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Supplementary Note 1: Evaluation and comparison of prediction accuracies for our reported
PPI- and direct PPI-based SIMs, the STRING database, the FpClass method, and the

generalized interolog mapping method.

In this study, we compared our SIM with the STRING database', the FpClass method?, and the
generalized interolog mapping method® using prediction accuracies (Fig. 2a, Supplementary Fig. 4,
and Supplementary Table 4) and their features (Supplementary Table 3). The STRING database (v.
10.0) contained both known and predicted PPIs assessed by confidence scores. To obtain STRING PPI
data of MPs, we first downloaded human protein network data (9606.protein.links.v10.txt) from the
STRING database and then filtered by considering both proteins of each PPI recorded in the UniProt
complete proteome database. Among 8,472,740 STRING PPIs (scores ranging from 0.15 to 0.99), we
assembled 770,140 STRING PPIs for 2,594 MPs (Supplementary Fig. 44a). To avoid bias in
evaluating and comparing the predictive power of any methods, we used the same criterion to curate
the standard positive (including reported PPIs and direct PPIs derived from five public databases) and
negative sets (protein pairs with RSSgr < 0.4 or RSScc < 0.4) for each method; notably, for our SIM
and generalized interologs, all positive cases of each MP were excluded in advance of the PPI templates
being selected. Among 18,827 reported PPIs and 2,049 direct PPIs of 2,594 MPs in five public
databases, we observed that the overlaps of these PPIs between the STRING database and the public
databases were 57% (10,774/18,827) and 76% (1,549/2,049), respectively (Supplementary Fig. 44a).
To assess the performance of STRING, we needed a group of known interactions as positives for 2,594
MPs, and all elements in this set could be observed among 770,140 STRING PPIs. Here, 10,774
reported PPIs and 1,549 direct PPIs were considered as the total numbers of positive sets for evaluating
the predictive power of STRING. Finally, we utilized the precision, recall, F2 measures, and ROC
curves to compare the predictive performances of MP-interacting proteins by using the positive and
negative sets across a broad range of thresholds. For example, the recall of STRING was 0.39

(4,234/10,774) when the combined score was set to 0.7 (Supplementary Fig. 44b). Similar procedures
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were used in assessing the performances of the other methods.

FpClass is a data mining-based method for proteome-wide PPI prediction. First, we generated a
total of 182,998,918 paired protein sets between 2,549 MPs and 70,548 proteins of the complete human
proteome from UniProt and then calculated their probabilities (ranging from 0 to 1) using the FpClass
scoring method. Based on the suggested threshold (probability > 0.47), 43,417 predicted PPIs of MPs
were assembled. The generalized interolog mapping method was extended from the interolog
mapping* that assumed a conserved PPI between a pair of proteins that have interacting homologs in
other organisms. For the generalized interolog mapping method, we identified 3,157,311 and
1,313,834 predicted PPIs for MPs using the reported PPIs and direct PPIs as PPI templates when the
joint E value was set to 1077, respectively.

The prediction accuracy shows that the Sg;;, approach achieved AUCs of 0.924 and 0.932 in
positive sets of MP reported PPIs and MP direct PPIs, respectively, outperforming the FpClass (AUCs
of 0.811 and 0.929), STRING database (AUCs of 0.824 and 0.921), and generalized interologs (AUCs
of 0.793 and 0.835) (Fig. 2a, Supplementary Fig. 4b,c, and Supplementary Table 4). Moreover,
reported PPI-based (Sg;y > 3.6) and direct PPI-based (Sg; > 3.7) SIMs were more accurate for
predicting PPIs of different MP types (i.e., enzymes, transporters, miscellaneous, and unclassified)
than STRING (high confidences with score > 0.7), FpClass (probability > 0.47) and generalized
interologs (joint E value < 10~°) regardless of whether positive sets of all MP PPIs and MP direct PPIs
were used. Please note that the STRING database, the FpClass method, and the generalized interolog
mapping method included the predictions of both MP and non-MP PPIs; conversely, our method
emphasized the characteristics of MPs and was used only to predict MP PPIs. Therefore, the better
performance of our method compared with the others was only for MP PPI prediction.

In comparison to the STRING, FpClass, and generalized interologs, our Sg;,, approach has
several improved features for predicting MP PPIs even though the other sources considered similar

features (Supplementary Table 3). For example, the cytoplasmic region of an integral MP plays a key
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role in conveying signals into cells by interacting with other proteins, including direct binding and
phosphorylation in intracellular signaling pathways. In contrast to FpClass, which considers all
domains of each protein, our SIM sequentially used the potential MP interacting regions (i.e.,
cytoplasmic regions) to select similar templates by searching known PPIs based on Sj.¢ and Sgy;.

According to our previous work®, S,,,x Was able to avoid the influence of the protein family size and
protein length to improve the PPI prediction accuracy of the homology-based approach (e.g.,
generalized interologs). In summary, SIM achieved the best prediction accuracy for predicting MP
PPIs even without regarding gene co-expression, pathway and functional annotations, genomic context

associations, post-translational modification, and physicochemical properties.



Supplementary Note 2: Characteristics and performance analysis of reported PPI- and direct

PPI-based SIMs and CaMPNets.

Using the positive sets, i.e., 18,827 MP reported PPIs (or 2,049 MP direct PPIs) in humans derived
from the reported PPI set (or direct PPI set), and the negative set, we compared the PPI prediction
accuracies of reported PPI-based and direct PPI-based SIMs. The result shows that these two Sg;p
approaches using the positive set of MP direct PPIs achieved similar AUCs (0.944 and 0.932), lightly
outperforming the reported PPI-based Sg;), approach using MP reported PPIs as the positive set (AUC
= 0.924, Supplementary Fig. 4b). Moreover, both Sg;,, approaches also had greater AUCs than six
individual or combined scoring methods (Supplementary Fig. 4a).

The similar performances between the reported PPI- and direct PPI-based Sg;), approaches can
be explained by the observation that 84% of other PPIs were annotated by only one interaction type
and were given a penalty for evaluating the x; value of our S;,,; scoring method, compared with 19%
of the direct PPIs (Supplementary Fig. 5a). We further examined the predicted PPI numbers for
reported PPI-based and direct PPI-based Sg;), approaches and observed that (1) the predicted PPI
number for the reported PPI-based Sg;, approach was higher (4.9-fold, 130,952/26,948) than that for
the direct PPI-based Sg;;, approach; furthermore, (2) the reported PPI-based Sg;, approach could
additionally identify the interacting proteins of 880 (34%) MPs in comparison to the direct PPI-based
Ssim approach (Supplementary Fig. Sb). For example, the interacting proteins ERBB2/EGFR for
CHRNAO9 could be identified only by using the reported PPI-based Sg;) approach and were
experimentally validated by IP and FRET assays in this work.

Additionally, we identified reported PPI- and direct PPI-based MPP community-regulated
pathways to obtain two global maps of the CaMPNet patterns between 994 overlapping MPP
communities and 65 cancer-related pathways across 15 cancers. These two heat maps of meta-z-scores
for reported PPI- and direct PPI-based community-regulated pathways display high positive

correlation (R = 0.632, P < 2.2 x 107'°, Pearson test, Supplementary Fig. 18¢ and Supplementary
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Data 3 and 4). We observed that the top-sized clusters for 1,862 reported PPI-based MPP communities
and 1,009 direct PPI-based MPP communities across these cancer-related pathways presented similar
associations between communities and pathways in 15 cancers (Fig. 3¢ and Supplementary Fig. 20).
Considering the above results, we simultaneously present both reported PPI- and direct PPI-based

SIMs to generate both resources of reported PPI- and direct PPI-based CaMPNets.



Supplementary Note 3: Biological function and performance analysis of our SIM.

In contrast to STRING (high confidence with scores > 0.7), FpClass (probability > 0.47), and
generalized interologs (joint £ value < 1077°), our analysis suggested that the precision of the developed
method (Sg;y > 3.6; Supplementary Fig. 6a) was higher when the numbers of true-positive PPIs
ranged from 4,000 to 5,000 (Supplementary Fig. 6b). To characterize the biological functions of our
predicted PPIs, we first evaluated the joint relative specificity similarities (RSS)>° for Gene Ontology
(GO) cellular components (CCs) and biological processes (BPs) of the predicted PPIs, as two
interacting proteins are often located in adjacent cellular locations and are involved in similar cellular
processes. The Sg;, values of the PPI candidates are highly correlated with their respective joint RSS
scores (R =0.93, P =1 X 1073, Pearson test), and the top 1% of the PPI candidates with Sg;,, > 3.6
represent high functional similarities (mean > 0.56; Supplementary Fig. 7a). We further considered
a PPI candidate to be an essential PPI candidate when both of their genes were annotated as being
essential in the Database of Essential Genes’. When comparing correlations of the percentage of
essential PPI candidates between Sg;), values and STRING combined scores, our method (R = 0.86, P
=4 x 107°, Pearson correlation, ¢-test) outperforms STRING (R = 0.19, P = 0.36, Pearson correlation,
t-test; Supplementary Fig. 7b).

Next, we investigated relationships between the numbers of interacting proteins and the annotated
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for MPs to examine whether the
predicted PPIs could uncover new involved processes for MPs. Interestingly, our predicted PPIs (R =
0.83) illuminated more undiscovered regulated pathways than STRING (R = 0.50) and generalized
interologs (R = 0.39), excluding the FpClass (R = 0.84), and were even better than the reported PPI
data (R = 0.77; Supplementary Fig. 7¢). Moreover, more than 50% of MPs in five groups could be
annotated with at least one new interacting protein (Sg; > 3.6) and one novel pathway annotation,
especially for the transporter group. In addition, to quantify the association and dissociation of MPs

with interacting protein candidates in time and space, we collected and assessed correlations between
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their expression profile in 7,208 gene expression data sets (=3 samples) from the Gene Expression
Omnibus database (GEO; Supplementary Fig. 7d). Similar to the reported PPIs, the predicted PPIs
are co-expressed frequently, implying that predicted PPIs are often simultaneously active or inactive

in time and space (Supplementary Fig. 7e).



Supplementary Note 4: Investigation of functional connectivity and genomic alteration between
MPs and binding partners using the experimental data of the loss-of-function screens from the
Project Achilles data and the mutation and copy-number alteration (CNA) data of TCGA from
the cBioPortal database.

To investigate the functional connectivity between the MPs and their predicted binding partners, we
first downloaded the experimental data (ceresgeneeffects.csv) of the loss-of-function screens from the
Project Achilles data® (version: Achilles Avana Public 17Q4 v2,

https://depmap.org/portal/download/all/), which contain the gene-knockout effect profiles of 17,670

genes from 341 cancer cell lines. In these profiles, each gene was assigned a CERES score® (also called
dependency score) to reflect genetic dependency in each cell line. We selected for analysis cancer cell
lines that contained more than five samples, were classified as carcinomas, and were one of the 15
cancer types used in CaMPNets. Finally, 155 cancer cell lines representing nine cancer types were
chosen from the Project Achilles data, including 19 bladder urothelial carcinoma (BLCA), 26 breast
invasive carcinoma (BRCA), 25 colon adenocarcinoma (COAD), 8 head and neck squamous cell
carcinoma (HNSC), 12 uterine corpus endometrial carcinoma (UCEC), 16 kidney cancer (containing
kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP)), 12 liver
hepatocellular carcinoma (LIHC), 26 lung adenocarcinoma (LUAD), and 11 lung squamous cell
carcinoma (LUSC) cell lines.

Next, we asked whether MPs and their binding partners exhibited mutual exclusivity or co-
occurrence of loss-of-function effects across the 155 cell lines (Supplementary Fig. 8a). By using the
odds ratio and Fisher's exact test’!!, we determined whether mutual exclusivity or co-occurrence was
exhibited by each PPI of four sets, including 68,059 and 14,011 MP predicted PPIs identified by
reported PPI- and direct PPI-based SIMs, respectively, and 16,334 MP reported PPIs and 1,851 MP
direct PPIs as the positive controls. Here, we only analyzed PPIs/protein pairs in which each gene had

a CERES score. Each gene with CERES scores <-0.2, -0.4, -0.6, -0.8, or -1.0 (suggested threshold in
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Project Achilles Data Portal) is respectively considered to have a significant gene-knockout effect in
each cell line. The genes of each PPI/protein pair must both either pass or not pass the given thresholds
to be considered a co-occurrence of loss-of-function effects in a cell line.

To further examine the statistical significance of mutual exclusivity and co-occurrence of the loss-
of-function effects for MPs and their binding partners (i.e., predicted and positive sets), we generated
1,000 random sets by randomly selecting 68,059 (or 14,011) pairs from all possible combinational
pairs, i.e., 2,594 MPs X 8,497 (or 3,115) binding partners, and then determined their mutual exclusivity
and co-occurrence in each cancer type or in the group of 155 cell lines. Our results show that the
percentages of PPIs having significant mutual exclusivity (or co-occurrence) for predicted and positive
sets in the 155 cancer cell lines and nine cancer types were significantly higher than those of random
chance (empirical P value < 0.05; Supplementary Fig. 8b), except for a few cases (percentage = 0)
when the thresholds were set to -0.8 or -1.0 in LIHC and UCEC. We found that loss-of-function effects
between the MPs and their binding partners were more likely to be a co-occurrence than a mutual
exclusivity; moreover, the direct PPI-related sets and positive PPI-related sets usually presented higher
percentages than the corresponding reported PPl-related sets and predicted PPI-related sets,
respectively. However, the percentages of MP PPIs with co-occurrence or mutual exclusivity for
reported and direct PPI-related sets in the nine cancers or in the 155 cell lines were very low (<8.29%),
especially when the threshold of CERES score was set to -1.0. In comparison to the cell line numbers
(8-26) of nine cancer types, we also observed that the median values of cell line numbers for the co-
occurrence MP PPIs (P < 0.05, Fisher's exact test), whose both genes have significant gene-knockout
effects, ranged from 1 to 8, indicating that the co-occurrence MP PPIs were not frequently shared by
multiple cell lines (Supplementary Fig. 8¢). Taken together, these results suggest that the two genes
of the positive/predicted MP PPIs tend to exhibit co-occurrence of loss-of-function effects in the nine

cancer types but only to a limited extent.
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To link the predicted PPIs with the development of cancer, we first downloaded mutation and
copy-number alteration (CNA) data of TCGA from the cBioPortal>? database
(https://www.cbioportal.org/datasets). In these data, the mutation data are obtained from whole exome
sequencing, and the levels of copy number are derived from the copy-number analysis algorithm,
GISTIC". For CNAs in each gene, we considered deep deletions and amplifications as biologically
relevant. Additionally, 10 types of mutations (missense, nonsense, nonstop, frameshift insertion or
deletion, in-frame insertion or deletion, splice region or site, and translation start site) were also
considered as biologically relevant for individual genes. For 15 cancer types used in this study, we
collected a total of 6,354 samples that contain CNA and/or mutation data, including 408 BLCA, 1,070
BRCA, 36 CHOL, 592 COAD/READ (samples of two types were merged as one set in cBioPortal),
517 HNSC, 65 KICH, 509 KIRC, 283 KIRP, 367 LIHC, 511 LUAD, 487 LUSC, 489 PRAD, 497
THCA, and 523 UCEC samples.

By using the odds ratio and Fisher's exact test, we determined whether mutual exclusivity or co-
occurrence of genomic alterations’!! was exhibited by each PPI of four sets, including 78,569 and
16,269 MP predicted PPIs identified by reported PPI- and direct PPI-based SIMs, respectively, and
17,203 MP reported PPIs and 1,851 MP direct PPIs as the positive controls. Here, we only analyzed
PPIs/protein pairs whose two genes could be mapped from UniProt accession number to the Entrez
Gene ID used in TCGA data. To further examine the statistical significance of the functional
connectivity between MPs and their binding partners (i.e., predicted and positive sets), we generated
1,000 random sets by randomly selecting 78,569 (or 16,269) pairs from all possible combinational
pairs, i.e., 2,594 MPs x 10,284 (or 3,985) binding partners, and then determined whether they
exhibited mutual exclusivity or co-occurrence of genomic alterations for each cancer.

