Nat. Neurosci. 5, 34–40.

Baba, H., Ji, R.-R., Kohno, T., Moore, K.A., Ataka, T., Wakai, A., Okamoto, M.,

and Woolf, C.J. (2003). Removal of GABAergic inhibition facilitates polysyn-

aptic A fiber-mediated excitatory transmission to the superficial spinal dorsal

horn. Mol. Cell. Neurosci. 24, 818–830.

Bailey, A.L., and Ribeiro-da-Silva, A. (2006). Transient loss of terminals from

non-peptidergic nociceptive fibers in the substantia gelatinosa of spinal cord

following chronic constriction injury of the sciatic nerve. Neuroscience 138,

675–690.

Balasubramanyan, S., Stemkowski, P.L., Stebbing, M.J., and Smith, P.A.

(2006). Sciatic chronic constriction injury produces cell-type-specific changes

in the electrophysiological properties of rat substantia gelatinosa neurons.

J. Neurophysiol. 96, 579–590.
538 Cell Reports 28, 526–540, July 9, 2019
Castro-Lopes, J.M., Coimbra, A., Grant, G., and Arvidsson, J. (1990). Ultra-

structural changes of the central scalloped (C1) primary afferent endings of

synaptic glomeruli in the substantia gelatinosa Rolandi of the rat after periph-

eral neurotomy. J. Neurocytol. 19, 329–337.

Conradi, S., Cullheim, S., Gollvik, L., and Kellerth, J.-O. (1983). Electron micro-

scopic observations on the synaptic contacts of group Ia muscle spindle affer-

ents in the cat lumbosacral spinal cord. Brain Res. 265, 31–39.

Cordero-Erausquin, M., Allard, S., Dolique, T., Bachand, K., Ribeiro-da-Silva,

A., and De Koninck, Y. (2009). Dorsal horn neurons presynaptic to lamina I spi-

noparabrachial neurons revealed by transynaptic labeling. J. Comp. Neurol.

517, 601–615.

Decosterd, I., and Woolf, C.J. (2000). Spared nerve injury: an animal model of

persistent peripheral neuropathic pain. Pain 87, 149–158.

Dhandapani, R., Arokiaraj, C.M., Taberner, F.J., Pacifico, P., Raja, S., Nocchi,

L., Portulano, C., Franciosa, F., Maffei, M., Hussain, A.F., et al. (2018). Control

of mechanical pain hypersensitivity in mice through ligand-targeted photoa-

blation of TrkB-positive sensory neurons. Nat. Commun. 9, 1640.

Duan, B., Cheng, L., Bourane, S., Britz, O., Padilla, C., Garcia-Campmany, L.,

Krashes, M., Knowlton, W., Velasquez, T., Ren, X., et al. (2014). Identification

of spinal circuits transmitting and gating mechanical pain. Cell 159, 1417–

1432.

Duncan, D., and Morales, R. (1978). Relative numbers of several types of syn-

aptic connections in the substantia gelatinosa of the cat spinal cord. J. Comp.

Neurol. 182, 601–610.

Eccles, R.M., and Willis, W.D. (1963). Presynaptic inhibition of the monosyn-

aptic reflex pathway in kittens. J. Physiol. 165, 403–420.

Eccles, J.C., Eccles, R.M., and Magni, F. (1961). Central inhibitory action

attributable to presynaptic depolarization produced by muscle afferent

volleys. J. Physiol. 159, 147–166.

Eccles, J.C., Schmidt, R.F., and Willis, W.D. (1962). Presynaptic inhibition of

the spinal monosynaptic reflex pathway. J. Physiol. 161, 282–297.

Eccles, J.C., Schmidt, R., and Willis, W.D. (1963). Pharmacological studies on

presynaptic inhibition. J. Physiol. 168, 500–530.

Field, M.J., Bramwell, S., Hughes, J., and Singh, L. (1999). Detection of static

and dynamic components ofmechanical allodynia in rat models of neuropathic

pain: are they signalled by distinct primary sensory neurones? Pain 83,

303–311.

Fink, A.J.P., Croce, K.R., Huang, Z.J., Abbott, L.F., Jessell, T.M., and Azim, E.

(2014). Presynaptic inhibition of spinal sensory feedback ensures smooth

movement. Nature 509, 43–48.

Foster, E., Wildner, H., Tudeau, L., Haueter, S., Ralvenius,W.T., Jegen, M., Jo-

hannssen, H., Hösli, L., Haenraets, K., Ghanem, A., et al. (2015). Targeted abla-

tion, silencing, and activation establish glycinergic dorsal horn neurons as key

components of a spinal gate for pain and itch. Neuron 85, 1289–1304.

Frank, K., and Fuortes, M.G.F. (1957). Presynaptic and postsynaptic inhibition

of monosynaptic reflexes. Fed. Proc. 16, 39–40.

Gassner, M., Leitner, J., Gruber-Schoffnegger, D., Forsthuber, L., and

Sandk€uhler, J. (2013). Properties of spinal lamina III GABAergic neurons in

naı̈ve and in neuropathic mice. Eur. J. Pain 17, 1168–1179.

Goldberg, D.S., and McGee, S.J. (2011). Pain as a global public health priority.

BMC Public Health 11, 770–774.

Graham, B.A., Brichta, A.M., and Callister, R.J. (2007). Moving from an aver-

aged to specific view of spinal cord pain processing circuits. J. Neurophysiol.

98, 1057–1063.

Graham, B.A., Tadros, M.A., Schofield, P.R., and Callister, R.J. (2011). Probing

glycine receptor stoichiometry in superficial dorsal horn neurones using the

spasmodic mouse. J. Physiol. 589, 2459–2474.

Grudt, T.J., and Perl, E.R. (2002). Correlations between neuronal morphology

and electrophysiological features in the rodent superficial dorsal horn.

