SUPPORTING INFORMATION

Human cytochrome P450 enzymes bind drugs and other substrates using conformational selection modes

F. Peter Guengerich, Clayton J. Wilkey, and Thanh T. N. Phan

CONTENTS

- Figure S1. Binding of testosterone to P450 3A4.
- Figure S2. Binding of bromocriptine to P450 3A4.
- Figure S3. Binding of ketoconazole to P450 3A4.
- Figure S4. Spin state analysis of P450s 3A4 and 17A1.

References

Figure S1. Binding of testosterone to P450 3A4. Data were from ref. (1). P450 3A4 was mixed with varying concentrations of testosterone (20-red, 40-green, 80-dark blue, 120-gold, 160-light blue, and 200-magenta μ M). *A*, single exponential fit of data. *B*, plot of single exponential (Part *A*) rates of binding *vs*. testosterone concentration. *C*, biexponential fit of data. *D*, plots of biexponential rates of binding (from Part *C*) as a function of testosterone concentration (fast (\blacksquare) and slow (\blacktriangle)). *E*, fits of data to an induced fit model with $k_1 = 1.7 \times 10^6$ M⁻¹ s⁻¹, $k_{-1} = 310$ s⁻¹, k_2 3.6 s⁻¹, and $k_{-2} = 20$ s⁻¹ ($\varepsilon_{390-418}$ 52 mM⁻¹ cm⁻¹). *F*, fits of data to a conformational selection model with $k_1 = 0.028$ s⁻¹, $k_{-1} = 1.4$ s⁻¹, $k_2 0.13 \times 10^6$ M⁻¹ s⁻¹, and $k_{-2} = 2.3$ s⁻¹ ($\varepsilon_{390-418}$ 56 mM⁻¹ cm⁻¹).

Figure S2. Binding of bromocriptine to P450 3A4. Data were from ref. (1). P450 3A4 (2 μ M) was mixed with 1-red, 2-green, 3-dark blue, 4-mauve, 5-green, 6-light blue, 8-purple, 10-red, 15-orange, 20-blue, or 25-pink μ M bromocriptine. *A*, single exponential fit of data. *B*, plot of single exponential (Part *A*) rates of binding *vs*. bromocriptine concentration. *C*, biexponential fit of data. *D*, plots of biexponential rates of binding (from Part *C*) as a function of bromocriptine concentration (fast (\blacksquare) and slow (\blacktriangledown)). *E*, fits of data to an induced fit model with $k_1 = 4.1 \times 10^6$ M⁻¹ s⁻¹, $k_{-1} = 36$ s⁻¹, $k_2 = 0.25$ s⁻¹, and $k_{-2} = 0.25$ s⁻¹ ($\varepsilon_{390-418}$ 25 mM⁻¹ cm⁻¹). *F*, fits of data to a conformational selection model with $k_1 = 0.15$ s⁻¹, $k_{-1} = 8.8$ s⁻¹, $k_2 = 1.0 \times 10^6$ M⁻¹ s⁻¹, and $k_{-2} = 0.5$ s⁻¹ ($\varepsilon_{390-418}$ 26 mM⁻¹ cm⁻¹).

Figure S3. Binding of ketoconazole to P450 3A4. Data were from ref. (2). P450 3A4 (4 μ M) were mixed with varying concentrations of ketoconazole (2-red, 4-green, 6-gold, 8-blue, 10-mauve, 15-green, or 20-blue μ M). *A*, single exponential fit of data. *B*, plot of single exponential (Part *A*) rates of binding *vs*. ketoconazole concentration. *C*, double-exponential fits of data. *D*, plots of biexponential rates of binding (from Part *C*) as a function of ketoconazole concentration (fast (\bullet) and slow (\blacksquare)). *E*, fits of data to an induced fit model with $k_1 = 2.4 \times 10^6$ M⁻¹ s⁻¹, $k_{-1} = 15$ s⁻¹, $k_2 = 3.2$ s⁻¹, and $k_{-2} = 0.05$ s⁻¹ ($\varepsilon_{433-405}$ 10.5 mM⁻¹ cm⁻¹). *F*, fits of data to a conformational selection model with $k_1 = 1.2$ s⁻¹, $k_{-1} = 3.6$ s⁻¹, $k_2 = 2.7 \times 10^6$ M⁻¹ s⁻¹, and $k_{-2} = 1.7$ s⁻¹ ($\varepsilon_{405-433}$ 16 mM⁻¹ cm⁻¹).

Figure S4. Spin state analysis of P450s 3A4 (Part *A*) and 17A1 (Part *B*). The estimates (>95% low-spin) were made by analyzing the negative peaks (418 and 390 nm for low- and high-spin iron, respectively) generated in second derivative analysis of spectra recorded in the absence of ligand (3). *A*, P450 3A4; *B*, P450 17A1.

References

- 1. Isin, E. M., and Guengerich, F. P. (2006) Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. *J. Biol.Chem.* **281**, 9127-9136
- 2. Isin, E. M., and Guengerich, F. P. (2007) Multiple sequential steps involved in the binding of inhibitors to cytochrome P450 3A4. *J. Biol.Chem.* **282**, 6863-6874
- 3. O'Haver, T. C., and Green, G. L. (1976) Numerical error analysis of derivative spectrometry for the quantitative analysis of mixtures. *Anal. Chem.* **48**, 312-318