Our results show that the percentages of MP PPIs with significant co-occurrence/mutual
exclusivity (P < 0.05, Fisher's exact test) for our predicted/positive-related sets in 14 cancer types were

significantly higher than those of random chance (empirical P value < 0.05; Supplementary Fig. 9a);
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moreover, the direct PPI-related sets and positive PPI-related sets usually presented higher percentages
than the corresponding reported PPI-related sets and predicted PPI-related sets, respectively. In
comparison with mutual exclusivity, our results demonstrate that the genomic alterations between the
MPs and their binding partners were more likely to be a co-occurrence. Notably, the reported and direct
PPI-related sets in most cancers show limited co-occurrence or mutual exclusivity (<20%), except for
UCEC and COAD/READ. In comparison to other cancers, we found that 36% (61/169) and 12%
(21/169) of patients with > 2,000 genes that have CNAs or mutations belong to UCEC and
COAD/READ, whose sample sizes are 8% (523) and 9% (592) of 6,354 samples, respectively
(Supplementary Fig. 9b,c¢). This observation may explain why gene pairs of MP PPIs in these two
cancer types have a relatively high chance occurring as either a co-occurrence or a mutual exclusivity.
Similar to (but slightly better than) our observations on the loss-of-function screens from the Project
Achilles data, these results suggest that the two genes of the MP positive/predicted PPIs tend to exhibit

co-occurrence of genomic alterations in most of the 15 cancer types but to a limited extent.
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Supplementary Note 5: Analysis of MP-specific PPI network properties.

To investigate the MP-specific PPI network properties, we performed two analyses: (1) an analysis of
the hub properties of MPs and other proteins (called non-MPs) in the PPI networks and (2) an analysis
of the topological properties and functional enrichment of the MP-focused and non-MP subnetworks.
In the first analysis, an in silico approach'*!> that mimics the effect of specifically removing (attacking)
hubs in the given network on the characteristic path length, that is, the average shortest path length
between node pairs, of the main component of the network was used. Here, the proteins with degrees
within the top 25% of all proteins are considered hubs'® of these human networks. Consistent with

previous studies!*!>17

, continuously removing all hubs, beginning from the most connected hubs, had
a significantly more pernicious effect on the network integrity than attacking random proteins
(Supplementary Fig. 10). The effects on the characteristic path length of reported PPI-based
(Supplementary Fig. 10a) and direct PPI-based (Supplementary Fig. 10b) networks on gradual hub
(or random node) removal are similar to the high-confidence and filtered high-confidence networks in
yeast proposed by Bertin et al'’”. We further observed that MP (blue) and non-MP (red) hubs had
distinct effects on the overall topology of reported PPI- and direct PPI-based networks when removed
from the network. In comparison to the removal of non-MP hubs presenting properties such as
party/date hubs, the removal of MP hubs is more like attacking random proteins. This observation can
be explained by the fact that the MPs are often located in the periphery but not at the center of
biological networks, reflecting the removal of MP hubs having limited effects on the network integrity.

Second, we further derived the MP-focused subnetwork, which extended one layer of PPIs and
proteins in 2,594 MPs, and the non-MP subnetwork, which excluded all MPs and their PPIs, from the
whole network. These networks/subnetworks possessed scale-free network characteristics with degree
exponent (y) values ranging between 1.42 and 1.78 (Supplementary Fig. 11a). Additionally,

functional enrichment analyses of the KEGG pathways and cellular components of gene ontology for

all proteins of these networks/subnetworks were performed using a hypergeometric test (P value <
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0.05; Supplementary Fig. 11b,c¢). The results indicate that the MP-focused subnetworks included
proteins that were involved in the pathways relevant to cell survival, cell adhesion, and immune
response (e.g., PI3K-Akt signaling, focal adhesion, and cytokine-cytokine receptor interaction) and
were primarily located in the plasma membrane, cytosol, and endosome. In contrast, proteins of the
non-MP subnetworks mainly participated in proteolysis- and central dogma-related pathways and were
found in the nucleus and cytosol. Taken together, these results suggest that MPs, which are mainly
located in the periphery but not at the center in the cellular interactome, exert limited effects on network

integrity and play roles in cell communication and immune responses on the cell surface.
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Supplementary Note 6: Characteristics of MPP communities.

Among 1,996 reported PPI-based and 1,105 direct PPI-based MPP communities with at least one
binding partner, we observed that most MPP communities (85%-95%) contained at least 50% of non-
MP proteins (Supplementary Fig. 12). Please note that 1,862 reported PPI-based MPP communities
(or 1,009 direct PPI-based MPP communities) could be associated with at least one cancer-related
pathway in 15 cancers. To evaluate the overlap between the binding partners identified for different
MPs, we used the Jaccard similarity coefficient (JSC) to measure the overlap between any two MPP
communities (i.e., an MP with its binding partners) and select the largest overlapping community for
each MPP community. Approximately 35% of reported PPI-based communities and 48% of direct
PPI-based communities had JSC values of at least 0.6 (Supplementary Fig. 13a), and we found that
79% (or 86%) of MPs in these reported PPI-based (or direct PPI-based) communities and their
corresponding MPs belonged to the same MP families in comparison to those (58% for reported PPI-
based or 69% for direct PPI-based) of other communities with JSC values < 0.6 (Supplementary Fig.
13b). Similar to our observations (Fig. 2b,c and Supplementary Fig. 15), these data imply that MPs
in a family often share their interacting proteins to functionally compensate for each other in the

regulation of specific cancer-regulated pathways.
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Supplementary Note 7: CaMPNets for pan-cancer analysis,

To investigate the roles of CaMPNets in cancer-wide landscape and cancer hallmarks, we built the
CaMPNet-based networks using identified MPP community-regulated pathways. For the hubs of the
pan-cancer network, we observed that the lymphocyte homing receptor CD44 community, involved in
50 cancer-related pathways, had the highest mean meta-z-score, which might provide clues as to why
CD44 is considered a cancer stem cell marker in several malignancies of hematopoietic and epithelial
origin and how CD44 can regulate focal adhesion kinase to promote cell migration'®. Almost half of
the community hubs belonged to receptors, especially kinase receptors (14%) and G protein-coupled
receptors (GPCR) (12%), and similar results for direct PPI-based communities were also observed
(Supplementary Fig. 19b). For instance, we show that the dysregulation of epidermal growth factor
receptor (EGFR, kinase) plays an important role in the initiation, progression, and metastasis of various
epithelial tumors based on its community, which engages 58 pathways in the pan-cancer network (Fig.
3b).

To obtain a global map of the CaMPNets patterns, we clustered the enrichment-associated meta-
z-scores of MPP communities across all 65 cancer-related pathways based on hierarchical clustering
using the average agglomeration method with correlations as the distance metric (Supplementary Data
3 and 4). Among the four largest clusters with > 100 reported PPI-based MPP communities, the cluster
with 135 communities was broadly linked to the most pathways relevant to cancer hallmarks. For
example, the MAPK (pathway number 58), ErbB (59), and TGF-beta (27) signaling pathways are
utilized for sustaining proliferative signaling, the VEGF signaling pathway (54) is used to induce
angiogenesis, and the oxidative phosphorylation (16) and central carbon metabolism (57) pathways
are involved in deregulating cellular energetics'® (Fig. 3¢ and Supplementary Fig. 21a). By contrast,
the other three top-sized clusters were relatively specific to certain cancer-related pathways that
separately contribute to avoiding immune destruction (Fig. 3d, 279 communities), activating invasion

and metastasis (Supplementary Fig. 21b, 119 communities), and evading growth suppressors and
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virus-induced tumor development (Supplementary Fig. 21¢, 105 communities). The involvement
profiles of the top 10 MPP communities in the largest cluster (279 communities) suggest that these
communities, such as receptor tyrosine-protein kinase erbB-2/3/4 (ERBB2/3/4) and ephrin type-A
receptor 1 (EPHA1), play a major role in immune and inflammation-related pathways, in COAD,
kidney chromophobe (KICH), KIRC, LUAD, LUSC, and READ (Fig. 3d and Supplementary Fig.
22a). The major tissues or organs hosting these six cancers are the digestive system, detoxification
system, and respiratory system, which are usually exposed to or metabolize external substances (e.g.,
food, air, and viruses), and these findings could support the accuracy of our CaMPNets and reflect
tissue-specific behaviors of cancers.

For further exploring tumor homogeneity and heterogeneity, we analyzed the involvement of
MPP community-regulated pathways in 15 cancers. Communities of the 3™-ranked cluster (119
communities), such as integrin alpha-V (ITGAV) and cadherin-6/7/8 (CDH6/7/8), relevant to
metastasis (e.g., adherens junction and focal adhesion) were found in almost 15 cancer types
(homogeneity; Supplementary Fig. 21b); by contrast, MPP community-regulated pathways of the
largest cluster are mainly discovered in six specific cancers (heterogeneity; Fig. 3d). Similarly, the cell
cycle (pathway number 21) and p53 (22) signaling pathways regulated by MPP communities in the
4™ ranked cluster (105 communities) were also widely implicated in most cancer types
(Supplementary Fig. 21¢). Moreover, these communities in the 4™-ranked cluster and the other
regulated pathways (e.g., viral carcinogenesis) suggested the existence of specific relationships
between different viruses and cancer types, thus providing possible routes of access for developing
targeted therapies for virus-induced cancers. For example, the hepatitis B virus-related pathway
(pathway number 19) in liver cancer and the Epstein-Barr virus (EBV)-related pathway (37) in renal
cancers (e.g., KIRC) were involved in relatively more MPP communities (Supplementary Fig. 22b).
This suggests that CaMPNet resource could provide clues to identify common or specific therapeutic

targets among different cancer types.
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Supplementary Note 8: Second cancer relationships between 15 cancer types.

Second cancers represent the fourth or fifth most common cancers in the United States, especially for
young adults?’, but the mechanisms and causal relationships between first and second cancers remain
unclear. To examine the predictive ability of the appearance of secondary tumors, we first curated 49
positive cases of second cancer relationships from the second cancer list of the American Cancer
Society, Inc.?! and used the other 42 relationships as the negative cases, except for LIHC that was not
recorded in the list (Supplementary Fig. 23a). Next, we presented 14 approaches to suggest possible
relationships for 15 cancer types as follows. Based on reported PPI- and direct PPI-based CaMPNets
in human cancers, we examined similarities between the profiles (1,862/1,009 communities x 65
pathways) of two cancers via Pearson’s » correlation and the Jaccard index. Using the gene expression
profiles of The Cancer Genome Atlas (TCGA) RNA sequencing (RNA-seq) (Supplementary Table
2) and microarray (Supplementary Table 5) data sets in cancers, the similarities between the profiles
of all genes, 2,594 MP genes, or differentially expressed genes (DEGs) for two cancers were also
measured based on Pearson’s  correlation and the Jaccard index. In the pathway enrichment-based
approaches, we used the Jaccard index to evaluate the overlaps between significantly enriched KEGG
pathways (P value < 0.05, hypergeometric test) of two cancers based on the pathway enrichment for
(1) DEGs selected from TCGA RNA-seq and microarray data sets and for (2) cancer-related genes
obtained from DisGeNET?2. Additionally, the overlaps between the cancer-related genes of two
cancers in the DisGeNET database were assessed using the Jaccard index.

The analysis suggested that the Fos scores of the CaMPNets were higher than those of the other
10 approaches (Supplementary Fig. 23b). For example, the best of three approaches with
corresponding thresholds were as follows (in order): reported PPI-based CaMPNets using Pearson’s r
> 0.4 and using a Jaccard index > 0.15 (Supplementary Fig. 23¢) and the pathway enrichment-based
approach for differentially expressed genes of microarray data sets using a Jaccard index > 0.15.

Moreover, we further summarized the 15 cancer type relationships by considering the votes of six and
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four different approaches using the correlation value and the Jaccard index, and we observed that these
suggested relationships were similar to those of our CaMPNets (Supplementary Fig. 23d). In contrast
to the voting strategy (suggested by >50% of methods) via the correlation value (Fo.s score is 0.64) or
the Jaccard index (0.65), our CaMPNets often performed better (~0.66). Taken together, these results
suggest that our CaMPNets not only provide some clues but also have utility for further investigating

the appearance of secondary tumors.

-19-



Supplementary Note 9: The prognostic landscape of MPP community-regulated pathways,

We described some of the most significant community-regulated pathways associated with
adverse or favorable outcomes as follows. The combined scores of genes in the APP and CDH3
communities, involving four (e.g., p53 signaling) and two (e.g., microRNAs in cancer) pathways,
respectively, were most frequently associated with adverse risks (Fig. 4b, right), and these two MPs
were linked to the promotion of tumor cell proliferation, migration, and invasion®*?*. The combined
score of genes in the KL community, which contains the KL gene encoding Klotho that functions as a
tumor suppressor on the cell surface coupled with FGF—-FGFR?® in certain pathways (e.g., Hedgehog
signaling), was most frequently associated with favorable outcomes (Fig. 4b, left). Surprisingly, the
combined scores of genes in the ERBB2 and ERBB3 community-regulated ErbB signaling pathways
also represented favorable prognostic associations. This result is reminiscent of some drugs (~15) that
are approved for the ERBB family?’, such as trastuzumab against ERBB2 in BRCA?®, and may thus
offer better treatment options for cancer patients expressing high levels of ERBB family members.

Considering 65 cancer-related pathways (or 1,862 MPP communities) across cancers for a
specific MPP community (or pathway), we further examined whether a meta-analysis (i.e., global
meta-z-score; Supplementary Fig. 17¢,d) could determine which communities (or pathways) are
associated with biological functions required for long-term survival in cancer patients. In agreement
with our findings for the relationship between global meta-z-scores for the involvement and prognostic
significance of MPP communities and cancer-related pathways, the SLC16A7 and CD40 communities
were the most adverse and favorable prognostic communities, respectively; and the focal adhesion and
ErbB signaling pathways were the most adverse and favorable prognostic pathways, respectively
(Supplementary Fig. 26). Several lines of evidence support our finding that CD40, encoding a
member of the tumor necrosis factor receptor superfamily that is considered a target for cancer therapy
(e.g., CD40 agonist), mediates immune activation and regulates tumor apoptosis®’, and the focal

adhesion pathway directly activates invasion and metastasis'.
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Among the top ten frequently favorable prognostic MPP communities (Fig. 4e) and cancer-related
pathways (Fig. 4f), ephrin receptor A4 and A7 (EPHA4/7), a tumor suppressor in melanoma*’ and
follicular lymphoma®!, was the 1-ranked and 3"-ranked frequent favorable prognostic communities
across 15 cancers, respectively (Fig. 4e, bottom). The endometrial cancer-related pathway was the
third most frequent favorable prognostic pathway, and this finding can be explained by the observation
that more than 75% of women diagnosed with endometrial cancer are in stages I or II because
symptoms frequently appear at early stages, and the 5-year overall survival ranges from 74% to 91%°*

(Fig. 4f, bottom).
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Supplementary Note 10: Selection of representative MP-interacting proteins.

To select representative interacting protein candidates for each MP in a specific cancer type for
experimental validation, we first clustered these candidates based on their biological similarity score
(BS). We evaluated the BLASTP sequence similarity for any two candidates (X and Y) and further
assessed their co-expression (i.e., Pearson’s r) using the gene expression profiles of tumor samples in
TCGA RNA-seq data. Then, we computed the RSSzr and RSScc scores of GO terms for any pair of
candidates to examine whether they participate in similar functional processes (BP) and cellular
compartments (CC). For each candidate pair (X-Y), BS is given by

max(nEy_y,nEy_x) + RSSgp + RSS¢c (1)
3

BSx_y =13y +

where ry_y 1s their gene co-expression using Pearson’s r, and nEy_,y and nEy_ y are the normalized E
values calculated by the £ values when aligning X to Y and Y to X divided by the £ values when
aligning X to X and Y to Y, respectively. A high BS value implies that two candidates with similar
sequences are often co-expressed in a specific cancer and regulate similar pathway(s) at the same or
adjacent cellular location(s). Finally, we selected at least one candidate in each cluster using the
following criteria (Supplementary Fig. 27a,b): (1) differentially expressed gene in certain cancer
types (e.g., breast cancer); (2) high Sg;p; (3) for each type of S score, including S, Sirs, Ses, and
Stopo- its score should be greater than the mean of all the candidates; and (4) a commercially available

antibody.
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Supplementary Note 11: CHRNA9 community-regulated hepatitis B pathway in liver

hepatocellular carcinoma.