J. Physiol. 540, 189–207.

Gutierrez-Mecinas, M., Kuehn, E.D., Abraira, V.E., Polgár, E., Watanabe, M.,

and Todd, A.J. (2016). Immunostaining for Homer reveals the majority of

https://doi.org/10.1016/j.celrep.2019.06.040
https://doi.org/10.1016/j.celrep.2019.06.040
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref1
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref1
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref2
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref2
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref2
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref2
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref3
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref3
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref3
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref4
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref4
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref4
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref4
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref5
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref5
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref5
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref5
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref6
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref6
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref6
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref6
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref7
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref7
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref7
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref7
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref8
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref8
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref8
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref9
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref9
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref9
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref9
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref10
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref10
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref11
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref11
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref11
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref11
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref12
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref12
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref12
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref12
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref13
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref13
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref13
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref14
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref14
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref15
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref15
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref15
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref16
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref16
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref17
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref17
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref18
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref18
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref18
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref18
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref19
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref19
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref19
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref20
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref20
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref20
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref20
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref21
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref21
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref22
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref22
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref22
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref22
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref23
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref23
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref24
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref24
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref24
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref25
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref25
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref25
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref26
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref26
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref26
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref27
http://refhub.elsevier.com/S2211-1247(19)30806-X/sref27


excitatory synapses in laminae I-III of the mouse spinal dorsal horn. Neurosci-

ence 329, 171–181.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-cFOS (1:500) Santa Cruz Biotechnology Inc., CA, USA. Cat#sc-52-G; RRID: AB_2629503

Goat anti-CTb (1:5000) List Biological Laboratories Inc., CA, USA. Cat#703; RRID: AB_2314252

Rabbit anti-dsRed (1:1000) ClonTech Labs Inc., CA, USA. Cat#632496; RRID: AB_10013483

Mouse anti-Gephyrin (1:2000) SynapticSystems, Göttingen, Germany. Cat#147021; RRID: AB_2232546

Chicken anti-GFP (1:1000) Abcam plc., UK. Cat#ab13970; RRID: AB_300798

Rabbit anti-Homer1 (1:2000) Frontier Institute Co. Ltd, Hokkaido, Japan. Cat#Homer1-Rb-Af1000; RRID: AB_2571774

Chicken anti-Prostatic acid phosphatase

(1:1000)

Aves Labs. Inc., OR, USA. Cat#PAP; RRID: AB_2313557

Goat anti-Parvalbumin (1:500) SWANT, Bellinzona, Switzerland. Cat#PVG-214; RRID: AB_2313848

Guinea pig anti-Parvalbumin (1:500) Frontier Institute Co. Ltd, Hokkaido, Japan. Cat#PV-GP-Af1000; RRID: AB_2336938

Rabbit anti-PAX2 (1:1000) Invitrogen; Thermo Fischer Scientific, UK. Cat#71-6000; RRID: AB_2533990

Rabbit anti-PKCg (1:1000) Santa Cruz Biotechnology Inc., CA, USA. Cat#sc-211; RRID: AB_632234

Guinea pig anti-PKCg (Af350) (1:1000) Frontier Institute Co. Ltd, Hokkaido, Japan. Cat#PKCg-Rb-Af350; RRID: AB_2571826

Goat anti-VGAT (1:1000) Frontier Institute Co. Ltd, Hokkaido, Japan. Cat#VGAT-Go-Af620; RRID: AB_2571623

Mouse anti-VGAT (1:1000) SynapticSystems, Göttingen, Germany. Cat#131002; RRID: AB_887871

Guinea pig anti-VGLUT1 (1:5000) Millipore, Chemicon International, UK. Cat#AB5905; RRID: AB_2301751

Guinea pig anti-VGLUT3 (1:100) Frontier Institute Co. Ltd, Hokkaido, Japan. Cat#VGluT3-GP-Af920; RRID: AB_2571856

Bacterial and Virus Strains

AAV1.flex.TeLC-FLAG Dr. Hendrik Wildner & Prof. Hanns Ulrich

Zeilhofer

Foster et al., 2015

AAV8.flex.eGFP Viral Vector Facility, University of Zurich v158

Experimental Models: Organisms/Strains

Mouse: Ai9: B6.Cg-Gt(ROSA)

26Sortm9(CAG-tdTomato)Hze/J

Prof. Hongkui Zheng; available from

The Jackson Laboratory

JAX: 007909

Mouse: Ai32: B6;129S-Gt(ROSA)

26Sortm32(CAG-COP4*H134R/EYFP)Hze/J

The Jackson Laboratory JAX: 012569

Mouse: Ai34: B6;129S-Gt(ROSA)

26Sortm34.1(CAG-Syp/tdTomato)Hze/J

The Jackson Laboratory JAX: 012570

Mouse: Ai35D: B6;129S-Gt(ROSA)

26Sortm35.1(CAG-aop3/GFP)Hze/J

The Jackson Laboratory JAX: 012735

Mouse: PVCre: B6;129P2-Pvalbtm1(cre)Arbr/J Prof. Sylvia Arber; available from

The Jackson Laboratory

JAX: 008069

Mouse: TrkBCreER: B6.129S6(Cg)

-Ntrk2tm3.1(cre/ERT2)Ddg/J

Prof. David Ginty; available from

The Jackson Laboratory

JAX: 027214

Mouse: SplitCre Prof. David Ginty Rutlin et al., 2014

Software and Algorithms

Neurolucida MBF Bioscience, VT, USA https://www.mbfbioscience.com/neurolucida

Neurolucida Explorer MBF Bioscience, VT, USA https://www.mbfbioscience.com/neurolucida-

explorer

pClamp Molecular Devices, CA, USA https://www.moleculardevices.com/products/

axon-patch-clamp-system/acquisition-and-

analysis-software/pclamp-software-suite#gref

AxoGraph X Dr. John Clements https://axograph.com/
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Zen Black Carl Zeiss, Germany https://www.zeiss.com/microscopy/int/

products/microscope-software/zen.html

Prism GraphPad Software, CA, USA https://www.graphpad.com/scientific-

software/prism/

InStat GraphPad Software, CA, USA https://www.graphpad.com/scientific-

software/instat/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. David

I. Hughes (David.I.Hughes@glasgow.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All mice were bred in house at the University of Glasgow (UoG), University of Newcastle (UoN), Harvard Medical School (HMS), or

Saga University (SU). All experimental procedures conducted at UoG were performed in accordance with the European Community

directive 86/609/EEC and UK Animals (Scientific Procedures) Act 1986. All experimental procedures carried out at UoG, UoN, HMS

and SU were approved by local Animal Care and Ethics Committees, and conducted in accordance with local guidelines. All exper-

iments were carried out on adult mice of either sex (body weights 20-30 g). Mice used in experiments had not previously had any drug

treatments or procedures performed on them, unless otherwise stated. In all cases, experiments were conducted in wild-typeC57Bl6

mice, or transgenic lines derived by crossing fluorescently-labeled mouse reporter lines expressing Ai9 (RCL-tdTomato; Stock num-

ber 007909), Ai32 (Channelrhodopsin-2/YFP, Stock number: 012569), Ai34 (RCL-synaptophysin/tdTomato; Stock number 012570),

or Ai35D (RCL-Arch/GFP; Stock number 012735) from Jackson Laboratory, with PVCre (B6;129P2-Pvalbtm1(cre)Arbr/J, from Jackson

Laboratory, Stock number 008069; Petitjean et al., 2015), SplitCre or TrkBCreER lines, respectively (provided by Prof DD Ginty; see

Rutlin et al., 2014; Li et al., 2011). Cre recombinase expression in TrkBCreER;Ai35 mice was activated using administration of the

transgene-inducing agent tamoxifen (intraperitoneal injection of 1mg tamoxifen at p14; Rutlin et al., 2014).

METHOD DETAILS

Targeted whole-cell patch-clamp recordings in vitro

Spinal cord slices from wild-type, naive and nerve-injured PVCre;Ai9 mice were prepared using previously described techniques

(Graham et al., 2011). Briefly, animals were anaesthetized with ketamine (100 mg kg�1 I.P.) or isoflurane and decapitated. The

lumbosacral enlargement of the spinal cord was exposed using a ventral approach and rapidly removed, then placed in ice-cold

sucrose substituted artificial cerebrospinal fluid (ACSF) containing (in mM): 250 sucrose, 25 NaHCO2, 10 glucose, 2.5KCl, 1

NaH2PO4, 1 MgCl2 and 2.5 CaCl2. Transverse or parasagittal slices (from L3–L5 segments; 300 mm thick) were obtained using a

vibrating blade microtome (Leica VT-1000S, Heidelberg, Germany, or Microm HM650V, Fisher Scientific) and then transferred to

an interface incubation chamber containing oxygenated ACSF (118 mM NaCl substituted for sucrose). In some experiments, para-

sagittal or transverse slices were prepared with intact dorsal roots attached (Torsney and MacDermott, 2006). For transverse slices

prepared from nerve-injured mice, a notch was made with a pair of 25-guage needles on the edge of the ventral horn contralateral to

the nerve injury to allow identification of the contralateral and ipsilateral sides of the cord once the slice was transferred to the

recording chamber. Slices were allowed to equilibrate for 1 h at room temperature (22–24�C) prior to recording. Slices were trans-

ferred to a recording chamber and continually superfused (bath volume 0.4 ml; exchange rate 4–6 bath volumes per minute) with

ACSF constantly bubbled with Carbonox (95% O2 and 5% CO2) to achieve a final pH of 7.3–7.4. Recordings were obtained at either

room temperature (22–24�C) or elevated bath temperature (32–34�C) as indicated.

Neurons in laminae II and III expressing tdTomato (Ai9 lines) were first identified under fluorescence using either a rhodamine or

fluorescein filter set, respectively, and then visualized using near-infrared differential interference contrast optics (IR-DIC) for targeted

recordings. In experiments to label vertical cells in wild-typemice, blind whole-cell patch-clamp recordings weremade from neurons

in the dorsal part of lamina II, as previously described (Yasaka et al., 2010). Recordings were taken using Neurobiotin-filled pipettes

(0.2%; Vector Laboratories, Peterborough, UK) with a potassium gluconate-based internal solution containing (in mM): 135 potas-

sium gluconate, 6 NaCl, 2 MgCl2, 10 HEPES, 0.1 EGTA, 2 MgATP, 0.3 NaGTP, pH 7.3 (with KOH), as described previously (Hughes

et al., 2012). In some cases, an internal solution containing the following was used (in mM): 120 Cs-methylsulfonate, 10 Namethyl-

sulfonate, 10 EGTA, 1 CaCl2, 10 HEPES, 5 QX-314-Cl[2(triethylamino)-N-(2,6-dimethylphenyl) acetamine chloride], and 2Mg2+-ATP,

pH adjusted to 7.2 with CsOH, osmolarity 290 mOsm (Torsney and MacDermott, 2006). Recordings were established in whole-cell

voltage-clamp (holding potential �70 mV) using a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA, USA), digitized
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online (sampled at 10–20 kHz and filtered at 5–10 kHz), via an ITC-18 computer interface (Instrutech, Long Island, NY, USA) or a

Digidata 1440A digitiser (Molecular Devices), and stored on a Macintosh computer using Axograph X software (Kagi, Berkley, CA,

USA) or a PC using pClamp software (Molecular Devices). After obtaining the whole-cell recording configuration, series resistance,

input resistance and membrane capacitance were calculated based on the response to a 5 mV hyperpolarising voltage step (10 ms

duration) from a holding potential of �70 mV. These values were monitored at the beginning and end of each recording session and

data were rejected if values changed by more than 30%.

Action potential (AP) discharge was studied in current-clamp recording mode. The membrane potential recorded < 15 s after

switching from voltage to current clamp was designated as resting membrane potential (RMP) and subsequent recordings were

made from this potential. All reported membrane potential values have been corrected for the liquid junction potential. AP discharge

was studied by injecting a series of depolarizing step-currents (800 ms duration, 20 pA increments, delivered every 8 s) through the

recording electrode at a membrane potential of �60 to �85 mV (small bias currents of ± 10 pA were sometimes injected to achieve

this potential). During this protocol sustained depolarization was limited to�20mV, in regions of the voltage trace not containing APs,

to avoid cell damage. AP discharge was classified according to previously published criteria (Graham et al., 2007; Yasaka et al.,

2010). Briefly, tonic firing (TF) is characterized by sustained repetitive AP discharge throughout the depolarising step, initial bursting

(IB) is characterized by repetitive AP discharge at the beginning of the current stepwhich subsequently ceases and single spiking (SS)

is characterized by the discharge of one or two APs at the onset of the depolarising current step. This classification scheme also

identifies delayed firing (DF), where there is a significant delay between the onset of the depolarising step and AP discharge, and

reluctant firing (RF), where cells do not discharge APs even at the maximum depolarising current injection tested.