To examine our CHRNA9 community-regulated hepatitis B pathway in LIHC and understand the
mechanisms underlying the roles of CHRNAO9 in the hepatitis B virus (HBV)-regulated pathway and
LIHC, we first transfected Hep3B cells that contained an integrated HBV genome with a CRISPR/Cas9
system targeting the CHRNA9 gene locus (i.e., CHRNA9 knockdown) and observed that Hep3B-
transfected CHRNA9 knockdown 1 (KD1) and 2 (KD2) viruses significantly reduced CHRNA9
protein expression (Supplementary Fig. 28a). Then, we performed microarray analyses of these
Hep3B cells (Supplementary Fig. 28b). Based on the CaMPNets resource, CHRNA9 was found to
interact with tyrosine-protein kinase HCK (HCK), ubiquitin D (UBD), and serine/threonine-protein
kinase PLK1 (PLK1), and their genes are co-expressed (orange dashed line) with numerous
differentially expressed genes (DEGs), such as Toll-like receptor 2 (7LR2) and matrix
metalloproteinase-9 (MMPY9), in the LIHC hepatitis B pathway. Our results show that 12 genes
(indicated by an asterisk, e.g., proto-oncogene c-Fos (FOS) and early growth response protein 3
(EGR3)) among 44 differentially expressed genes (DEGs) in the hepatitis B pathway had opposite
regulatory effects between the CHRNAO9 knockdown samples and the HBV-infected tissue samples of
LIHC in TCGA (Supplementary Fig. 28b).

Next, we proposed a model to study the influence of knocking down CHRNA9 in the LIHC

hepatitis B pathway (Supplementary Fig. 28c). Consistent with previous reports®*3>

showing that the
activation of nAChRs suppresses proinflammatory functions, the genes Toll-like receptor 4 (TLR4),
myeloid differentiation primary response protein MyD88 (MYDS&S), and tumor necrosis factor (7NF)
were overexpressed to promote the inflammatory and immune responses®®*® when CHRNA9 was
knocked down. Moreover, the analysis also demonstrated that CHRNA9 knockdown might induce the

overexpression of downstream genes, such as tumor necrosis factor ligand superfamily member 6

(FASLG) and caspase-8 (CASPS), and this overexpression could trigger apoptosis of the virus-infected
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cell®. Finally, we found that the upregulation of several downstream genes was relevant to the invasion
and metastasis of hepatocellular carcinoma. For example, interleukin-8 (CXCLS) promotes cancer
metastasis when it is overexpressed*’*?, and cyclic AMP-dependent transcription factor ATF-4 (ATF4)
is an important transcription factor associated with cancer progression and metastasis*>**,

To confirm the proposed model, we further measured the gene expression of these candidates in
CHRNAO9 knockdown Hep3B cells using a real-time quantitative polymerase chain reaction (Q-PCR)
assay. Q-PCR analysis showed that the hepatitis B pathway genes (MYDS8S8, TNF, FOS, CREB3L2,
ATF, FASLG, and TLR4) were dramatically enhanced in CHRNA9 KDI1 and KD2 Hep3B cells
(Supplementary Fig. 28d). In addition, CHRNA9 knockdown Hep3B cells also displayed a
significant increase in the gene and protein expression of HBsAg as determined by Q-PCR and
enzyme-linked immunosorbent assay (ELISA) measurements (Supplementary Fig. 28e,f). In
summary, these observations suggest that CHRNAO plays functional roles in the hepatitis B pathway

in LIHC, especially in inflammatory-, apoptosis-, and metastasis-related processes, and CaMPNets can

be used to explore the uncovered relationship between MPs and cancer-related pathways.
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Supplementary Note 12: Validation of interacting candidates of CHRNADY in cancers.

Among 18 potential interacting candidates of CHRNA9, most of the proteins (>12) were associated
with CHRNAY in breast (BT474 and MDA-MB-231), lung (A549), bladder (RT4) and pancreatic
(MIA PaCa-2) cancer cell lines as determined by IP analyses of CHRNAY9 (or 18 interacting partners)
in a reciprocal fashion®’, whereas six candidates (FYN, CSNK1D, ERBB4, YWHAB, APP, and
ABCBI1) were weakly detected (or non-detected) in more than two cell lines. In the orthogonal
validation via FRET analysis, six candidates (SRC, SFN, ERBB2, ERBB3, YWHAG, and CSNK1D)
were strongly associated with CHRNAY9, eight candidates (COPS6, YWHAH, EGFR, HCK, APP,
YWHARB, INSR, and ERBB4) exhibited a mild association, and four candidates (ABCBI1, PLK1,
ATXNI1, and FYN) were weakly associated (or non-associated) with CHRNAO in BT474 cells (Fig.
6a and Supplementary Fig. 31a,c,e.f; details in Methods). Consistently, MDA-MB-231 cells exhibited

a similar protein interaction profile according to FRET analysis (Supplementary Fig. 31b,d-f).
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Supplementary Note 13: Validation of CHRNA9/ERBB2 complex in breast cancer.

Based on a time-dependent nicotine treatment (10 uM), the CHRNA9/ERBB2 complex began to
disassociate in less than 3 minutes and dramatically disassociated by 10 minutes (Supplementary Fig.
33b). The activated form of the CHRNA9/ERBB2 (Y1248) complex was almost completely
disassociated with nicotine treatment by 10 minutes, indicating that nicotine may affect the cross-talk
between the CHRNAY9 and ERBB2 signaling pathways through complex formation in breast cancer
cells. To confirm this hypothesis, we first measured the phosphorylated forms of both ERBB2 and
EGFR in a nicotine-dependent manner, revealing that nicotine quickly activated ERBB2 and EGFR in
BT474 and MDA-MB-231 cells (Supplementary Fig. 33c,d). The downstream mediator AKT
(protein kinase B), implicated in cell proliferation and metastasis, was also activated and reached the
maximum level after 15 and 30 minutes of nicotine stimulation in BT474 and MDA-MB-231 cells,
respectively (Supplementary Fig. 33e,f).

To further investigate the association between CHRNA9 and ERBB2 ex vitro, we constructed
CHRNAOY/CFP and ERBB2/YFP fusion proteins to evaluate complex formation using FRET and
fluorescence-lifetime imaging microscopy (FLIM) experiments in a low ERBB2 expression breast
cancer cell (MDA-MB-231), for observing CHRNA9/ERBB2 interaction. Fluorescent fusion protein
carried MDA-MB-231 cells demonstrated strong FRET efficiency (Supplementary Fig. 33g, red) on
the cell membrane, whereas its cytosol showed weak FRET efficiency (blue). After 30 minutes of

exposure to nicotine, the FRET efficiency on the cell membrane completely vanished.
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Supplementary Note 14: Investigation of the relationships between nicotine/bupropion and

CHRNAY9/ERBB2 in breast cancer cells

To further investigate the relationships between nicotine/bupropion and CHRNA9/ERBB2, we
selectively knocked down the CHRNA9 and ERBB2 genes of using the CRISPR/Cas9 system.
CHRNAY9 and ERBB2 in both BT474 and MDA-MB-231 cells were dramatically knocked down in
CHRNAY9 KD1 and ERBB2 KD2 clones (Supplementary Figs. 38a,b and 39a,b). Next, we found
that bupropion pretreatment could attenuate nicotine-induced ERBB2 phosphorylation in BT474
scramble (SC) cells, whereas CHRNA9 KD1 (or ERBB2 KD2) had weak (or no) response to either
nicotine or bupropion exposure (Supplementary Fig. 38c). In addition, bupropion treatment
significantly attenuated nicotine treatment-induced cancer migration (Supplementary Figs. 38d and
39c¢) and invasion (Supplementary Figs. 38e and 39d) in both BT474 and MDA-MB-231 SC cells,
whereas CHRNA9 KDI1 and ERBB2 KD2 showed weak and no changes in their migration and

invasion abilities to nicotine and bupropion exposure.
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Supplementary Note 15: Microarray analysis of bupropion and/or nicotine treatment in an

animal model.

To further examine our CaMPNets and understand the mechanisms underlying bupropion’s anti-
metastasis ability, we performed a microarray analysis of xenograft mouse mammary tumors treated
with bupropion or nicotine (see Methods). Pathway enrichment analysis revealed that genes up-
regulated in the tumors of mice treated with nicotine compared to the control were significantly
associated (P value < 0.05, hypergeometric test) with several metastasis-related pathways (blue box),
such as tight junctions, ECM-receptor interactions, and focal adhesion, but those in mice treated with
bupropion were not significantly associated with these pathways (Supplementary Fig. 40). Moreover,
six genes (indicated by an asterisk, e.g., collagen alpha-2(I) chain (COL1A2), laminin subunit alpha-4
(LAMA4), and tyrosine-protein kinase receptor FLT4 (FLT4)) among 24 DEGs in the focal adhesion
pathway had opposite regulation effects between the treatment with only bupropion and the BRCA
tissue samples in TCGA (Supplementary Fig. 41a). We then proposed a model to illustrate how
bupropion and nicotine modulate the focal adhesion pathway as well as parts of the pathways of ECM-
receptor interaction and cytokine-cytokine receptor interaction by inhibiting CHRNAO to affect EGFR,
ERBB2, FYN, SRC and their upstream/downstream signaling cascades (Supplementary Fig. 41b).
In comparison with the up-regulation of downstream genes, such as ROCKI, MYLK2, MYLPF, and
VASP, with only nicotine treatment, these genes were down-regulated when treated with bupropion.
Activation or overexpression of RHOA, ROCKI, or MYLK in their signaling pathways have been
indicated that these genes perform major functions in tumor cell migration in vitro as well as in
invasion and progression in vivo*®*’. Differential MYLPF expression also participates in contractile
forces necessary for cell migration processes*, and increased VASP expression in the Ena/VASP
family enhances tumor migration and invasion***°. Similarly, numerous downstream genes (e.g.,
MYH1/2/4 and MYLPF) of CHRNAY in the tight junction also exhibit opposite regulations when treated

with only nicotine versus other treatments with bupropion (Supplementary Fig. 42). MYH!I and

-28 -



MYH4 expression are known to be functionally involved in epithelial-to-mesenchymal differentiation®'.
To confirm the proposed model for bupropion as an inhibitor of CHRNAY, sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) in MDA-MB-231 cells was used to examine whether
bupropion suppresses nicotine-induced carcinogenic signaling pathways. The result illustrates that
nicotine exposure enhanced cell motility-related proteins, such as VASP, ROCK1, MYLK2, and
MYLPF, while pretreatment with bupropion effectively attenuated the nicotine stimulation effect
(Supplementary Fig. 41¢). We next introduced CRISPR/Cas9 targeting the CHRNA9 gene locus into
MDA-MB-231 cells to confirm the above finding. Nicotine addition enhanced the expression of cell
motility-related proteins in control and scramble targeting MDA-MB-231 cells, whereas these proteins
were not affected in MDA-MB-231 cells in which CHRNA9 was knocked down (CHRNA9 KDI;
Supplementary Fig. 41d). This observation suggests that cancer cell migration and invasion through
these metastasis-related pathways, such as focal adhesion, ECM-receptor interaction, cytokine-
cytokine receptor interaction, adherens junction, and tight junction, triggered by nicotine may be

mediated by interactions between CHRNAO and its interacting proteins in breast cancer cells.

-29.



Supplementary Note 16: Advantages for CaMPNets.

Integrating CaMPNets with a meta-z approach across numerous malignancies provides pan-cancer
analysis for revealing which MPs and regulated pathways are specific and which are common tumor
hallmarks. For instance, the cell cycle regulation of many kinds of MPP communities across human
cancers, including SELL, CDH1/3, SLC16A7, and SLC12A9, demonstrates that the most essential
characteristic of cancer cells is sustained proliferation'® (Fig. 2d). In addition to the findings of the
well-known EGFR and CD44 communities, we also discovered communities of APP, CUB domain-
containing protein 1 (encoded by CDCP1), and N-methyl D-aspartate receptor subtype 2D (a product
of GRIN2D) in 15 cancers to be broadly implicated in more than 50 cancer-related pathways, especially
in invasion and metastasis (Fig. 3b).

Our resource also offers clues for observing how changes in cancer-related pathways or MPP
communities reflect clinical outcomes, such as alterations in prognostic associations. For example, the
ErbB signaling pathway, involved in proliferation and cell motility, is expected to have the association
with adverse outcomes?®, but we observed that this pathway regulated by MPP communities, especially
the ERBB2 and ERBB3 communities, is most frequently associated with favorable outcomes across
multiple cancers. There are several factors may explain this observation. ERBB2 is the target of a
therapeutic monoclonal antibody, trastuzumab, which extends survival in patients with metastatic
breast cancer™>. Recent evidences have also indicated that ERBB2 might be considered a predictive
marker due to its response to adjuvant chemotherapy and endocrine therapy®®33-*. Clearly, the
prognostic significance of ERBB2 must be sufficiently validated by well-controlled and well-designed
studies with a sufficient follow-up time.

Our observations may explain why multi-target therapeutics are effective and overcome adaptive
resistance to cancer therapy” since MPs belonging to the same family often display complementary
functions toward each other in mediating certain pathways in distinct human cancers. For example,

regorafenib is an approved multi-targeted kinase inhibitor (e.g., vascular endothelial growth factor
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receptor 1/2/3) as a treatment for metastatic colorectal cancer and advanced gastrointestinal stromal
tumors®”>%. By using CaMPNets resource and Homopharma approach®’, we also found that the VEGF
signaling pathway is regulated by CHRNA9 in BRCA and by CHRNA7 in LUAD and COAD, as well
as both nAChRs have similar ligand binding environments, implying that the repurposed role of the
drug bupropion could have potential for interfering with interaction(s) between CHRNA7 and ErbB
proteins and blocking metastasis in LUAD and COAD. Smoking-induced tumor progression,
especially that of nicotine and tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK) via CHRNA7, has been sufficiently investigated>®°. As CHRNA7 is often associated
with lung cancer®, our previous studies®*** have shown that CHRNA9 expression plays important
roles in breast cancer progression. This study suggests that bupropion could have utility in smoking-

related metastatic cancer patients with high nAChR expression.
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Supplementary Note 17: Limitations, challenges, and perspectives for CaMPNets.

CaMPNets have several limitations, challenges, and perspectives. First, note that the reported PPI set
includes a wide range of interactions: direct physical binding of two proteins, co-existence of proteins
in a stable complex, genetic interaction, etc. We collected data from five databases and did not
determine whether any reported PPI has been validated, is well-established, or reflects the current
consensus of the community. Therefore, the interactions reported in these databases should not be
presumed to indicate direct and physical binding. The associated PubMed identifier(s) and PSI-MI
term(s) are provided on the website as supporting evidence for a reported PPI, allowing the users to
assess the confidence of the reported PPI. The direct PPI set was collected and curated via relatively
rigorous criteria to offer reliable PPI templates. However, the predicted PPIs identified by reported
PPI- or direct PPI-based SIM still need to be experimentally validated. To investigate MP PPIs and
their regulated networks in 15 cancers, we hope that the data produced by our SIM and CaMPNets will
provide the scientific community with clues that will reduce the time and cost of experiments. Second,
one potential limitation of CaMPNets is that our approach may miss gene sets that belong to the same
pathway but are potentially not sufficiently co-expressed, as the co-expression may be less evident in
the case signaling pathways that are often hierarchical in nature. While it is optimal to directly evaluate
the co-expression of protein pairs and the epigenetic changes (e.g., phosphorylation and
dephosphorylation) using proteomic compared with genomic data, this information remains restricted
to only a few cancer proteomic resources. As proteomic data become increasingly available, such as
the NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC)®%2, CaMPNets can be expected to
provide more robust data for future interactome investigations associated with cancers. For example,
we found that the genes involved in the CHRNA9 community are co-expressed with several genes of
neighboring proteins in the adhesion junction pathway but not co-expressed with the genes of most
proteins that convey signals via phosphorylation and dephosphorylation (Fig. Sb). Integration of

genomic and proteomic data may solve this problem. Third, the MPs in the plasma membrane, such as
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receptor tyrosine kinases, integrins, and cytokine receptors, often play key roles in the formation,
progression, and metastasis of different tumors; therefore, we chose to focus on plasma MP to start
with the establishment and analysis of CaMPNets. We believe that our approach is a general strategy
for identifying interactions of other MPs and further constructing disease-associated networks via
corresponding genomic data. Forth, another CaMPNets challenge is to consider interactions between
MPs and extracellular proteins for elucidating tumor microenvironment responses. Within the tumor
microenvironment, stromal cell types are genetically stable, unlike tumor cells®’. However, separating
tumor and stromal cells in tumor tissues to reflect signaling transduction between complicated tissue
environments and tumor cells is challenging. The unabated progress in single-cell sequencing, and

64,65

next-generation sequencing technologies will allow this issue to be addressed as well as

revolutionize our model to reconstruct close-to-real CaMPNets.
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Supplementary Figure 1. Distribution of the numbers of reported protein-protein interactions
(PPIs) and co-expressed gene pairs for membrane proteins (MPs) and other proteins based on
the human reported PPI network and gene expression profiles of tumor samples from 15 cancer

types in The Cancer Genome Atlas (TCGA) RNA sequencing (RNA-seq) data.