All analyses of AP properties were performed in Clampfit software (Molecular Devices), and for each cell the mean values are

reported from two identical protocol runs. Analysis of the frequency of AP discharge in tonic firing and initial bursting cells was

performed by detecting APs using a threshold-based method, and the mean instantaneous frequency was calculated for each

depolarising current step. Analysis of the characteristics of single APs was performed on the first AP to be elicited at rheobase

(the minimum depolarising current required to initiate AP firing). AP threshold was defined as the membrane potential when the

derivative of the AP rising phase reached 10 Vs-1. AP width was calculated as the time difference between AP threshold on the rising

and falling phases of the AP. AP height was defined as the difference between AP threshold and themaximumpositive peak, whereas

after hyperpolarisation (AHP) amplitude was defined as the difference between threshold and the maximum negative peak following

the AP. The latency of discharge was defined as the time between the onset of the depolarising current injection and the first AP

threshold. For tonic firing cells, the tonic rheobase was defined as the minimum depolarising current injected which resulted in

sustained AP firing for the duration of the current injection.

Voltage ‘sag ratio’ was determined from hyperpolarising current step responses (�20pA increments from a membrane potential

of �65mV) as the ratio of the peak amplitude of the negative voltage response over the steady-state response at the end of the

step (mean potential of the last 100ms of the hyperpolarising step response). Cells with a sag ratio of % 0.9 were considered to

display voltage sag. Subthreshold Ih current was revealed by a hyperpolarising step from a holding potential of �60mV to �90mV

for 1 s. Automated P/N leak subtraction was used to remove capacitive and leak currents, and the mean current was measured

for the last 50ms of the hyperpolarising step. Cells which displayed an inward current R 5pA (compared to baseline at

the �60mV holding potential) were considered to exhibit Ih current.

Photoactivation of PV cells: optogenetic studies ex vitro
The postsynaptic targets of PV neurons were studied in spinal cord slices from PVCre;Ai32 mice by recording optically evoked

excitatory postsynaptic currents (oEPSCs) and optically evoked inhibitory postsynaptic currents (oIPSCs). Full-field photostimulation

(PS) of PV-ChR2-expressing neurons was achieved using single light pulses (470nm wavelength, 1 ms, 15mW) delivered by a

preciseExcite CoolLED illumination system, which was collimated and coupled to the epifluorescence path of an Olympus BX51

microscope. All experiments were carried out under a 3 40, 0.8 numerical aperture (NA) water-immersion lens. Recordings were

undertaken as described above, but targeted to unidentified PV-ChR2 negative neurons within or dorsal to the YFP plexus. This

was confirmed by lack of photocurrent during PS in voltage clamp, at a holding potential of�70mV. Under these conditions all inward

PS-evoked currents were mediated by excitatory (CNQX sensitive – 10 mM) synapses. We also tested the bicuculline (10mM)

sensitivity of PS-evoked EPSCs as previous work has shown that bicuculline-sensitive PS-evoked EPSCs can arise from inhibitory

axoaxonic inputs onto primary afferents, releasing GABA to mediate presynaptic inhibition (Fink et al., 2014). In afferent terminals

where a relatively high equilibrium potential of chloride exists (�-40 mV), this causes primary afferent depolarisation (PAD), which

leads, in turn, to synaptic release of glutamate from the afferent terminal (at room temperature). This results in the generation of

an oEPSCwhich can be recorded in the postsynaptic neuron (at room temperature). We used this pharmacology to identify recorded

neurons with primary afferent inputs that received presynaptic inhibition regulated by PV-ChR2 neurons. Postsynaptic inhibition

mediated by PV-ChR2 neurons was also assessed by adjusting the holding potential to �40mV, which resulted in outward PS-

evoked currents that were insensitive to CNQX (10 mM), but could be abolished by co-application of strychnine (1 mM) and bicuculline

(10 mM). For temperature-dependence experiments bath temperature was controlled using a TC324B temperature controller (Warner

Instruments) and switched between room (23�C) and elevated temperature (34�C) during recordings. Experiments combining PS and

dorsal root stimulation used a suction electrode as described above. Strychnine, bicuculline, and CNQX were obtained from Sigma-

Aldrich. Group data from experiments assessing time dependence of optically-evoked PV cell-mediated presynaptic inhibition of
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dorsal root-evoked EPSCs was fitted with a Boltzmann function as follows: I/Imax = 1 –1/[1 + exp (V –V1/2)/k], where I/Imax = normal-

ized current, V = membrane potential, V1/2 = voltage at half-maximal activation (or inactivation), and k is the slope factor.

Tissue preparation for immunocytochemistry
For immunocytochemical studies on perfusion-fixed material, mice were overdosed with pentobarbitone (800 mg kg�1, i.p.) and

perfused transcardially with 4% depolymerized formaldehyde or 4% depolymerized formaldehyde with 0.2% glutaraldehyde, and

post-fixed in the same fixative for an additional 2 hours. Transverse or sagittal sections (60 mm thick) from the lumbar enlargement

(L3–L5) were cut on a vibrating blade microtome (VT1200 or VT1000S, Leica, Milton Keynes, United Kingdom), and were

subsequently incubated in 50% ethanol in phosphate buffer for 30 minutes. Sections were then incubated in cocktails of primary

antibodies for 72 h (see Key Resources Table for details), with primary antibody labeling being detected using species-specific

secondary antibodies conjugated to Alexa 488, Alexa 647 (both from Molecular Probes Inc., Eugene, OR, USA), Rhodamine Red

or Pacific Blue (both from Jackson Immunoresearch Laboratories, West Grove, PA, USA). All antibodies (primary and secondary)

used in immunofluorescence protocols were diluted in phosphate buffered saline (PBS) that contained 0.3M NaCl and 0.3% Triton

X-100, and incubations were carried out at 4�C. Sections were mounted on glass slides in Vectashield anti-fade mounting medium

(Vector Laboratories, Peterborough, UK).