For each gene of MPs (red) and other proteins (black), we assessed and combined all the co-expressed
gene pairs with (a) [Pearson’s 7| values > 0.3, (b) 0.5, or (¢) 0.7 using gene expression profiles in 15
cancer types. Among proteins with numbers of co-expressed pairs higher than the mean, the
percentages of MPs with the numbers of reported PPIs (>mean) are significantly lower than those of

other proteins (P <3 X 107'°, Fisher’s exact test).
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Supplementary Figure 2. Schematic diagram of predicting proteins that interact with 2,594 MPs

in the plasma membrane.

(a) The main procedure. (b) Selection of a possible interacting region (i.e., cytoplasmic region) for an

MP to infer its interacting proteins. (¢) PPI templates of an MP derived from a reported PPI set using

the interacting region similarity score (S;-s) and template quality score (Sgy,;). (d) Predicted PPI

candidates of the templates determined by searching the complete human proteome database. PPI

candidates are scored using the integrated scoring method (Sgs; ), including the S;,.¢ and Sy, for the

PPI template, the normalized joint sequence similarity (Sjss), the normalized rank (Sygnk ), the
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evolutionarily conserved score (Ss) on multiple organisms, and the network topology score (S¢p,) in
the PPI network of the target organism (H. sapiens is shown here). Here, we give an example to
descript the S,;. The distances from the source organisms, H. sapiens, M. musculus, and C. elegans,
to the target organism, H. sapiens, are 0.105, 0.479, and 1.641, respectively. If the number of source
organisms containing at least one PPI template used to infer the PPI candidate A'-B' is 7, such as for
H. sapiens, C. elegans, and the H. sapiens and M. musculus hybrid, the normalized evolutionary
distances of CHRNA9-ERBB2 are 0.409, 0.026, and 0.179, respectively. The predicted PPIs with Sg;;,
> 3.6 and > 3.0 are considered PPI candidates of the queried MP with high and median confidences,
respectively. (e) Community-regulated pathways between the MP and its interacting proteins (called
the MPP community) and Kyoto Encyclopedia of Genes and Genomes (KEGG) cancer-related
pathways (e.g., adherens junction) in a cancer type determined by enrichment P value < 0.05 using
hypergeometric distribution based on the probabilities of co-expressed gene pairs. Gene pairs with
Pearson’s r values > 0.5 or < —0.5 calculated by the gene expression profiles of tumor samples in
TCGA RNA-seq data or Gene Expression Omnibus (GEO) microarray data are considered co-
expressed gene pairs. These MPP community-regulated pathways were used to construct Cancer

Membrane Protein-regulated Networks (CaMPNets) in 15 cancer types.
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Supplementary Figure 3. Relative Specificity Similarity (RSS) score distributions of biological
processes (BPs) and cellular components (CCs) for (a) 18,827 human PPIs of 2,594 MPs and (b)
179,248 human PPIs in the reported PPI database. More than 95% of human PPIs (or PPIs of MPs)
in the reported PPI set have RSSsp (blue) > 0.4 and RSScc (red) > 0.4. In this study, a protein pair with

RSSBp< 0.4 or RSScc< 0.4 were considered as a negative case.
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Supplementary Figure 4. Receiver operator characteristic (ROC) curves of the prediction
accuracies of our Sg;;; method, respective scoring methods, the STRING database, the FpClass
method, and the generalized interolog mapping method, using reported PPIs or direct PPIs as

templates (T) and MP reported PPIs or MP direct PPIs as standard positives (P).

(a) Comparison of the prediction accuracies between two Sg;, methods and six respective scoring
methods using MP reported PPIs or MP direct PPIs as positive cases. (b) Comparison of the prediction
accuracies between the reported PPI-based Sg;, approach using all MP reported PPIs as positive cases
(red), the reported PPI-based Sg;p, approach using MP direct PPIs as positive cases (blue), and the
direct PPI-based Sg;, approach using MP direct PPIs as positive cases (green). The average area under
the receiver operating characteristic curve (AUC) is shown for each method. (¢) Comparison of the

prediction accuracies between the reported PPI- and direct PPI-based Sg;,, methods, the STRING
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database (black), the FpClass method (blue), and the direct PPI-based generalized interolog mapping

method (green) using MP direct PPIs as standard positives.
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Supplementary Figure 5. Characteristics of the reported PPIs, consisting of direct PPIs and

other PPIs, and the predicting MP PPIs, identified by reported PPI- and direct PPI-based SIMs.

(a) Distributions of interaction type numbers for 176,087 direct PPIs (orange) and 573,000 other PPIs
(blue). The identifier number and name of the interaction element were collected and processed using
the standard ‘interaction type’ vocabulary implemented in the PSI MI%. (b) Relationships between the
numbers of MPs and the numbers of predicted PPIs identified by reported PPI-based (blue) and direct

PPI-based (orange) SIMs.
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Supplementary Figure 6. Performance analysis for the reported PPI-based SIM strategy.

(a) Relationships between recall (black) and precision (red) with Sg;,, values for 2,594 MPs. Precision
and recall are defined as TP / (TP+FP) and TP / (TP+FN), where TP, FP, and FN are the numbers of
true-positive, false-positive, and false-negative cases, respectively. We observed the highest F2 score
of 0.62 when Sg;;, was set to 3.6. (b) Relationships between the numbers of true-positives and the
precision of our scoring method (Sg;p, > 3.6; red), STRING (high confidence > 0.7; black), and FpClass
(probability > 0.47; blue), and generalized interologs (joint E value < 1077%; green). Our analysis also
suggested that our method (Sg;, > 3.6) accomplishes the highest precision, with its number of true-

positive PPIs ranging from 4,000 to 5,000.
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Supplementary Figure 7. Biological function analysis for the systematically integrated method
(SIM) strategy.

(a) Relationships between Sg;), values and joint RSS scores as well as percentages of PPI candidates
in the MP set. (b) Relationships between Sg;;, values scores against percentages of essential PPIs or
numbers of PPI candidates in the MP set. (¢) Relationships between the numbers of interacting proteins
and annotated KEGG pathways for reported PPIs and predicted PPIs identified by our method,
STRING (high confidence > 0.7; black), FpClass (probability > 0.47; blue), and generalized interologs
(joint E value < 1077% green). (d) Characteristics of co-expression for reported PPIs and predicted PPIs
with Sg;pr > 3.6 in the MP set. Gene co-expression of PPIs using 7,208 human gene sets from GEO.
Here, we quantified the associations and dissociations of MPs with interacting protein candidates in
time and space by assessing correlations between their expression profiles in 7,208 gene expression
data sets (=3 samples) derived from GEO. To avoid the influence of genes with low expression and
variance, we selected the gene j in a gene expression set based on the following criteria: 1) average
expression (E'j) > mean expression of all genes (E,;) in the gene expression set, and 2) standard
deviation of expression (S;) > standard deviation of expression values for all genes (Sax) in the gene
expression set. For each protein pair (e.g., an MP and its interacting protein candidate), we collected
expression profiles containing the gene expression values of the two proteins and then calculated
Pearson’s r values for this pair to construct a correlation matrix. We assume that an MP interacts with
another protein to perform biological functions in a cell if Pearson’s » > & is high (here, & was set to
0.3, 0.5, or 0.7). For a protein pair p (containing genes i and j), the co-expression ratio (CE) at the

threshold /4 is defined as C E{} = %, where N is the total number of the 7,208 expression profiles with

these two genes, and N, is the number of expression profiles containing high co-expression of genes i
and j with Pearson’s » values > 4. For example, the CE of ITGB2-HCK is 0.56, reflecting high co-

expression (Pearson’s > 0.5) in 877 of 1,561 gene expression sets when 4 = 0.5. (e) Distributions of
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co-expression of reported PPIs and predicted PPIs with Sg;, > 3.6 based on Pearson’s r thresholds of

> 0.3 (red), > 0.5 (blue) and > 0.7 (green).
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b (continued)

Percentage of PPIs (or protein pairs) with co-occurrence/mutual exclusivity
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b (continued)

Percentage of PPIs (or protein pairs) with co-occurrence/mutual exclusivity
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Number of cell lines when both genes of significant
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¢ (continued)
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Supplementary Figure 8. Analysis of functional connectivity between the MPs and their
positive/predicted binding partners using the experimental data of the loss-of-function screens
from the Project Achilles data.

(a) Schematic diagram depicting the identification of mutual exclusivity or co-occurrence of loss-of-
function effects between the MPs and their positive/predicted binding partners using the Project
Achilles data in nine cancer types and 155 cell lines. Here, only PPIs/protein pairs whose two genes
have CERES scores were analyzed. For each positive/predicted MP PPI set, we randomly sampled
14,011 (or 68,059 for reported PPI sets) gene pairs from a total of 8,080,310 (or 22,041,218 for

reported PPI sets) combinational pairs in 1,000 trials and then calculated the odds ratio and P value
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(Fisher's exact test) between two gene-knockout effect profiles across numerous cell lines in each
cancer type to evaluate the empirical P value in comparison to the observed set. (b) Significance of
percentage of PPIs (or protein pairs) with co-occurrence/mutual exclusivity in nine cancer types and
the group of 155 cancer cell lines across five CERES score thresholds for 14,011 (red circle) and
68,059 (green circle) MP predicted PPIs using direct PPI- and reported PPI-based SIMs, respectively,
and for 1,851 MP direct PPIs (red triangle) and 16,334 MP recorded PPIs (green triangle) as positive
control sets. The boxplots show the percentages of gene pairs in the corresponding random sets. The
numbers that are shown near the circles and triangles indicate the number of PPIs with significant co-
occurrence and mutual exclusivity, respectively. (¢) Distribution of cell line numbers for significant
co-occurrence PPIs (P < 0.05, Fisher's exact test) whose two genes have CERES scores <-0.2, -0.4, -
0.6, -0.8, or -1.0, which indicates that they have significant knockout effects. The median values of
cell line numbers are shown below each plot, and N/A represents no significant co-occurrence PPIL.
The box represents the interquartile range (IQR) and the horizontal line in the box is the median. The
whiskers denote the lowest and highest values within 1.5 times IQR from the first and third quartiles,

respectively. The external circles represent outliers.
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Supplementary Figure 9. Analysis of co-occurrence and mutual exclusivity of genomic
alterations between the MPs and their positive/predicted binding partners using the copy-
number alteration (CNA) and mutation data from the TCGA.

(a) Significance of percentages of PPIs with co-occurrence and mutual exclusivity of genomic
alterations in 14 cancer types for 16,269 (red circle) and 78,569 (green circle) MP predicted PPIs using
direct PPI- and reported PPI-based SIMs, respectively, and for 1,851 MP direct PPIs (red triangle) and
17,203 MP reported PPIs (green triangle) as positive control sets. Here, only PPIs/protein pairs whose
two genes could be mapped from UniProt accession number to the Entrez Gene ID used in TCGA data
were analyzed. The boxplots show the percentages of gene pairs in the corresponding random sets.
The box represents the IQR and the horizontal line in the box is the median. The whiskers denote the
lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively. The
external circles represent outliers. The numbers that are shown near the circles and triangles indicate
the number of PPIs with significant co-occurrence and mutual exclusivity, respectively. (b)
Relationships between the number of genes with CNAs or mutations and the ratio of samples in 14
different cancer types. (c¢) Relationships between the number of genes with CNAs or mutations and

the number of samples.
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Supplementary Figure 10. Effect on the characteristic path length of the networks upon gradual
node removal for the (a) reported PPI and (b) direct PPI networks without (left) or with (right)

predicted PPIs.

Attacks against all hubs (brown curve), MP hubs (blue curve), non-MP hubs (red curve), and random
nodes (green curve) are shown. The proteins with degrees within the top 25% of all proteins are

considered hubs'® of these human networks. Here, the degrees of hubs in the reported PPI network
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(179,249 PPIs and 16,385 proteins) containing only reported PPIs, the reported PPI network-related
(291,515 PPIs and 25,907 proteins) containing both reported PPI-based predicted PPIs and reported
PPIs, the direct PPI network (14,549 PPIs and 6,326 proteins) containing only direct physical PPIs,
and the direct PPI-related network (39,396 PPIs and 11,122 proteins) containing both direct PPI-based

predicted PPIs and direct physical PPIs were >19, >17, >5, and >6, respectively.
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Supplementary Figure 11. Topology and functional enrichment analysis of MP-focused
subnetworks and non-MP subnetworks.

(a) Degree distributions of the MP-focused PPI subnetworks, the non-MP PPI subnetworks, and the
whole human PPI networks illustrating scale-free topology. In these subnetworks and networks, all of
the degree exponent (y) values ranged between 1.42 and 1.78. The human PPI networks include

reported PPIs and predicted PPIs of MPs, identified by the reported PPI-based SIM (left) or the direct
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PPI-based SIM (right). The MP-focused subnetworks, containing 239,112 PPIs (reported PPI-based)
and 29,444 PPIs (direct PPI-based), were constructed by extending one layer of PPIs and proteins in
2,594 MPs from the whole human PPI network. The non-MP subnetwork (only derived from
reported/direct PPI data), consisting of 160,715 reported PPIs and 12,626 direct PPIs, comprised the
whole human PPI network excluding all MPs and their PPIs. (b) Cellular component and (¢) KEGG
pathway enrichment analyses of all proteins of the MP-focused subnetworks, established by
reported/direct PPIs with or without predicted PPIs of MPs, and the non-MP subnetworks. The P

values were calculated based on the hypergeometric test with Bonferroni correction.
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Supplementary Figure 12. Percentages of MP and non-MPs for 1,996 reported PPI-based and

1,105 direct PPI-based MPP communities.

The orders of MPP communities are sorted by the percentage of non-MP proteins.
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Supplementary Figure 13. Overlap analysis of the binding partners identified for different MPs

by using reported PPI- and direct PPI-based SIM methods.

(a) Overlaps, evaluated by the Jaccard index, between the binding partners identified for any two MPs
among 1,996 (reported PPI-based method) and 1,105 MPs (direct PPI-based method) with at least one
binding partner. For each MPP community (i.e., an MP with its binding partners), we calculated the
Jaccard similarity coefficient (JSC) to evaluate the overlap between it and the other MPP communities
and select the largest overlapping community. The Jaccard similarity coefficient J(4, B) is given as
J(A,B) = |ANnB|/|A U B|, where A N B is the number of common binding partners (intersection set)
in the MPP communities A and B, and A U B is the number of union binding partners in the MPP
communities A and B. (b) Pie charts of the percentages of MPs belonging to the same (red) or different
(green) classifications (Supplementary Data 1) when their communities had the highest JSC > 0.6 or

< 0.6. Note that MPs belonging to the classification ‘Unclassified’ were excluded.
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Supplementary Figure 14. Schematic diagram of empirical P value calculation and Monte Carlo

simulation set preparation.

(a) Empirical P value calculation using an MPP community (MP/) and its regulated pathway (Pathway
1) in a target cancer (Cancer X) as an example. For each MPP community regulating a specific pathway
(observed set), we randomly shuffled gene labels of all proteins interacting with 2,594 MPs in 1,000
trials and then calculated the enrichment P values for the 1,000 shuffled sets to evaluate the empirical
P value. (b) Monte Carlo simulation set preparation for evaluating the significance of shared
community-regulated pathways for 1,862 MPs and 197 MP families among 15 cancers. For each

shuffled MPP community-regulated pathway (e.g., shuffled set I), we first evaluated its enrichment P
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value, and the empirical P value was determined by 1,000 Monte Carlo permutations. Among 65
cancer-related pathways, the observed fractions of MPP communities were compared to the expected

fractions of 1,000 trials (total of 1,000,000 permutations).
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Supplementary Figure 15. Significance of shared community-regulated pathways in CaMPNets

for (a) 1,862 MPs and (b) 197 MP families among 15 cancers.

Similar analyses are shown in Figure 2b,c compared to randomly shuffled gene labels for each gene
of all proteins interacting with MPs in CaMPNets across different thresholds of enrichment P values
(details in Methods). We then calculated the median fraction of shuffled communities for 65 cancer-
related pathways (box) shared by at least 2, 5 or 9 cancers and repeated the analysis 1,000 times
(Supplementary Fig. 14b). Based on the MP classification obtained from Almén et al.%’, the cancer

types associated with community-regulated pathways (or shuffled pathways) for MPs of the same
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family are united. Approximately 97% and 100% of communities for MPs (orange) and MP families
(blue), respectively, are involved in certain cancer-related pathways (filtered for enrichment P values
< 0.05 and empirical P values < 0.05) across > 2 cancer types. Notably, significantly more shared
community-regulated pathways on MPs (or MP families) were found than was expected by random
chance (gray; P <1 X 10”, Wilcoxon signed-rank test) filtered at six thresholds of enrichment P values.
The box represents the IQR and the horizontal line in the box is the median. The whiskers denote the
lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively. The

black dots represent outliers.
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Supplementary Figure 16. Comparison of involvement scores for community-regulated
pathways between TCGA RNA-seq and microarray (total of 19 sets) data sets in 15 individual
cancer types.

Pearson’s r values shown in the upper left corner of each plot represent the correlation. All correlations
(R) are larger than 0.46, and the respective P values are less than 2.2 X 107'® (Pearson correlation, -
test). To further validate the involvement scores of community-regulated pathways across 15 cancers

by using different gene expression resources, the enrichment P values were transformed into z-scores
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and utilized to calculate meta-z-scores (Stouffer’s Z-transform method (unweighted); Fig. 2d) via

selecting independent microarray sets with higher correlation (labeled red) in 15 cancers.
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Supplementary Figure 17. Schematic diagram of calculating the (a) meta-z-score, (b) mean meta-

z-score, and global meta-z-scores of (¢) pathways and (d) MPP communities.

Enrichment P values for each community-regulated pathway of CaMPNets across 15 cancer types
were transformed into z-scores and further combined into a meta-z-score using Stouffer’s unweighted
Z-transform test. For calculating the mean meta-z score of each community in the pan-cancer network
of CaMPNets (filtered at meta-z > 1.64), we summed the meta-z-scores of the target community and
its regulated pathways and then divided the sum by the number of regulated pathways. Based on the
pan-cancer network of CaMPNets, global meta-z-scores of each pathway (or each community) were

computed by considering the meta-z-scores of all 1,862 communities (or 65 pathways).
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Supplementary Figure 18. Comparison of pathways regulated by the MPs themselves, MPs with
reported/direct PPIs, and MPs with predicted PPIs and reported/direct PPIs (i.e., reported PPI-
/direct PPI-based MPP communities) in 15 cancer types.

(a) Distributions (boxplot) of the numbers of involved cancer-related pathways in 15 cancer types
against the numbers of proteins (or protein sets) containing only MP itself, MP with reported/direct
PPIs, and MP with predicted PPIs and reported/direct PPIs when co-expressed gene pair criteria are
set to |[Pearson’s 7| > 0.3, > 0.5, and > 0.7. The involvements (enrichment P values < 0.05) of cancer-
related pathways for gene sets considering and not considering empirical P values < 0.05 are shown in
top and bottom, respectively. For example, the reported PPI-based MPP communities in BRCA
achieved the highest annotation rate, as 49% (1,267/2,594) of the reported PPI-based MPP
communities were annotated in at least one cancer-related pathway based on enrichment P values <
0.05 and empirical P values < 0.05 using co-expressed gene pairs with |Pearson’s 7| > 0.5, while only
17% of MPs by themselves and 22% of MPs with interacting proteins derived from reported PPIs were
annotated. The box represents the IQR and the line in the box is the median. The whiskers denote the

lowest and highest values within 1.5 times IQR from the first and third quartiles, respectively. Circles
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and asterisks represent the outliers and extreme outliers, respectively. (b) Ratios of the regulatory
relationships between 2,594 MPs (or interacting protein sets of MPs) and 65 cancer-related pathways
in distinct cancers. The dashed lines indicate the mean ratios across 15 cancers. We identified and
compared the regulation between MPs and the pathways in 15 distinct cancers by considering only the
MP itself, the MP with reported/direct PPIs, and the reported PPI-based (or direct PPI-based) MPP
community, including the MP and its reported (or direct) PPIs and predicted PPIs. Among the 168,610
possible regulatory relationships between 2,594 MPs and 65 pathways in 15 cancers, the mean ratio
(5.9%, 10,007 relationships) of regulatory relationships across 15 cancers for reported PPI-based MPP
communities was greater than those for direct PPI-based MPP communities (2.1%, 3,622 relationships),
MPs with reported PPIs (1.2%, 2,003 relationships), MPs with direct PPIs (0.3%, 543 relationships),
and only MPs themselves (1.1%, 1,881 relationships). For example, CHRNA9 may play a role in the
regulation of adherens junction via interacting with EGFR and ERBB2, which were identified by our
reported-PPI based Sg;;, approach (Fig. Sb). However, this regulatory relationship cannot be observed
by considering only MPs with reported/direct PPIs and only MPs themselves. (¢) Heat maps of meta-
z-scores for five types of MPP community- (or MP-) regulated pathways between 994 overlapping
MPP communities (or MPs) and 65 cancer-related pathways in 15 cancers. We constructed and
compared the maps of CaMPNets for these five types of MPP community- and MP-regulated pathways.
The result indicates that the heat maps of meta-z-scores between reported PPI-based and direct PPI-
based communities displayed a higher positive correlation (R = 0.632) than any other two heat maps

(R < 0.536).
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Supplementary Figure 19. Characteristics of CaMPNet-based networks.

(a) Degree distributions of the networks constructed by 1,862 reported PPI-based CaMPNets (top) and
1,009 direct PPI-based CaMPNets (bottom) in different cancer types illustrating scale-free topology.
These networks were evaluated based on the scale-free network characteristic, described as P(k) ~ k7,
where vy is the degree exponent in which the probability of a node (MPP community) with k& links
(number of community-regulated pathways) decreases as the node degree increases along a log—log
plot. The degree exponent y values ranged between 1.184 and 1.990 in these networks. (b) Pie charts
of 405 reported-PPI-based MPP communities (top) and 187 direct-PPI-based MPP communities

(bottom), which were considered hubs in the network if their degree was > 26 and > 17 (degrees within
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the top 25% of all communities), respectively, in the five groups (top subpanel) and in the top 10

families (bottom subpanel) containing the most members.
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Supplementary Figure 20. Heat map and hierarchical clustering of meta-z-scores for
community-regulated pathways between direct PPI-based MPP communities and 65 cancer-

related pathways in 15 cancers.

The top corresponding clusters, ranked by cluster size, for direct PPI-based community-regulated

pathways are shown, and details of the clusters are provided in Supplementary Data 4.
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Supplementary Figure 21. Polar histograms showing the involvement scores of the top 10
reported PPI-based MPP communities with high frequencies of regulated pathways in 15 human

cancers for the (a) 2"%-, (b) 3", and (c) 4™-ranked clusters according to group size.

The label outlines surrounding the polar histogram indicate the cancer type. The most external circle
displays the frequencies of regulated pathways for MPP communities from high (blue) to zero (white).
The regulated pathways for the (a) 2"- (135 communities), (b) 3™ (119 communities), and (¢) 4-
ranked (105 communities) clusters are selected and visualized by frequencies of at least 0.50. The
involvement scores (i.e., —logio enrichment P value) of community-regulated pathways in the
CaMPNets are shown in the internal circles from high (orange) to low (light orange) and zero (white).
Of note, the number symbols refer to the pathways listed in Figure 3c¢. For example, the cell cycle

pathway is No. 21.
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Supplementary Figure 22. Frequency of reported PPI-based MPP communities involved in

cancer-related pathways relevant to (a) immune response and (b) viral infection.

The frequency of MPP communities for a pathway is given by the number of involved communities
divided by 1,862 communities. We derived 15 immune-related pathways and 23 viral infection-related
pathways according to their connections with pathways (red) in the ‘Immune system’ and ‘Infectious
diseases: Viral’ categories. The orders of the cancers and pathways are sorted by the sum of the

community frequencies of all the selected pathways and cancer types, respectively.
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¢The Pearson’s r between direct PPI-based CaMPNet profiles of two cancers is higher than 0.4.
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Supplementary Figure 23. Second cancer relationships of the 15 cancer types using CaMPNet profiles, gene expression data sets of
microarrays assembled from the GEO database, gene expression data sets assembled from TCGA RNAseq data sets, and cancer-related

gene sets in the DisGeNet database.

(a) Second cancer list provided by the American Cancer Society, Inc?!. In comparison to recurrence, which is when the cancer comes back after
treatment, a second cancer is defined as when a cancer survivor subsequently develops a new and unrelated cancer. (b) Distribution between the
Fos scores and numbers of predicted relationships for 15 cancer types suggested by 14 approaches using the correlation value or Jaccard index at
different thresholds. Here, the Fos score, for which precision is weighted higher than recall, is used to avoid the selection of approaches with certain
thresholds, suggesting almost all possible relationships. (¢) Heat map of the correlations (blue; lower triangle) and Jaccard indexes (orange; upper
triangle) of reported PPI- (left) and direct PPI-based (right) CaMPNet profiles for 15 cancer types (Supplementary Data 3 and 4). The Jaccard
similarity coefficient J(A4, B) is given as J(4,B) = |AN B|/|A U B|, where A N B is the number of common community-regulated pathways
(intersection set) in cancers A and B, and A U B is the number of union pathways in cancers A and B. The values indicate pairs of cancers with a
Pearson’s 7> 0.4 or a Jaccard index > 0.15 as determined by the highest Fo.s score using the second cancer list?!. Notably, two cancers with highly
similar CaMPNet profiles were often observed to be second cancers for each other. (d) Relationships of the 15 cancer types suggested by the votes
of six and four different approaches using the correlation value (blue grids; lower triangle) and the Jaccard index (orange grids; lower triangle),
respectively. The values indicate the number of approaches that suggested the pairs of cancers. The yellow boxes show the second cancer

relationships recorded in the second cancer list*!. PCC: Pearson correlation coefficient.
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Supplementary Figure 24. Prognostic significance among MPs by themselves, reported PPI-
based MPP communities, and reported PPI-based MPP community-regulated pathways across

human cancers.

The frequencies of MPP communities with more significant prognostic associations in 10-year overall
survival are higher than those of MPs by themselves in 15 cancers regardless of whether the patients
were stratified by the (a) auto-select best cutoff (25-75%) or (b) median (50%) for high or low
combined scores. Similarly, members of community-regulated pathways showed a more significant
prognostic association with 10-year overall survival for patients split by the (¢) median or auto-select

best cutoff (Fig. 4a) scores than MPs by themselves regardless of the cancer type. Cancers are ranked
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by the sum of frequencies for significant prognostic outcomes (P < 0.05, log-rank test). (d) Scatter plot
of gene numbers in community-regulated pathways versus the prognostic significance (—logio P) of

10-year overall survival assessed by a log-rank test. The distributions of gene numbers show no

correlation (R = 0.09) with their prognostic significance.
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Supplementary Figure 25. Prognostic significance among MPs by themselves, direct PPI-based
MPP communities, and direct PPI-based MPP community-regulated pathways across human

cancers.

The frequencies of direct PPI-based MPP communities with more significant prognostic associations
in 10-year overall survival are higher than those of MPs by themselves in 15 cancers regardless of
whether the patients were stratified by the (a) auto-select best cutoff (25-75%) or (b) median (50%)
for high or low combined scores. Similarly, members of direct PPI-based community-regulated
pathways showed a more significant prognostic association with 10-year overall survival for patients
split by the (c) auto-select best cutoff or (d) median scores than MPs by themselves regardless of the
cancer type. Cancers are ranked by the sum of frequencies for significant prognostic outcomes (P <
0.05, log-rank test). (e) Scatter plot of gene numbers in direct PPI-based community-regulated
pathways versus the prognostic significance (—logio P) of 10-year overall survival assessed by a log-
rank test. The distributions of gene numbers show no correlation (R = 0.09) with their prognostic

significance.
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Supplementary Figure 26. Volcano plots presenting the global meta-z-scores of adverse (red) and
favorable (green) prognostic associations versus global meta-z-score of involvement for (a) 1,862

MPP communities and (b) 65 cancer-related pathways across 15 cancers.

Gray dots represent non-enriched MPs or pathways (global meta-z < 1.64, or nominal one-sided P >
0.05) and insignificant prognostic MPs or pathways (|global meta-z| < 1.96, or nominal two-sided P >
0.05). The ten highest ranking adverse and favorable MPs (or pathways) were labeled and separately

ranked by the absolute value of global meta-z-scores for prognostic significance.
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Supplementary Figure 27. Analysis and validation of CHRNADY interacting protein candidates.

(a) Heat map of similarities among CHRNAO interacting proteins. The similarity scores, ranging from

0 (blue; dissimilar) to 1 (yellow; similar), were evaluated by co-expression analyses of expression

profiles in Breast Invasive Carcinoma (BRCA) tumor samples, sequence similarities, and RSS scores

of GO terms for any two proteins potentially interacting with CHRNAO9 (details in Supplementary

Note 10). Here, the predicted results of the CHRNA9-UBC template are not shown because the number

of polyubiquitin-C (UBC) interacting proteins (9,783) was far greater than that of other proteins in the

reported PPI data. To select representative interacting proteins, we first used two-way hierarchical

clustering to cluster 64 CHRNAY interacting proteins with Sg;; > 3.0 into five subgroups. We then
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selected at least one candidate in each subgroup (total of 18 candidates; e.g., ERBB2, FYN, and COPS6)
to further verify by immunoprecipitation (IP) based on the several criteria (details in Supplementary
Note 10). The color schemes on the right show the four scores (orange: high; white: low). (b) All 64
candidates in the five subgroups with Sg;;, > 3.0 (medium confidence), containing 14 candidates with
Ssim = 3.6 (high confidence, red). (¢) Interactions of nAChRs reported by previous works. Among 18
representative candidate partners of CHRNA9, four have been proposed to bind to nAChRs. For
example, the human 42-amino acid B-amyloid peptide (AB1-42) derived from amyloid precursor protein
(APP) maintains the tight association characteristic with CHRNA7 in PC12 cells®®. A previous study
demonstrated that neuronal acetylcholine receptor subunit a7 (CHRNA7) may interact with epidermal
growth factor receptor (EGFR) to promote EGFR localization to the sperm head and activate EGFR to
promote fertilization®. Tyrosine-protein kinase Fyn (FYN) was suggested to be associated with
nAChRs”7!; however, Kumar et al. indicated that FYN interacts with neuronal acetylcholine receptor
subunit f4 (CHRNB4) but not CHRNA7 or CHRNAJ in the human sperm’?. Proto-oncogene tyrosine-
protein kinase Src (SRC) was known to directly bind to CHRNA77>"* and was associated with
neuronal a3B4a5 acetylcholine receptors’®. Although there was no study indicating that 18 selected
candidates interact with CHRNAY, the findings for four binding proteins of nAChRs provide their
predictable associations with CHRNAO9. (d) Functional enrichment of the KEGG cancer-related
pathways (adjusted P value < 0.05) for each subgroup using a Bonferroni-corrected hypergeometric
test. In comparison with CHRNA9, which was annotated in only the neuroactive ligand-receptor
interaction pathway according to KEGG database’, these interacting protein candidates in the five
subgroups could be distinctively connected to 13 pathways. For example, ERBB2 and ERBB3 of

subgroup 2 were associated with the ErbB and calcium signaling pathways.
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Supplementary Figure 28. Effects of CHRNA9 knockdown on the hepatitis B pathway of liver

hepatocellular carcinoma (LIHC).