Laser-scanning confocal microscopy was then carried out using either a Bio-Rad Radiance 2100 confocal microscope (Hemel

Hempstead, UK) equipped with a krypton–argon laser, or a Zeiss LSM710 confocal microscope with Argon multi-line, 405 nm diode,

561 nm solid state and 633 nm HeNe lasers, scanned through Plan-Apochromat x20, Plan-Apochromat x40/1.3 Oil DIC, or Plan-

Apochromat 63x/1.40 Oil DIC M27 lenses, with zoom between 1 and 2, and z-steps ranging between 0.3 and 1 mm. Confocal image

stacks were analyzed offline, using Neurolucida and Neurolucida Explorer software (MBF Bioscience, Williston, VT, USA). For image

presentation, the tonal range of individual channels was adjusted in projected stacks using Adobe Photoshop 10 (Adobe Systems,

San Jose, CA). No adjustments were made to gamma levels. For generation of figures to assess cell morphology, projections were

made of confocal image stackmosaics that included the cell body, dendrites and axon of each recorded neurons. These stacks were

viewed in Adobe Photoshop 10, where all labelled profiles for each cell were selected and pasted onto a black background, as

described previously (Yasaka et al., 2010).

SURGICAL PROCEDURES AND BEHAVIORAL TESTING

Transganglionic labeling of glabrous skin afferents
To label the central terminals of myelinated glabrous skin afferents, five naive PVCre;Ai9mice were anaesthetised with isoflurane, then

10 ml of 1% cholera toxin B subunit (CTb; product no. C-9903; Sigma-Aldrich, UK) was injected into the glabrous skin overlying the

promontory of the tarsus. These localized injections ensured that only glabrous skin afferents (from the tibial and common peroneal

nerve territories) were labeled. All animals recovered from the surgery and were perfused transcardially with 4% depolymerized

formaldehyde two days later, to allow for transport of CTb into the central terminals of the glabrous skin afferents. Spinal cord tissue

was extracted and processed for subsequent anatomical studies as described above.

Mouse model of chronic pain: peripheral nerve injury
To study spinal circuitry in allodynic animals, we carried out the spared nerve injury model (SNI; Decosterd and Woolf, 2000) in

PVCre;Ai9 mice. Specifically, a 2 to 3mm length of the tibial and common peroneal nerves was removed between two tight ligatures

with 7-0 Mersilk under general anesthesia. Great care was taken to ensure that the sural nerve was not manipulated. Behavioral

responses to mechanical stimulation of skin regions innervated by the sural nerve were tested using von Frey filaments with logarith-

mically incremental stiffness prior to, and up to 28 day after, surgery. The 50% paw withdrawal threshold was calculated by Dixon’s

nonparametric test (Polgár et al., 2005). Two-way ANOVA with Sidak’s post-test of multiple comparisons was used to determine

whether there was a significant reduction in withdrawal threshold of the ipsilateral hind-paw in the SNI animals at each time point,

with a p-value of less than 0.05 being accepted as significant. Mice showing clear, persistent evidence of altered responsiveness

to von Frey application were then prepared for either anatomical or electrophysiological studies.

A critical consideration for studying the electrophysiological properties of PV-expressing cells in allodynic mice is confident target-

ing of recordings to the region of the spinal dorsal horn containing axotomised axons from the tibial and common peroneal nerves.

The somatotopic arrangement of sensory fibers from constituent branches of the sciatic nerve in the dorsal horn has previously been

described in the rat (Swett andWoolf, 1985), however, no such data is available for the mouse. To determine the spinal distribution of

lesioned afferents in the SNI model, we examined the central labeling patterns for prostatic acid phosphatase (PAP) in six PVCre;Ai9

mice that had undergone surgery. In naive mice and rats, PAP labels non-peptidergic C-fibers, most of which also express fluoride

resistant acid phosphatase (FRAP) and IB4, and central labeling for these markers in axotomised afferents is known to be depleted

following peripheral nerve injury (Shehab and Atkinson, 1986; Shehab et al., 2004). By immunostaining for PAP in mice that had

undergone the unilateral spared nerve injury, we could delineate the central termination patterns for axotomised afferents. Four

weeks post-surgery, the animals were fixed by transcardial perfusion with 4% depolymerized formaldehyde. Transverse sections

(60 mm thick) from each spinal segment between L2 to S1 were cut on a vibrating blade microtome. For each segment, sections

were collected in series into three bottles, from which one bottle from each segment was then processed to reveal immunolabelling
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for PAP. Sections were incubated in goat anti-PAP (diluted 1:1000) for 72 hours, followed by donkey anti-goat secondary antibody

conjugated to Alexa 488 (Jackson ImmunoResearch, diluted 1:500) for 24 hours. All sections were viewed on a Nikon Eclipse E600

Microscope. Bright field images of all sections were taken using an Axiocam 4.8 then arranged in segmental order in accordance with

images from Allen Mouse Spinal Cord and Brain Atlas (Allen Institute for Brain science website). The distribution of PAP immunolab-

elling was then plotted onto corresponding outlines of each spinal segment of themouse cord using Photoshop CS (Adobe Systems,

San Jose, CA), and a composite representative montage was then generated.

For anatomical studies to look at the incidence of inhibitory axoaxonic contacts on to the central terminals of allodynic afferents,

four mice underwent injection of 10 ml of 1% CTb into the glabrous skin territory of the sural nerve at twelve days post-nerve injury to

specifically label myelinated afferents from skin regions showing hypersensitivity mechanical to punctate mechanical stimulation.

These mice were subsequently perfused (two days post injection) for anatomical studies. We also assessed the effect of SNI on

the incidence of inhibitory synaptic inputs on to PKCg-expressing interneurons in regions of the dorsal horn where axotomised

afferents terminate. Sagittal sections from the L4 and L5 spinal segments of naive and SNImice were prepared (n = 3mice per group).

Areas within the denervated regions of SNI mice were identified using the expression of PAP immunolabelling in adjacent sections

(see above and Figure S2). Selected sections were stained with a cocktail of antibodies to VGAT, PV, PKCg and gephyrin. Confocal

image stacks of these sections were analyzed to determine the incidence of inhibitory synaptic inputs on to the cell body and

dendrites of PKCg-expressing cells in lamina IIi of naive and SNI mice, and the proportion of inhibitory synaptic inputs derived

from PV terminals was also assessed.

The remaining SNI mice were prepared for targeted whole-cell patch-clamp recordings of tdTomato-expressing cells, as

described above. In these animals, recordings were only carried out in transverse slices of spinal cord prepared from L3 to L5 spinal

segments. To ensure we were recording from cells in appropriate regions of the dorsal horn where axotomised afferents terminate,

we only targeted cells the medial half of the caudal L3 segment, the medial two-thirds of the L4 segment, and the medial third of the

rostral L5 segment, based on the results generated frommapping the central arbors of afferents from the tibial and common peroneal

nerves. Recordings were made in the dorsal horn ipsilateral to nerve injury, and also in corresponding regions of the gray matter from

the contralateral dorsal horn for direct comparison.