(a) Hep3B cells were transfected with scramble (SC), CHRNA9 knockdown 1 (KD1) and CHRNA9
KD2 CRISPR/Cas9 virus for 48 hours and selected with puromycin for another 48 hours. The cells
were immunoblotted with a CHRNA9 antibody to determine the protein knockdown efficiency.
GAPDH served as the internal control. (b) Differential expression profiles of the hepatitis B pathway,
which contained 44 genes with significant up-/downregulation in at least one test condition for Hep3B
cell lines with CHRNA9 KD1 or KD2. For each gene, the fold change values, displayed in the color
scheme (red: upregulated; green: downregulated; white: no change), are listed in order as (from left to
right) the control (no treatment) versus CHRNA9 KD1 and CHRNA9 KD?2. The fold changes of these
genes in TCGA LIHC RNA-seq data derived from HBV-infected tissue samples are shown in the
rightmost column. (¢) Proposed model for the regulation of immune response, apoptosis, LIHC
invasion and metastasis in the hepatitis B pathway via the knockdown of CHRNA9. Note that this
proposed model displays only a part of the CHRNA9 community-regulated hepatitis B pathway in
LIHC. HBV: hepatitis B virus; HBx: hepatitis B virus X protein; LHBs: large hepatitis B surface
protein; MHBs: middle hepatitis B surface protein; SHBs: small hepatitis B surface protein. The cells
were collected to measure the gene expression of (d) selected upregulated genes in the hepatitis B
pathway and (e) the gene expression of HBsAg via Q-PCR analysis. (f) The supernatants of starvation
medium in Hep3B cell lines with CHRNA9 KD1 and KD2 were collected and measured the amount
of HBsAg by enzyme-linked immunosorbent assay (ELISA). The OD values of HBsAg were
normalized with cell numbers. The results are expressed as the fold of the starvation control. The error
bars indicate the mean + standard error. Data were analyzed with Student’s t-tests; all P values were
two-sided. P values less than 0.05 and 0.01 are indicated by an asterisk and double asterisk,

respectively. C: control; 1: CHRNA9 KD1; 2: CHRNA9 KD2.
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Supplementary Figure 29. Enrichment of differentially expressed genes involved in the pathways
of CaMPNets and other KEGG pathways in MDA-MB-231 cells and A549 cells subjected to

CHRNA9 or SLC16A7 knockdown.

(a) CHRNAO9 and (b) SLC16A7 CaMPNets in BRCA (left) and Lung Adenocarcinoma (LUAD; right)
showing significantly enriched pathways (red lines, P < 0.05) via pathway enrichment analysis as
calculated by hypergeometric distribution. To additionally validate the CaMPNet in a selective and
systematic way, we performed microarray analysis to examine the effects of CHRNA9 and SLC16A7
knockdown in MDA-MB-231 and A549 cell lines treated with CRISPR/Cas9 targeting the CHRNA9
and SLC16A7 gene loci, respectively. In the pathway enrichment analysis, all differentially expressed
genes (DEGs), upregulated DEGs, and downregulated DEGs were separately evaluated to elucidate
all the possible regulations between the control cells and CHRNA9/SLC16A7 knockdown cells.
Among 292 KEGG pathways, our results show that the percentages (>=39%) of enriched pathways in
CHRNA9 and SLC16A7 CaMPNets in BRCA and LUAD, filtered at enrichment P < 0.05, were
significantly higher than those (<25%) not in CaMPNets (P < 3 x 102, Fisher’s exact test) except for
the SLC16A7 CaMPNet in BRCA (39% for CaMPNet versus 25% for the others, P = 6 x 102). For
example, genes of the cell cycle pathway strongly associated with CHRNA9 and SLC16A7
communities in BRCA and LUAD were significantly altered in the MDA-MB-231 and A549 cells in
which CHRNA9 and SLC16A7 were knocked down compared to those in the control. Differentially
expressed genes, including upregulated and downregulated DEGs, were defined as those with at least
a 1.5-fold expression change in the MDA-MB-231 and A549 cell lines. Gene expression in the control
(no knockdown) cell line was compared with that in the CHRNA9 or SLC16A7 knockdown cell lines.
The solid lines denote regulated pathways in CaMPNets filtered at an enrichment P < 0.05. The

thickness of the lines is proportional to the significance of involvement (—logio enrichment).
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BT474 MDA-MB-231 A549 RT4 MIA PaCa-2 IP: 18 proteins
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BT474 MDA-MB-231 A549 RT4 MIA PaCa-2
i CHRNA9 pro1t§ins CHRNA9 pro1t§ins CHRNA9 pro1t(§ins CHRNA9 pro1t§ins CHRNA9 pro1t§ins
IB
CHRNA9 5.91* N/A 17.54* N/A 27.62* N/A 63.79* N/A 12.42* N/A
SRC 9.36* 55.83* 11.58* 25.87* 22.00* 28.92** 8.67* 73.31* 23.58* 35.37**
SFN 4.62* 51.29* 17.33* 27.57* 20.21* 42.81* 22.10** 69.80* 19.32* 40.64*
EGFR 12.25** 24.25* 411* 36.14* 9.48* 47.54* 7.42* 6.92* 5.23* 14.48*
ERBB2 9.55* 24047 9.37* 347.49* 9.22* 63.21* 8.87* 53552* 12.07* 727.27*
ERBB3 11.16* 1762.8* 40.07* 51.38* 3.83* 27.35** 13.40* 311.68* 8.86* 173.50**
COoPs6  10.10* 35.07* 11.33* 21.15* 10.62* 261.76* 14.70* 32.88* 7.22* 23.12*
INSR 13.02* 29.92* 9.61* 50.87** 16.09* 32.10* 14.33* 95.93* 6.98* 42.50*
FYN 2.48* 1.73* 4.24* M.A.* 1.17* M.A*  17.43* 107.58* M.A* 2.82*
CSNK1D 11.74* 2195 MAX M.A*  20.72* 591.70* 45.38* 11.36** M.A* 10.75*
YWHAG  9.26* 13.16* 7.13* 124.89* 7.70* 30.98* 12.83* 29.50* 4.85* 11.61*
HCK 31.08* 4285 27.11* 43.35° 1447 18.94* 243* 2.36* 41.19* 36.98*
ATXN1 30.52** 17.48* 9.87* 33.86* 25.10* 18.94** 10.23* 17.91* 4.41* 15.74*
APP 16.77** 95.25* 21.53* 4.47* 2.49* 44.05 17.38* 5.19* M.A.* 0.43*
ERBB4 20.38* 22.70* 174.56* 2.65* 28.58* 1.86* 48.27* M.A* 3150 33.28*
YWHAH 10.32* 35.81* 9.31* 64.58* 7.44* 11.63* 16.50* 24.23* 9.49* 31.97*
YWHAB  2.70* 4.03* 3.53* 12.83*  3.44* 0.89* 3.98*  8.80* 2.75* 16.53*
ABCB1 2.50* 2.52* 3.05* 25.06* 2.63* 1.61* 1.47* 1.64* 1.02* 2.44*
PLK1 10.43* 11.37* 6.64* 7.59* 3.21* 7.41* 6.77* 1237 2.87* 27.94*

Supplementary Figure 30. Co-immunoprecipitation of CHRNAY and 18 representative binding

partners.

Cell protein lysates from breast (BT474 and MDA-MB-231), lung (A549), bladder (RT4) and
pancreatic (MIA PaCa-2) cancer cells were collected and incubated with IgG beads and (a) CHRNA9
antibody or (b) 18 candidate protein antibodies overnight. The protein/antibody/bead mixtures were
washed and immunoblotted with a light chain specific secondary antibody, followed by a CHRNA9
antibody or interacting protein antibody hybridization (Supplementary Table 7). IgG
immunoprecipitation served as a negative control. Each protein was identified by the input control and

its molecular weight. IB: immunoblot. Source data are provided as a Source Data file. (¢) To define

positive interactions, the band intensities of the immunoprecipitated proteins and their input loading
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controls on blots were measured using ImagelJ software and the IP ratio was calculated (IPR, %; details
in Methods). The IP bands that can be identified at a minimum level are approximately 3% (e.g.,
ABCBI1 in MDA-MB-231 cells and PLK1 in A549 cells); therefore, we used the IP ratio as the
threshold to determine positive interactions. A candidate that passes the threshold of both reciprocal
IP assays is considered a positive interaction. The negative interactions are colored blue. Here, we
found that the results of the IP analysis are similar to those of the FRET efficiency analysis. For each
input loading control, 20 pug and 50 pg of protein are indicated by an asterisk and a double asterisk,

respectively. M. A.: misalignment.
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a (continued)
CSNK1D CHRNA9 YWHAG CHRNA9 Merge FRET

YWHAB CHRNA9 Merge FRET YWHAH CHRNA9 Merge FRET

INSR CHRNA9 Merge FRET APP CHRNAD9 Merge FRET
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a (continued)
FYN CHRNA9 Merge FRET PLK1 CHRNA9 Merge FRET

HCK CHRNA9 Merge FRET ERBB4 CHRNA9 FRET

ATXN1 CHRNA9 FRET ABCB1 CHRNA9 FRET
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b (continued)

CSNK1D CHRNA9 Merge FRET YWHAG CHRNA9 FRET

YWHAB CHRNAD9

FRET YWHAH CHRNA9 Merge FRET

INSR CHRNA9 Merge FRET CHRNA9 Merge FRET
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b (continued)
FYN CHRNA9 Merge FRET PLK1 CHRNA9 Merge FRET

CHRNA9 ERBB4 CHRNA9 Merge FRET

ATXN1 CHRNA9 FRET ABCB1 CHRNA9 FRET
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Supplementary Figure 31. Forster resonance energy transfer (FRET) analysis of CHRNA9 and

18 representative binding partners in BT474 and MDA-MB-231 cell lines.

(a) BT474 and (b) MDA-MB-231 cells were hybridized with CHRNA9 and interacting proteins using
secondary rhodamine and fluorescein isothiocyanate (FITC) dyes. The above cells were then examined
under a confocal microscope imaging system via FRET module analysis (details in Methods). The
photos show interacting protein (green) expression, CHRNA9 (rhodamine conjugation; red)
expression, merged images, and FRET efficiency between CHRNAO and the interacting proteins. The
green/yellow/red colors represent the intensity of FRET. Acceptor FRET imaging experiments were
performed on a Leica TCS SP5 Confocal Spectral Microscope Imaging System (Leica Microsystems),
and the acceptor photobleaching Leica software module was used in the FRET assay. Background
control of (¢) BT474 and (d) MDA-MB-231 cells were hybridized with 18 protein antibodies and

secondary FITC dye, followed by rhodamine hybridization without the CHRNA9 antibody. The
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black/blue colors represent the background signal in the FRET analysis. (e) FRET efficiency between
CHRNA9 and CAV1 (caveolin-1) in BT474 and MDA-MB-231 cells as a negative control. (f)
Comparison of FRET efficiencies between CHRNAY and 18 interacting candidates, their background
signals, and the negative control on BT474 and MDA-MB-231 cells. According to the background
signals of 18 interacting candidates and the signal between CHRNA9 and CAV1 (negative control) in
both BT474 and MDA-MB-231 cells, the maximum FRET efficiency (i.e., ERBB4 in MDA-MB-231)
with a standard error was selected as the threshold (0.045; dashed line) to define positive interactions.

The error bars indicate the mean + standard error. Source data are provided as a Source Data file.
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Supplementary Figure 32. Co-immunoprecipitation of SLC16A7 and four selected interacting

partners.

Cell protein lysates from breast (MDA-MB-231) and lung (A549) cancer cells were collected and
incubated with IgG beads and (a) SLC16A7 antibody or (b) individual candidate protein antibodies
overnight. The protein/antibody/bead mixtures were washed and immunoblotted with a light chain-
specific secondary antibody, followed by a SLCI6A7 antibody or interacting protein antibody
hybridization. The IgG immunoprecipitation served as a negative control. Each protein was identified
by 20 pg protein input control and its molecular weight. Source data are provided as a Source Data
file. (¢) To define positive interactions, the band intensities of the immunoprecipitated proteins and
their input loading controls on blots were measured using Image] software and the IP ratio was

calculated (IPR, %; details in Methods). Similar to the IP analysis of CHRNAY, we used the same
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threshold (>3%) to determine positive interactions. A candidate that passes the threshold of both
reciprocal IP assays is considered a positive interaction. The negative interactions are colored blue. (d)
Summary table of the IP results. (e) Percentage of interacting proteins that associate with SLC16A7

as determined by the IP assay.
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Supplementary Figure 33. Analysis of interaction between CHRNA9 and ERBB2.

(a) Protein expression levels of CHRNA9, ERBB2 and GAPDH in one non-malignant breast cell lines

(MCF-10A), six HER2-enriched (SKBR3, AU565, BT474, UACC893, HCC1954, and HCC1419) and
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six TNBC (Hs578T, MDA-MB-231, BT549, HCC1937, MDA-MB-436, and MDA-MB-468) cancer
cell lines. (b) Time-dependent IP assay carried out with a CHRNA9 antibody on BT474 cells. ERBB2
and phospho-ERBB2 (Y 1248) antibodies were immunoblotted for PPIs after treatment with 10 uM
nicotine in a time-dependent manner from 0-10 minutes. Nicotine-induced activation of EGFR and
ERBB2 receptors in a time-dependent manner. (¢) BT474 and (d) MDA-MB-231 cells were exposed
to 10 uM nicotine from 0-10 minutes and immunoblotted for the phospho-EGFR (T1068) and
phospho-ERBB2 (Y 1248) proteins. Total-EGFR, total-ERBB2, and GAPDH were used as internal
controls. (e) BT474 and (f) MDA-MB-231 cell lysates treated with nicotine for 0-30 minutes were
immunoblotted for phospho-AKT (S473) protein expression. Total-AKT and GAPDH were used as
internal controls. (g) Plasmids containing ERBB2-YFP and CHRNA9-CFP were co-transfected into
MDA-MB-231 cells for the FRET (Forster resonance energy transfer) activity assay. Higher FRET
activity is indicated in red, and lower FRET activity is shown in blue. The presented single MDA-MB-
231 cell demonstrates FRET activities with or without 10 uM nicotine treatment. (h) Schematic
representation of the CHRNA9 and ERBB2 split luciferase complementation assay. Interaction
between the CHRNA9-Cluc and ERBB2-Nluc proteins bring the luciferase fragments in close enough
proximity to measure the activity by luciferin addition. (i) Split luciferase complementation assay
optimization was carried out using protein expression analysis of the pairs CHRNA9-Nluc/ERBB2-
Cluc or CHRNA9-Cluc/ERBB2-Nluc in MDA-MB-231 cells. Luciferase activity was measured by
IVIS (non-invasion in vivo imaging system), demonstrated in the color bar. In order to find out the
optimized interaction paring of both ERBB2 and CHRNAY9 fusion proteins with luciferase gene
fragments, we tested the luciferase activity on MDA-MB-231 cells with ERBB2/Nluc-CHRNAY9/Cluc
and ERBB2/Cluc-CHRNAY9/Nluc expression. Observation via a non-invasive in vivo imaging system
(IVIS) showed that the ERBB2/Nluc and CHRNA9/Cluc combinations expressed higher luciferase
activity than combinations of the other fusion proteins. (j) Overexpression of the CHRNA9-Cluc and

ERBB2-Nluc fusion proteins in MDA-MB-231 cells as determined by western blot. Each plasmid was
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transfected dose-dependently, and protein expression was measured three days after electroporation.
CHRNAO9 and ERBB?2 antibodies were used to immunoblot for CHRNA9 and ERBB?2 fusion protein
expression. Expression levels of the fusion proteins ERBB2/Nluc and CHRNA9/Cluc gradually

increased in MDA-MB-231 cells following dose-dependent plasmid input.
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Supplementary Figure 34. Identification of CHRNAY inhibitors among FDA-approved drugs
using Homopharma. (a) Potential CHRNAY inhibitors identified by our previous method,
homopharma, for drug repurposing according to the interaction similarity between 1,543 FDA-
approved drugs and nicotinic acetylcholine receptors (nAChR) structures (e.g., acetylcholine-binding
protein with nicotine; PDB code: 1UW6). (b) Five groups of 41 nAChR and compound complexes
clustered by their interaction similarity score®’ (black: interaction energy is zero). Group 3 comprises

the binding modes of nicotine and nAChRs, and other groups are relative to modes for the other
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inhibitors. (¢) Superimposed structures of five groups and their conserved interacting residues (residue
numbering of the PDB code: 1UW6). Group 3 is considered a reference template due to the binding
mode of nAChR with the ligand nicotine. In comparison with group 3, complexes in group 1 lose
interactions between contacted residues (e.g., T144 and C187) and ligands (e.g., galantamine);
complexes in group 2 have additional interactions between residue C188 and target compounds (e.g.,
varenicline); complexes in group 4 lack Y89 to interact with ligands (e.g., mitotane); and complexes
in group 5 comprise the additional residues 1140, G141, S142, and D194, involved in interactions with

potential inhibitors (e.g., bupropion).
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Supplementary Figure 35. Comparison of binding modes between potential inhibitors and
nAChRs in group 3 (e.g., nicotine in CHRNAY9) and group 5 (e.g., bupropion in CHRNADY). (a)
Compound structures of potential CHRNAY9 inhibitors in groups 3 and 5. Compared with nicotine and
other inhibitors in group 3, bupropion belongs to group 5 and contains the moiety 1-(3-
chlorophenyl)propan-1-one, which can bind an additional subpocket (orange) in CHRNAY. (b)
Comparison of binding environments for groups 3 and 5. Inhibitors in group 5 not only bind contact
residues, such as W143 and Y192 that also share interactions with compounds in group 3, but also
comprise a moiety extending to an additional subpocket containing residues 1140, G141, S142, and
D194 (red circle) as a potential allosteric binding site. (¢) Interaction profile showing hydrogen bonds

and van der Waal forces between docked poses of these compounds in groups 3 and 5.
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Supplementary Figure 36. Nicotine-induced ERBB2 phosphorylation attenuation and

migration/invasion inhibition effects of bupropion on BT474 and/or MDA-MB-231 cells.