Intraspinal AAV injections for silencing of PV cells
To determine the consequence of silencing the synaptic transmission mediated by PV-expressing cells on the spinal circuits respon-

sive to LTMR afferent input, we injected an adeno-associated virus (AAV) for Cre-dependent expression of tetanus toxin light chain

(AAV1.flex.TeLC-Flag; hereafter referred to as AAV.flex.TeLC) into the spinal dorsal horn of adult PVCremice, as described previously

(Foster et al., 2015). Mice were anesthetized with isoflurane and placed in a stereotaxic frame with 2 vertebral clamps attached to the

T12 and L1 vertebrae. The spaces between the laminae of T12–T13 and T13–L1 vertebrae were exposed, and a small incision was

made in the dura on the right side of the midline in each space. A hole was drilled through the lamina of the T13 vertebra on the right

hand side, and an incision was then made through the underlying dura. Intraspinal injections of 300 nL of AAV.flex.TeLC (2 3 108

particles/injection) were made through each of the three incisions in the dura at a depth of 300 m m below the spinal cord surface

and 400 mm lateral to the midline. Injections were made at a rate of 30 nL per min with a 10 mL Hamilton syringe attached to a glass

micropipette (inner tip diameter 40 mm) using a syringe pump (Pump 11 Elite; Harvard Apparatus, Holliston, MA). The locations of the

three injection siteswere chosen to correspond to spinal segments L3, L4 and L5, which receive afferents frommost of the lower limb.

All animals made an uneventful recovery.

Six days after intraspinal injections, animals were re-anaesthetized with isoflurane, then subjected to unilateral mechanical

stimulation (displacement) of hair shafts overlying the right hind-paw and lower limb with camel-hair brush, and simultaneous

application of a von Frey filament (filament 2.83, target force 0.07 g; North Coast Medical Inc., Gilroy, CA, USA) to the glabrous

skin of the hind-paw, for 2 minutes. Animals were returned to their home-cage upon completion of the stimulation protocol. The

mice were then re-anaesthetised and perfused 2 hours after the onset of the mechanical stimulation with 4% depolymerized

formaldehyde, as described previously. Control animals that had undergone identical unilateral stimulation, including PVCre

mice injected with AAV8.flex.eGFP (hereafter referred to as AAV.flex.eGFP; 2.6 3 108 particles/injection; n = 2), and naive

(un-operated) wild-type mice (n = 4), were also set up in parallel. An additional control group of naive (un-operated, unstimulated)

wild-type mice were also used (n = 2). Transverse sections (60 mm thick) of lumbar spinal cord sections from L3, L4 and L5 spinal

segments were processed for immunocytochemistry, as described above, with the contralateral ventral white matter notched for

side recognition. Sections were first incubated 0.03% H2O2 (to quench endogenous peroxidase activity), then in goat anti-cFOS

for 72 hours, biotinylated donkey anti-goat for 24 hours, then Avidin-horseradish peroxidase for 24 hours. Peroxidase labeling

was visualized using 3,30 5,50 diaminobenzidine (DAB) as a chromogen. The distribution of cFOS-immunolabelled cells in laminae

I-IV were then plotted on to representative templates of L3, L4 and L5 spinal segments (taken from Allen Brain Atlas). Sections

were viewed on a Nikon Elipse E600 microscope equipped with a Zeiss Axiocam, using a 40 3 oil-immersion lens to determine

the extent of labeling. The assessor was blinded to experimental animal group and side of stimulation. Three sections from each

spinal segment from each animal were analyzed. The mean incidence of cFOS-immunolabelled cells in laminae I, II outer (IIo), II

inner (IIi), III and IV was then compared between the various control groups using one-way ANOVA followed by Tukey’s test for

multiple comparisons.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data are reported in the text as mean values ± the standard error of the mean (SEM), unless otherwise stated. Statistical analyses

were performed in Prism or InStat software (GraphPad, San Diego). For comparisons of two groups paired or unpaired Student’s

t tests were applied as appropriate. For comparisons of more than three groups with one independent variable, a one–way

ANOVA with Tukey’s post-test for multiple comparisons was used, whereas a two–way ANOVA with Sidak’s post-test was used

for comparisons of more than three groups with two independent variables. For analysis of von Frey testing in SNI mice, a

repeated-measures two–way ANOVA with Sidak’s post-test was applied. Cumulative distributions of PV-positive and PV-negative

inhibitory synaptic contacts onto the cell bodies of PKCg neurons were compared between naive and SNI mice using the Kolmo-

gorov-Smirnov test. *p < 0.05, **p < 0.01, ***p < 0.001, ****P,0.0001. Brief details of statistical tests are also included in figure legends.
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 Aβ hair Aδ hair Glabrous A 

% of labelled LTMR terminals apposed to 

Homer punctum 

97.5 ± 0.5 

(97 & 98) 

97.0 ± 0.0 

(97 & 97) 
99.0 ± 1.0 

(98 & 100) 

 

Figure S1 (Relates to Figure 3). Axon terminals of myelinated LTMRs form synapses on to inhibitory PV-

expressing cells in laminae IIi and III. The dendrites of inhibitory PV-immunoreactive cells in laminae IIi and 

III (red; A, B, C), receive multiple contacts from the central terminals of myelinated LTMRs (green) such as 

those from Aβ hair afferents (labelled in the Split
Cre

;Ai34 mouse; A), Aδ hair afferents (labelled in the 

TrkB
Cre

;Ai35 mouse; B) and myelinated glabrous skin afferents (labelled with CTb injected into the glabrous 

skin of the hind-foot; C). Virtually all such contacts (>98%) were associated with a Homer1-immunoreactive 

punctum (grey), indicating the presence of an excitatory synaptic specialisation. This provides anatomical 

evidence that myelinated LTMRs provide monosynaptic inputs to inhibitory PV-immunoreactive cells in the 

spinal dorsal horn. n =2 mice per group. Values in table are presented as mean ± SEM (individual values). Scale 

bar = 2 µm 

  



 

 

Figure S2 (Relates to Figure 6 and S3). Somatotopic representation of axotomised afferent fibres in the 

mouse spinal dorsal horn following SNI: the effect of peripheral axotomy on tdTom expression in a 

PV
Cre

;Ai9 mouse. Prostatic acid phosphatase (PAP) immunolabelling (green) labels the central projections of 

non-peptidergic C-fibres predominantly, and is visualised as a continuous dense plexus of axon terminals in 

lamina II in naïve animals. Following peripheral nerve injury, axotomised afferents downregulate PAP, and the 

depletion of immunolabelling may be used to map the central terminations of lesioned afferents. (A) Using this 

approach in SNI mice, we find that axotomised axons from the tibial and common peroneal nerves occupy the 

medial aspect of the dorsal horn, primarily in spinal segments L3 to L5, with maximal depletion occurring from 

caudal L3 to rostral L5. Here, we show the pattern on PAP-immunolabelling in representative sections from the 

middle of L2, L3, L4 and L5 spinal segments ipsilateral to the peripheral nerve injury. (B) We used the pattern 

of PAP-immunolabelling to define regions of the dorsal horn where axotomised afferents terminate (dashed 

lines), and this allowed us to determine whether peripheral axotomy results in a depletion of tdTom-expressing 

cells (red) centrally. Sides ipsilateral and contralateral to peripheral nerve injury are denoted with i and c, 

respectively. (C) We find no evidence for a loss of tdTom-expressing cells in L4 territories of the tibial and 

common peroneal nerve 4 weeks after peripheral transection (P=0.32 by paired t-test; n = 4 animals, 2 sections 

analysed per animal; mean number (range) of tdTom cells = 46.0 (34-62) contralateral, 53.5 (41-73) ipsilateral). 

Scale bars = 100 µm 

  



 

 



 

Figure S3 (Relates to Figure 6). Peripheral nerve injury does not result in alterations of inhibitory 

synaptic inputs to PKCγ cells. We assessed the effect of SNI on the incidence of inhibitory synaptic inputs on 

to PKCγ-expressing interneurons in regions of the dorsal horn where axotomised afferents terminate. (A and B) 

Representative images of cell bodies of PKCγ-expressing interneurons (red) from naive mice (A) and SNI mice 

(B) show the identical patterns of association with profiles immunolabelled for VGAT (grey), PV (green) and 

gephyrin (blue), with several examples of inhibitory PV boutons forming synaptic inputs on to the PKCγ cells 

(arrowheads). Insets show the relationship between inhibitory terminals and gephyrin puncta of the outlined 

examples in more detail. (C and D) The dendrites of PKCγ-expressing interneurons in both naïve (C) and SNI 

mice (D) receive multiple inhibitory synaptic inputs, with examples of those derived from PV terminals 

highlighted (arrowheads). (E) To determine the extent of inhibitory input on to the soma and dendrites of PKCγ 

cells, we reconstructed the morphology of individual cells from naïve and SNI mice then plotted all inhibitory 

synaptic inputs on to these traces. (F-H) We found no significant differences in the mean number of inhibitory 

synaptic contacts derived from PV-expressing interneurons per PKCγ soma (F; P=0.76 by unpaired t-test), the 

distribution of the number of PV interneuron-derived inhibitory synaptic contacts per PKCγ soma (G; P=0.9996 

by Kolmogorov-Smirnov test) or the mean number of PV interneuron-derived inhibitory synaptic contacts per 

100µm of dendrite (H; P=0.40 by unpaired t-test) between naïve and SNI mice. (I-K) Similarly, we find no 

significant differences in the mean number of inhibitory synaptic contacts derived from interneurons that do not 

express PV per PKCγ soma (I; P=0.96 by unpaired t-test), the distribution of the number of these PV-negative 

inhibitory synaptic contacts per PKCγ soma (J; P=0.9888 by Kolmogorov-Smirnov test) or the mean number of 

these PV-negative inhibitory synaptic contacts per 100µm of dendrite (K; P=0.81 by unpaired t-test) between 

naïve and SNI mice. Bars in F, H ,I & K show means from all animals, individual points show means for each 

animal. Data in G & J are means ± SEM. For analysis of contacts onto PKCγ cell bodies, 3 mice were analysed 

per group (naïve and SNI), with n=21 cells per mouse (63 PKCγ cells in total). For analysis of contacts onto 

PKCγ cell dendrites, mean number (range) of PKCγ cells analysed = 7.7 (6-10) for naïve and 7 per mouse for 

SNI, from 3 mice per group. Scale bars (µm): A and B = 5: C and D = 2; E = 20 

  



 

 

Mouse strain PV
Cre

;Ai9 PV
Cre

;Ai9 PV
Cre

;Ai9 

 Naïve 
SNI 

(contralateral) 

SNI 

(ipsilateral) 

Number of cells analysed 21 16 20 

Mean resting membrane potential 

mV ±SEM 
-68.3 ± 1.6 -71.8 ± 2.6 -68.5 ± 2.5 

Mean whole-cell capacitance 

pF ±SEM; (±SD) 
15.4 ± 1.5 12.8 ± 1.8 15.2 ± 2.0 

Mean input resistance 

MΩ ±SEM 
991 ± 116 919 ± 127 856 ± 183 

Incidence of firing pattern @ -60 to 65mV 

TF = tonic firing; IB = Initial bursting; 

SS = single spiking (# of cells) 

TF: 71% (15) 

IB: 29% (6) 

TF: 87.5% (14) 

IB: 12.5% (2) 

TF: 75% (15) 

IB: 10% (3) 

SS: 10% (2) 

Mean rheobase current 

pA ±SEM 
53.8 ± 7.2 38.8 ± 5.6 62.5 ± 14.0 

Mean ‘tonic rheobase’ current 

pA ±SEM (# cells) 
68.0 ± 13.0 (15) 59.3 ± 9.1 (14) 94.7 ± 13.9* (15) 

Mean tonic firing frequency (at 100pA) 

Hz ±SEM (# cells) 
44.4 ± 3.0 (14) 56.4 ± 6.6 (14) 35.4 ± 4.1* (14) 

Incidence of voltage sag and/or Ih 

subthreshold current 

87.5% 

(14/16 cells 

tested) 

100.0% 

(14/14 cells 

tested) 

90.0% 

(18/20 cells tested) 