(a) Bupropion as an inhibitor to attenuate nicotine-induced EGFR and ERBB2 phosphorylation.
BT474 cells were treated with 10 pM nicotine with or without 0.1 and 1 uM bupropion, and
pretreatment with bupropion could inhibit nicotine-induced ERBB2 (Y1248) activation. GAPDH
served as the internal control. Migration inhibition effect of bupropion on (b) BT474 and (¢)MDA-
MB-231. A cell migration assay was terminated with bupropion pretreatment at 0.1 and 1 uM with or

without 10 uM nicotine. Cell photos were taken 24 hours for BT474 cells and 12 hours for MDA-MB-
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231 cells after drug addition. The cells were fixed with formaldehyde and stained with PI (red) for 30
minutes. The statistical analysis is shown in Figure 7¢,d. Invasion inhibition effect of bupropion on
(d) BT474 and (e) MDA-MB-231. Cells were placed onto matrigel invasion chambers in serum-
starved medium, and cells in the lower chambers were cultured using normal medium. Media in both
the upper and lower chambers contained 0.1 and 1 pM bupropion, and the cells were either treated or
not treated nicotine (10 pM) for 72 hours for BT474 cells and 48 hours for MDA-MB-231 cells. The
upper chambers were washed with PBS and fixed with formaldehyde for 30 minutes. Cells in the upper
chambers were stained with crystal violet for 2 hours, and photos were acquired under a microscope.
The numbers of migrated and invaded cells were calculated by Image] software, and the experiments

were repeated three times. The statistical analysis is shown in Figure 7e,f.
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Supplementary Figure 37. Nicotine-induced ERBB2 phosphorylation attenuation and

migration/invasion inhibition effects of bupropion on A549 cells.

(a) As an agent, bupropion attenuates nicotine-induced CHRNA9/ERBB2 dissociation, as detected by
an [P assay. A549 cells exposed to 10 uM nicotine or a control were subjected to bupropion
pretreatment at 0, 0.1 and 1 uM. An ERBB2 antibody was precipitated and immunoblotted for a
CHRNADO9 antibody, and ERBB2 expression was used as the loading control. When tested in vitro,
bupropion pretreatment dramatically inhibited the dissociation of the CHRNA9/ERBB2 complex with
or without nicotine dose-dependent treatment in lung cancer cells (A549) as determined by IP analysis
(b) A549 cells were treated with 10 uM nicotine with or without 0.1 and 1 uM bupropion, and
pretreatment with bupropion could inhibit nicotine-induced ERBB2 (Y 1248) and EGFR (T1068)
activation. GAPDH served as the internal control. Bupropion also significantly attenuated nicotine-
induced EGFR and ERBB2 phosphorylation in A549 cells, indicating that bupropion may be able to

prevent nicotine-induced carcinogenesis in lung cancer.
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Supplementary Figure 38. Nicotine-induced cancer cell signal/migration/invasion inhibition
effects of bupropion on scramble BT474 cells and CHRNAY9 (or ERBB2) knockdown BT474 cells.
BT474 cells were transfected with scramble (SC), CHRNA9 KD1, CHRNA9 KD2, ERBB2 KD1 and
ERBB2 KD2 CRISPR/Cas9 virus for 48 hours and puromycin-selected for another 48 hours. The cells
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were immunoblotted with (a) CHRNA9 and (b) ERBB2 antibodies to determine the protein
knockdown efficiency. GAPDH served as the internal control. (¢) ERBB2 phosphorylation in SC,
CHRNA9 KD1 and ERBB2 KD2 BT474 cells was assessed after bupropion pretreatment at 0.1 uM
with or without 10 pM nicotine. Total ERBB2 served as the internal control. The BT474 cells were
next assessed for their (d) migration and (e) invasion abilities at 24 hours and 72 hours after bupropion
treatment at 0.1 and 1 uM with or without 10 pM nicotine. The numbers of migrated and invaded cells
were calculated using ImagelJ software, and the experiments were repeated three times. The error bars
indicate the mean + standard error. Data were analyzed with Student’s t-test; all P values are two-sided.
P values less than 0.05 are indicated with an asterisk, and values less than 0.01 are indicated with two

asterisks.
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Supplementary Figure 39. Nicotine-induced cancer cell migration/invasion inhibition effects of
bupropion on scramble MDA-MB-231 cells and CHRNA9 (or ERBB2) knockdown MDA-MB-

231 cells.

MDA-MB-231 cells were transfected with scramble (SC), CHRNA9 KD1, CHRNA9 KD2, ERBB2
KD1 and ERBB2 KD2 CRISPR/Cas9 virus for 48 hours and puromycin-selected for another 48 hours.

The cells were immunoblotted with (a) CHRNA9 and (b) ERBB2 antibodies to determine the protein
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knockdown efficiency. GAPDH served as the internal control. The SC, CHRNA9 KD1 and ERBB2
KD2 MDA-MB-231 cells were assessed for their (¢) migration and (d) invasion abilities at 12 hours
and 48 hours after bupropion treatment at 0.1 and 1 pM with or without 10 uM nicotine. The numbers
of migrated and invaded cells were calculated using ImageJ software, and the experiments were
repeated three times. The error bars indicate the mean + standard error. Data were analyzed with
Student’s t-test; all P values are two-sided. P values less than 0.05 are indicated with an asterisk, and

values less than 0.01 are indicated with two asterisks.
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Supplementary Figure 40. Enrichment of significantly up- and down-regulated genes involved
in cancer- and metastasis-related pathways in xenograft mice subjected to bupropion and
nicotine treatment. Significantly up- or down-regulated genes were defined as those with at least a
2-fold expression change in the mammary tumor tissues of xenograft mice. The control (no treatment)
was compared with different treatment combinations of bupropion and nicotine, including the control
versus 100 pg kg™! bupropion (+), the control versus 200 pg kg™! bupropion (++), the control versus
nicotine exposure (+), the control versus 100 ug kg™ bupropion with nicotine exposure, and the control
versus 200 pg kg™ bupropion with nicotine exposure, shown from left to right. Nicotine was added to
the drinking water at 10 ug ml~!. Pathway enrichments of each up- (red) and down-regulated (green)
gene set were considered statistically significant at P values less than 0.05, as determined using a

hypergeometric test.
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Supplementary Figure 41. Analysis of the mechanisms of anti-metastasis on bupropion. (a)
Differential expression profiles of several metastasis-related pathways, including the focal adhesion,
ECM-receptor interaction, and cytokine-cytokine receptor interaction pathways, comprising 24 genes
with significant up- or down-regulation in at least one test condition for mice with or without bupropion

treatment (+ refers to 100 pug kg™'; ++ refers to 200 pg kg™ ') and/or nicotine exposure. For each gene,
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the fold change values are listed in order as (from left to right) the control (no treatment) versus 100
ug kg ! bupropion, 200 pg kg! bupropion, nicotine exposure, 100 ug kg~! bupropion with nicotine
exposure, and 200 pg kg™ ! bupropion with nicotine exposure. Nicotine was added to the drinking water
at 10 ug ml™'. The fold changes of these genes in TCGA BRCA RNA-seq data are shown. Among
these 24 genes, six genes (with an asterisk), including COLIA2, LAMA4, and FLT4, were oppositely
regulated between the experimental treatment data with only bupropion and the BRCA clinical tissue
sample data from TCGA. The fold change levels of these genes are demonstrated by the color scheme
(red: up-regulated; green: down-regulated; white: no change). Pathway enrichment was considered
statistically significant at P values less than 0.05, as determined using a hypergeometric test. (b)
Proposed model for regulation of the cell motility and cellular community in the focal adhesion
pathway through the inhibition and activation of CHRNA9 by bupropion and nicotine, respectively.
Genes with differential expression in at least one test condition are colored blue. (¢) Bupropion
inhibiting the expression of nicotine-induced focal adhesion-related proteins. Serum-starved MDA -
MB-231 cells were treated with bupropion dose-dependently with or without nicotine for 24 hours,
and bupropion was added 30 minutes prior to nicotine exposure. Proteins, including VASP, ROCK1,
MYLK2, and MYLPF, were analyzed by immunoblotting. (d) Nicotine blockade by CHRNAY gene
editing in MDA-MB-231 cells mediates the focal adhesion pathway. CRISPR/Cas9 mediates
scrambled (SC) and CHRNA9-targeted (CHRNA9 KD1) viruses were introduced into MDA-MB-231
cells for 72 hours and puromycin-selected for 48 hours. Parental control (C), SC, and CHRNA9 KD1
cells were treated with or without nicotine for 24 hours, and focal adhesion-related protein expression

was measured via SDS-PAGE. GAPDH served as the internal control.
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Supplementary Figure 42. Heat map of differentially expressed genes and a proposed model for
bupropion as a CHRNASY inhibitor against nicotine in the tight junction and adherens junction

pathways.

(a) Differential expression profiles of several metastasis-related pathways, including the tight junction,
and adherens junction pathways, containing 24 genes with significant up- or down-regulation in at
least one test condition for mice with or without bupropion treatment (+ refers to 100 pg kg '; ++
refers to 200 pg kg™ ') and/or nicotine exposure. The fold change levels of these genes are displayed in
the color scheme (red: up-regulated; green: down-regulated; white: no change). (b) Proposed model
for regulation of the cellular community in the tight junction and adherens junction pathways through
the inhibition and activation of CHRNAY by bupropion and nicotine, respectively. For each gene, the
fold change values are listed in order (from left to right) as 100 ug kg ' bupropion, 200 ug kg™

bupropion, nicotine exposure, 100 ug kg ! bupropion with nicotine exposure and 200 pg kg
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bupropion with nicotine exposure. Nicotine was added to the drinking water at 10 ug ml™!. Pathway
enrichment was considered statistically significant at P values less than 0.05, as determined using a

hypergeometric test.
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Supplementary Figure 43. Matrix layout for all intersections of (a) reported PPI and (b) direct
PPI data in five public databases (i.e., BioGRID, IntAct, MINT, DIP, and MIPS), sorted by size
(i.e., PPI number).

The dark circles in the matrix indicate the sets that are part of the intersection. In five public PPI
databases, most of the reported PPIs (97%, 728,943/749,087) were assembled from the BioGRID and
IntAct databases, and only 3,422 (0.5%) PPIs were recorded in all five databases. Similarly, we also
observed that 95% (30,339) of 31,810 direct physical interactions were collected from the BioGRID

and IntAct databases, and the overlap of all databases was 4.2% (1,342).
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Supplementary Figure 44. The intersections between (a) all PPI and (b) high confidence PPI data
in the STRING database (blue circle) and all reported PPI (red circle) and direct PPI (orange

circle) data in five reference databases.

STRING human protein network data (9606.protein.links.v10.txt) were downloaded from the STRING

database! (https:/string-db.org/cgi/download.pl). Among 770,140 human MP PPIs in STRING,

119,911 high-confidence PPIs were selected using the suggested threshold (>0.7; https://string-

db.org/cgi/help.pl).
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Supplementary Table 1. KEGG cancer-related pathways used in our analysis

No. |[KEGG cancer-related pathway No. |[KEGG cancer-related pathway
1 |hsa00010: Glycolysis / Gluconeogenesis 34 |hsa04520: Adherens junction
2 |hsa00020: Citrate cycle (TCA cycle) 35 |hsa04630: Jak-STAT signaling pathway
3 |hsa00030: Pentose phosphate pathway 36 |hsa04640: Hematopoietic cell lineage
4 |hsa00190: Oxidative phosphorylation 37 |hsa04662: B cell receptor signaling pathway
5 |hsa00250: Alanine, aspartate and glutamate metabolism 38 |hsa04810: Regulation of actin cytoskeleton
6 |hsa00260: Glycine, serine and threonine metabolism 39 |hsa04916: Melanogenesis
7 |hsa00330: Arginine and proline metabolism 40 |hsa05160: Hepatitis C
8 |hsa00471: D-Glutamine and D-glutamate metabolism 41 |hsa05161: Hepatitis B
9 |hsa00564: Glycerophospholipid metabolism 42 |hsa05166: HTLV-I infection
10 |hsa00980: Metabolism of xenobiotics by cytochrome P450| 43 |hsa05169: Epstein-Barr virus infection
11 |hsa03022: Basal transcription factors 44 1hsa05200: Pathways in cancer
12 |hsa03320: PPAR signaling pathway 45 |hsa05202: Transcriptional misregulation in cancer
13 |hsa04010: MAPK signaling pathway 46 |hsa05203: Viral carcinogenesis
14 |hsa04012: ErbB signaling pathway 47 |hsa05204: Chemical carcinogenesis
15 |hsa04020: Calcium signaling pathway 48 |hsa05205: Proteoglycans in cancer
16 |hsa04024: cAMP signaling pathway 49 |hsa05206: MicroRNAs in cancer
17 |hsa04060: Cytokine-cytokine receptor interaction 50 |hsa05210: Colorectal cancer
18 |hsa04062: Chemokine signaling pathway 51 |hsa05211: Renal cell carcinoma
19 |hsa04064: NF-kappa B signaling pathway 52 |hsa05212: Pancreatic cancer
20 |hsa04066: HIF-1 signaling pathway 53 |hsa05213: Endometrial cancer
21 |hsa04110: Cell cycle 54 |hsa05214: Glioma
22 |hsa04115: p53 signaling pathway 55 |hsa05215: Prostate cancer
23 |hsa04120: Ubiquitin mediated proteolysis 56 |hsa05216: Thyroid cancer
24 |hsa04142: Lysosome 57 |hsa05217: Basal cell carcinoma
25 |hsa04150: mTOR signaling pathway 58 |hsa05218: Melanoma
26 |hsa04151: PI3K-Akt signaling pathway 59 |hsa05219: Bladder cancer
27 |hsa04210: Apoptosis 60 |hsa05220: Chronic myeloid leukemia
28 |hsa04310: Wnt signaling pathway 61 |hsa05221: Acute myeloid leukemia
29 |hsa04340: Hedgehog signaling pathway 62 |hsa05222: Small cell lung cancer
30 |hsa04350: TGF-beta signaling pathway 63 |hsa05223: Non-small cell lung cancer
31 |hsa04370: VEGF signaling pathway 64 |hsa05230: Central carbon metabolism in cancer
32 |hsa04510: Focal adhesion 65 |hsa05231: Choline metabolism in cancer
33 |hsa04512: ECM-receptor interaction

- 130 -



Supplementary Table 2. Expression datasets of RNA-seq and clinical outcome data in 15 cancer

types assembled from TCGA used in our analysis

Number of tumor samples
(Number of patients used
in survival analysis)