Mean Ih amplitude 

pA ±SEM (# cells) 
-30.4 ± 13.6 (8) -56.5 ± 19.0 (7) -40.5 ± 10.1 (12) 

AP thresholds at rheobase 

pA ±SEM 
-42.2 ± 0.6 -46.0 ± 1.2 -44.3 ± 1.4 

AP peak amplitude (mV) 

pA ±SEM 
37.2 ± 2.0 48.5 ± 2.7 45.9 ± 2.5 

AP base width (ms) 

ms ±SEM 
2.24 ± 0.13 1.95 ± 0.11 2.11 ± 0.19 

Peak AHP amplitude (mV) 

mV ±SEM 
-33.4 ± 1.0 -38.5 ± 1.8 -35.0 ± 1.4 

 

Table S1 (Relates to Figure 1 and Figure 6). Summary of the main electrophysiological properties of PV-

expressing cells in naïve and allodynic mice. Recordings in naïve animals were made from sagittal spinal cord 

slices, whereas recordings from SNI animals were made from transverse spinal cord slices to allow direct 

comparison of cells recorded ipsilateral and contralateral to the lesioned side. *P<0.05 ipsilateral vs. 

contralateral by unpaired Student’s t-test for tonic rheobase and 2-way ANOVA with Sidak’s post-test for tonic 

firing frequency at 100pA current injection. 

 

 

 

 



 

Primary 

afferent type 

# of axo-axonic 

contacts/terminal 

# of PV axo-axonic 

contacts/terminal 

% of axo-axonic 

contacts that are PV 

% of terminals with 

PV contact(s) 

Aβ hair 
3.2 ± 0.1 

(3.1 – 3.3) 

1.2 ± 0.1 

(1.0 – 1.5) 

38.2 ± 4.2 

(30.0 – 43.9) 

70.7 ± 4.7 

(62.0 – 72.0) 

Aδ hair 
3.0 ± 0.2 

(2.7 – 3.2) 

1.7 ± 0.1 

(1.4 – 1.9) 

54.8 ± 2.3 

(52.0 – 59.4) 

81.8 ± 2.2 

(78.7 – 86.0) 

Glabrous A-

fibre 

3.1 ± 0.01 

(3.12 – 3.15) 

0.8 ± 0.2 

(0.5 – 1.1) 

25.9 ± 5.7 

(15.4 – 35.0) 

54.0 ± 9.8 

(36.7 – 70.7) 

C-LTMR 
3.2 ± 0.1 

(3.1 – 3.4) 

0.08 ± 0.01 

(0.06 – 0.10) 

2.7 ± 0.4 

(1.9 – 3.1) 

8.2 ± 1.1 

(6.0 – 9.3) 

 

Table S2 (relates to Figure 2). Parvalbumin interneuron-derived axoaxonic inhibitory input to defined 

classes of primary afferent fibres. Values are means ± SEM (range) from 150 primary afferent terminals per 

animal (from 3 mice for each primary afferent type). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  Aβ hair Aδ hair 
S

o
m

at
a # of contacts / inhibitory PV soma 

1.3 ± 0.5 

(0.3 – 1.7) 

0.8 ± 0.4 

(0.3 – 1.5) 

% of total myelinated LTMR input onto inhibitory PV 

somata 

20.9 ± 8.7 

(3.6 – 30.2) 
15.3 ± 8.2 

(4.2 – 31.3) 

D
en

d
ri

te
s # of contacts / 100µm inhibitory PV dendrite 

4.5 ± 1.6 

(2.0 – 7.4) 
4.6 ± 1.2 

(2.4 – 6.3) 

% of total myelinated LTMR input onto inhibitory PV 

dendrites 

28.5 ± 8.6 

(12.5 – 41.9) 
35.2 ± 3.6 

(28.2 – 40.2) 

 

Table S3 (Relates to Figure 3). Summary of Aβ- and Aδ-hair LTMR innervation of inhibitory PV cells. 

Aβ- and Aδ-hair afferent terminals were labelled in Split
Cre

;Ai34 and TrkB
CreER

;Ai35 mice, respectively (n = 3 

mice per group), and all myelinated LTMR inputs were labelled by VGLUT1 immunoreactivity. Inhibitory PV 

cells were identified by co-expression  of PV and Pax2 immunoreactivity. Values are given as mean ± SEM 

(range). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  Naïve SNI 
S

o
m

at
a 

# of PV inhibitory synapses / PKCγ soma 
4.1 ± 0.5 

(3.1 – 4.7) 

3.9 ± 0.5 

(2.9 – 4.6) 

# of non-PV inhibitory synapses / PKCγ soma 
16.1 ± 1.3 

(14.0 – 18.6) 
16.0 ± 1.6 

(14.3 – 19.2) 

% total inhibitory input onto PKCγ somata derived from 

PV inhibitory synapses 

19.1 ± 1.4 

(17.5 – 21.9) 
17.7 ± 2.3 

(14.4 – 22.2) 

D
en

d
ri

te
s 

# of PV inhibitory synapses / 100µm PKCγ dendrite 
7.1 ± 1.1 

(5.3 – 9.1) 
6.0 ± 0.4 

(5.3 – 6.7) 

# of non-PV inhibitory synapses / 100µm PKCγ dendrite 
22.1 ± 2.5 

(17.8 – 26.4) 
24.3 ± 3.2 

(19.7 – 30.4) 

% total inhibitory input onto PKCγ dendrites derived 

from PV inhibitory synapses 

24.4 ± 2.4 

(21.0 – 29.0) 
20.2 ± 2.4 

(15.5 – 23.7) 

Total dendritic length analysed / PKCγ cell (µm) 
168.0 ± 21.4 (62.6 - 

406.3) 
171.1 ± 24.1 

(51.0 – 328.5) 

 

Table S4 (Relates to Figure 6 and Figure S3). Summary of inhibitory innervation of PKCγ cells in naive 

and SNI mice. n = 3 mice per group. For analysis of inputs onto PKCγ somata, 63 cells per group were 

analysed (21 cells per animal per group). For analysis of inputs onto PKCγ dendrites, a subset of these cells 

were partially reconstructed (n = 23 cells for naïve mice, range 6-10 cells per animal; 21 cells for SNI mice, 7 

cells per animal). No significant differences were detected between naive and SNI mice for any of the 

parameters listed (see main text for details). Values are given as mean ± SEM (range). 
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