Abbreviated  Number of

Cancer types”
P name normal samples

Bladder urothelial carcinoma BLCA 19 408 (403)
Breast invasive carcinoma BRCA 113 1102 (1092)
Cholangiocarcinoma CHOL 9 36 (36)
Colon adenocarcinoma COAD 41 287 (282)
Head and neck squamous cell carcinoma HNSC 44 522 (518)
Kidney chromophobe KICH 25 66 (64)
Kidney renal clear cell carcinoma KIRC 72 534 (529)
Kidney renal papillary cell carcinoma KIRP 32 291 (287)
Liver hepatocellular carcinoma LIHC 50 374 (369)
Lung adenocarcinoma LUAD 59 517 (495)
Lung squamous cell carcinoma LUSC 51 502 (486)
Prostate adenocarcinoma PRAD 52 498 (497)
Rectum adenocarcinoma READ 10 95 (93)
Thyroid carcinoma THCA 59 513 (504)
Uterine corpus endometrial carcinoma UCEC 24 177 (174)

*Extending the first 12 tumor types profiled by the TCGA Pan-Cancer project, we selected a total of
15 cancer types in this study based on the following criteria: (1) for each selected cancer type, the
numbers of both the tumor and the corresponding normal samples were at least five (e.g., excluding
ovarian carcinoma and lymphoblastic acute myeloid leukemia that have no normal samples); (2) the
cancer types from the same tissues or organs complying with criterion 1 were included (e.g., kidney
chromophobe, kidney renal clear cell carcinoma, and kidney renal papillary cell carcinoma); (3)
glioblastoma multiforme was excluded due to only containing an organ-specific control, that is, the

normal tissue data from participants who did not have cancer.
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Supplementary Table 3. The feature summary of four PPI predicted approaches

Features
Post- Pathway
Methods Quality of Sequence |Evolutionary|Network Domains Gene co- | Text |Genomic context| translational | Physicochemical and
reported PPI similarity analysis  |topology expression| mining associations modification properties functional
(PTM) annotations
Considering the 1. Sequence Evaluated the |Topology |Using the
quality of similarity (Sjss) |evolutionary  |of the PPI |topological
reported/direct PPIs |2. Normalized |distance across [network |domain
SIM (Squ) for selecting  |ranking of multiple in humans|annotations from N/A N/A N/A N/A N/A N/A
PPI templates using [sequence species (Ses)  |(Stopo) UniProt to
similarity (Srank) search PPI
templates (Sirs)
User-dependent Sequence
Generalized selection; for similarity
Interolog  |C amPple, we used N/A N/A N/A N/A N/A N/A N/A N/A N/A
mapping re.ported PPIs and
direct PPIs as the
templates
Considering the Gene co- Co- 1. Considering Protein pairs
quality of reported expression |mentioned |neighborhood of were recorded
PPIs information |in gene pairs in the in pathway
was based |PubMed |genome databases
STRING N/A N/A N/A N/A on gene Abstracts |2. Considering gene N/A N/A
expression fusion events
datasets 3. Considering gene
from the CO-Ooccurence across
GEO genomes
Sequence Known Topology |Using the Gene co- Using the PTMs |[Structural-chemical |Using the
similarity orthologous  |of the PPI |domain expression (e.g., features from protein |Gene
interactions in |network |annotations of |information methylation, sequence were used |Ontology
model in humans|human proteins |was based phosphorylation) |to predict the fraction [(GO) terms
FpClass N/A organisms and from In.terPro on gene N/A N/A of huplan pf a.protein's resifiues (BP, CC and
paralogous and UniProt as |expression proteins as the |in disordered regions, |MF) as the
interactions in the feature sets |datasets feature sets to  |and chemical features |feature sets to
humans to compute from the compute (charge and compute
interaction GEO interaction isoelectric point) interaction
scores scores scores
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Supplementary Table 4. Comparisons of the performances of four approaches using the standard positive (derived from IntAct,

BioGRID, DIP, MIPS, and MINT) and negative (RSSsr < 0.4 or RSScc < 0.4) sets

Methods Positive set AUC? Numbers of F2 score®
(suggested threshold) (i.e., predicted PPIs” Overall  Enzymes Receptors Miscellaneous Transporters Unclassified
reported/direct (89 MPs) (1,073 (296 MPs) (450 MPs) MPs
PPIs) MPs) (686 MPs)
Reported PPI-based
MP reported PPIs 0.924 64,1324 0.619 0.711 0.519 0.612 0.539 0.751

SIM (Sgim = 3.6)
direct PPI-based SIM

MP direct PPIs 0.932 14,027¢ 0.530 0.714 0.512 0.364 0.640 0.576
(Ssim 2 3.7)
FpClass MP reported PPIs 0.811 0.412¢ 0.159 0.483 0.374 0.437 0.334

43,417

(probability > 0.47) MP direct PPIs 0.929 0.534¢ 0.276 0.569 0.298 0.524 0.544
STRING MP reported PPIs 0.824 0.392¢ 0.218 0.431 0.420 0.413 0.430
(high confidence with 119,911

MP direct PPIs 0.921 0.342¢ 0.141 0.303 0.470 0.533 0.459
scores > 0.7)
Reported PPI-based
Generalized Interologs MP reported PPIs 0.793 3,157,3114 0.076° 0.072 0.117 0.032 0.060 0.076
(Joint E value < 10777)
Direct PPI-based
Generalized Interologs MP direct PPIs 0.835 480,467¢ 0.060° 0.035 0.087 0.022 0.032 0.080

(Joint E value < 1077°)

2 Average area under the receiver operating characteristic curve (AUC).
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®Numbers of predicted PPIs were counted at the suggested threshold for each method.

¢F, scores were calculated for the predicted PPIs at the suggested threshold for each method using sets of positive and negative cases.

dFor our SIM and generalized interologs, all reported/direct PPIs of each MP were excluded in advance of the PPI templates being selected to avoid bias in evaluating the
predictive power of these methods.

¢Based on the positive sets of MP reported PPIs and MP direct PPIs, the FpClass method achieved the highest F, scores of 0.420 and 0.593 when the probabilities were set to
0.32 and 0.71, respectively; STRING achieved the highest F, scores of 0.623 and 0.430 when the scores were set to 0.45 and 0.95, respectively; and the reported PPI- and

direct PPI-based generalized interologs achieved the highest F, scores of 0.177 and 0.200 when the joint £ values were set to 10°° and 107140, respectively.
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Supplementary Table 5. Expression data sets of microarray data as validation in 15 cancer types

assembled from the GEO database

NCBI GEO Number of Number of Platform References

Cancer . )

types Accession normal tumor (GeneChip)

Number samples  samples

BLCA GSE42089 8 10 HG-U133 Plus 2 Zhou et al.”®
BRCA GSE61304 4 58 HG-U133 Plus 2 Grinchuk et al.”’
BRCA GSE22544 4 14 HG-U133 Plus2  Hawthorn et al.”®
CHOL GSE45001 10 10 Agilent-028004 Sulpice et al.”
COAD GSE23878 24 35 HG-U133 Plus 2 Uddin et al.%°
HNSC GSE9844 12 26 HG-U133 Plus 2 Ye et al¥
KICH GSE26574 8 10 HG-U133 Plus 2 Ooi et al ¥
KIRC GSE36895 23 29 HG-U133 Plus 2  Pefia-Llopis et al.®?
KIRC GSE15641 23 32 HG-U133A Jones et al %
KIRP GSE7023 12 35 HG-U133 Plus 2 Furge et al ¥
LIHC GSE19665 10 10 HG-U133 Plus 2 Deng et al %
LIHC GSE29721 10 10 HG-U133 Plus2  Stefanska et al.¥’
LUAD GSE19188 15 18 HG-U133 Plus 2 Hou et al ®
LUAD GSE31547 20 30 HG-U133A Girard (unpublished)
LUSC GSE30219 14 61 HG-U133 Plus?2  Rousseaux et al.¥®
LUSC GSE19188 16 16 HG-U133 Plus 2 Hou et al
PRAD GSE&2132 50 38 HG-U95AV2 Stuart et al.”®
READ GSE20842 65 65 Agilent-014850 Gaedcke et al.”!
THCA GSE60542 30 33 HG-U133 Plus 2 Tarabichi et al.”?
UCEC GSE17025 12 91 HG-U133 Plus 2 Day et al.”?
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Supplementary Table 6. The summary table of IP and FRET results on multiple cancer cell lines

18 selected BT474 MDA-MB-231 A549 RT4 MIA PaCa-2
partner

candidates of 1P FRET 1P FRET 1P
CHRNAY*

SRC
SFN
EGFR
ERBB2
ERBB3
COPS6
CSNKI1D
YWHAG
YWHAB
YWHAH
INSR
APP
FYN
PLK1
HCK
ERBB4
ATXNI1 - + - +
ABCBI - - + - - - -

#This table consists of the results of IP data (Supplementary Fig. 30) on five (BT474, MDA-MB-231,

]
2}

IP

+ + + + + + + o+
+ + 4+ + 4+ o+
Co+ o+t

+ o+ + + + + + o+
+ o+ + + 4+ o+

+ 4+ + + F+ + + o+ +
+ +

o+ 4+ +
o+ o+ o+ o+

o+ o+ o+ o+ o+ o+
1

I S T T e i
+

+ +
+ +
+ o+

+ + + +
+ o+

+
+
_l_

_|._

A549, RT4 and MIA PaCa-2) cancer cells and FRET data (Supplementary Fig. 31) on two (BT474
and MDA-MB-231) breast cancer cells. A candidate that passes the threshold (>3%) of both reciprocal

IP assays is considered as a positive interaction.
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Supplementary Table 7. Antibodies used in our analysis

Antibody Purchase company Catalog Assay®
ERBB2 GeneTex GTX117479 p?
Cell Signaling Technology #4290 Western blotting
Santa Cruz Biotechnology sc-33684 FRET
SFN Abcam ab14123 IP* & Western blotting
R&D system AF4424 FRET
SRC Abcam ab16885 [P* & Western blotting
R&D system MAB3389 FRET
ERBB4 Abcam ab32375 IP* & Western blotting
R&D system MABI1131 FRET
INSR Cell Signaling Technology #3025 [P? & Western blotting
Santa Cruz Biotechnology sc-390130 FRET
EGFR Cell Signaling Technology #4267 Ip?
Abcam ab52894 Western blotting
R&D system AF231 FRET
FYN GeneTex GTX21881 [P* & Western blotting
R&D system MAB3574 FRET
YWHAB Abcam ab32560 [P* & Western blotting
R&D system AF4724 FRET
GAPDH Santa Cruz Biotechnology sc-32233 Western blotting
CHRNA9 Abcam ab49065 IP® & Western blotting
Thermo Fisher Scientific PA5-46826 FRET
IP® & Western blotting
ERBB2 (Y 1248) Cell Signaling Technology #2247 [P?*& Western blotting
EGFR (T1068)  Cell Signaling Technology #3777 Western blotting
VASP Abcam ab109321 Western blotting
MYLK2 Thermo Fisher Scientific PA5-29324 Western blotting
MYLPF Abcam ab135404 Western blotting
ROCKI1 Cell Signaling Technology #4035 Western blotting
YWHAG GeneTex GTX113298 IPY & Western blotting
R&D system MAB5700 FRET
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ERBB3

PLK1

CSNK1D

HCK

APP

YWHAH

ATXNI1

ABCBI1

COPS6

SLC16A7

CHK1

CDK1

MELK

Mouse Anti-
rabbit IgG
(Light-Chain

Specific-L57A3)

Goat anti-
mouse-IgG
(H+L)

Goat anti-rabbit-

IgG (H+L)
FITC

Rhodamine Red

Rabbit IgG

Novus

R&D system
Novus

R&D system
Novus

GeneTex
Abnova

GeneTex
Thermo Fisher Scientific

GeneTex
Abcam

R&D system
Abcam

GeneTex
Abcam

GeneTex
Santa Cruz Biotechnology

GeneTex

Abcam

Abcam

Abcam

Abcam

Cell Signaling Technology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Jackson Immuno
Research
Jackson Immuno
Research

Abcam

NBP2-32253

AF234
NB100-547

AF3804
NPBI1-21376

GTX123435

H00003055-DO1P

GTX32645

OMA1-03132

GTX84875
ab206292

AF4420
ab201037

GTX80399
ab129450

GTX42220
sc-393023

GTX115519
Ab224627

Ab69536
Abl8
Ab129373
#3677

SC-2005

SC-2004

115-095-003

111-295-003

Ab172730

[P* & Western blotting

FRET
IP¢ & Western blotting

FRET
IP¢ & Western blotting

FRET
IP¢ & Western blotting

FRET
[P?* & Western blotting

FRET
IPY & Western blotting

FRET
IP¢ & Western blotting

FRET
[P® & Western blotting

FRET
IPY & Western blotting

FRET
IP® & Western blotting

IP® & Western blotting
IP® & Western blotting
IP® & Western blotting
IP

Western blotting

Western blotting
FRET
FRET

IP



2200 pg of cell extract was incubated with 1 pg antibody in IP experiment.

®200 pg of cell extract was incubated with 3 pg antibody in IP experiment.

©200 pg of cell extract was incubated with 6 pg antibody in IP experiment.

4400 pg of cell extract was incubated with 12 pg antibody in IP experiment.

¢For western blot analysis, all primary antibodies were diluted 1000x, whereas all secondary antibodies
were diluted 4000x. For FRET analysis, all primary antibodies were diluted 100x, whereas all

secondary antibodies were diluted 50x
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Supplementary Table 8. Primer sequence used in our analysis

Name

Primer sequence

HBsAg Q-PCR sense
HBsAg Q-PCR antisense
MYD88 Q-PCR sense
MYDS88 Q-PCR antisense
TNF Q-PCR sense

TNF Q-PCR antisense
TLR4 Q-PCR sense
TLR4 Q-PCR antisense
ATF4 Q-PCR sense
ATF4 Q-PCR antisense
CXCLS8 Q-PCR sense
CXCLS8 Q-PCR antisense
FASLG Q-PCR sense
FASLG Q-PCR antisense
CASP8 Q-PCR sense
CASPS8 Q-PCR antisense
FOS Q-PCR sense

FOS Q-PCR antisense
CREB3L2 Q-PCR sense

CREB3L2 Q-PCR antisense

CHRNA9 KD1 sense
CHRNA9 KD1 antisense
CHRNA9 KD2 sense
CHRNA9 KD2 antisense
ERBB2 KD1 sense
ERBB2 KD1 antisense
ERBB2 KD2 sense
ERBB2 KD?2 antisense
SLC16A7 KD1 sense
SLC16A7 KD1 antisense
SLC16A7 KD2 sense
SLC16A7 KD2 antisense
Mycoplasma sense
Mycoplasma antisense

GCTGCTATGCCTCATCT
GAATACAAGTGCAATTTCCGTC
CTGCAGAGCAAGGAATGT
CCAAGATTTGGTGCAGGG
ACTCCCAGGTCCTCTTC
CTCCCAGATAGATGGGCTCATA
CTGCATAAAGTATGGTAGAGGT
CGGGAATAAAGTCTCTGTAGTG
GGTGTTCTCTGTGGGTC
TCTTCTTCTGGCGGTACCTA
TAGATGTCAGTGCATAAAGACATAC
AAACTTCTCCACAACCCT
GAAGGAGCTGGCAGAAC
CAGAGGCATGGACCTTGA
TTTGACCACGACCTTTGAAGA
ATCAGTGCCATAGATGATGC
CTCAGTGGAACCTGTCAAG
GCTGCATAGAAGGACCC
AGCTTCAGACTTTGGTGAT
TTGGTGGCAGAAGGATAGG
CACCGTCTGAGAGAGCGTAATCTGC
AAACGCAGATTACGCTCTCTCAGAC
CACCGTTCTAATGCTCTTCGTCCAG
AAACCTGGACGAAGAGCATTAGAAC
CACCGCTCCATTGTCTAGCACGGCC
AAACGGCCGTGCTAGACAATGGAGC
CACCGCTCCATTGTCTAGCACGGCC
AAACGGCCGTGCTAGACAATGGAGC
CACCGTGGAGCCAAGAATATAATGG
AAACCCATTATATTCTTGGCTCCAC
CACCGGTGGTTTGATTGGGTCCAAG
AAACCTTGGACCCAATCAAACCACC
TGCACCATCTGTCACTCTGTTAACCTC
GGGAGCAAACAGGATTAGATACCCT
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