Supporting Information

The kynurenine pathway is essential for rhodoquinone biosynthesis in *Caenorhabditis elegans*

Paloma M. Roberts Buceta¹, Laura Romanelli-Cedrez², Shannon J. Babcock^{1#a}, Helen Xun^{1#b}, Miranda L. VonPaige¹, Thomas W. Higley¹, Tyler D. Schlatter^{1#c}, Dakota C. Davis¹, Julia A. Drexelius¹, John C. Culver¹, Inés Carrera^{2#d}, Jennifer N. Shepherd^{1*}, Gustavo Salinas^{2*}

From the ¹Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258; ²Laboratorio de Biología de Gusanos. Unidad Mixta, Departamento de Biociencias, Facultad de Química, Universidad de la República - Institut Pasteur de Montevideo, Montevideo, Uruguay.

List of Materials

- p. S-2, TABLE S1. Statistical analysis of RQ9 and Q9 levels in mutant strains and RNAi knockdowns
- p. S-3, TABLE S2. C. elegans strains used in this study
- p. S-4, TABLE S3. Primers used for kynu-1 reporter construction
- p. S-5, TABLE S4. RNAi clones and TaqMan assays for RT-PCR
- p. S-6, TABLE S5. LC-MS parameters for each quinone
- p. S-7, **Figure S1.** *kynu-1* is expressed during embryogenesis and the first larval stage in hypodermis and intestinal cells
- p. S-8, Figure S2. Quantitation of gene expression from C. elegans RNAi strains using RT-qPCR

Strain	Avg pmol RQ9/mg pellet	p value ^a (N = 3)	Avg pmol Q9/mg pellet	p value (N = 3)
N2	3.27 ± 0.15		17.03 ± 0.71	
afmd-1	1.51 ± 0.09	< 0.001	13.24 ± 1.80	0.0138
kynu-1	0	< 0.001	19.27 ± 1.76	0.0633
kmo-1	0.51 ± 0.07	< 0.001	13.49 ± 0.88	0.0027
haao-1	3.41 ± 0.61	0.360	14.41 ± 0.80	0.0065
EV	2.36 ± 0.20		9.48 ± 1.43	
kynu-1 (RNAi)	0.51 ± 0.05	< 0.001	9.95 ± 2.52	0.397
coq-3 (RNAi)	1.67 ± 0.12	0.003	7.01 ± 0.58	0.025
coq-5 (RNAi)	1.26 ± 0.17	< 0.001	5.21 ± 1.05	0.007
coq-6 (RNAi)	1.02 ± 0.04	< 0.001	5.10 ± 0.22	0.003
coq-7 (RNAi)	2.05 ± 0.20	0.068	6.29 ± 0.32	0.010
unc-22 (RNAi)	2.59 ± 0.60	0.283	9.48 ± 1.92	0.500

TABLE S1. Statistical analysis of RQ9 and Q9 levels in mutant strains and RNAi knockdowns

^aThe Student's T-test was used to analyze triplicate samples with significance noted at the $\alpha < 0.05$ level. The standard deviation in each data set is represented by \pm and shown as error bars in Figs. 2B, 2C and 4B.

TABLE S2. C. elegans strains used in this study.

Strain	Gene	Allele	Variation type	Nucleotide change	Genotype	Source
N2	Bristol w	ild isolation				CGC
NL2099	rrf-3	pk1426	deletion	3055 bp deletion	rrf-3(pk1426) II	CGC
Tm4924	kynu-1	tm4924	insertion/deletion	19 bp insertion 521 bp deletion	kynu-1(tm4924) X	NBPJ
Tm4529	kmo-1	tm4529	deletion	326 bp deletion	kmo-1(tm4529) V	NBPJ
Tm4547	afmd-1	tm4547	deletion	425 bp deletion	afmd-1(tm4547)IV	NBPJ
Tm4627	haao-1	tm4627	insertion/deletion	9 bp insertion 305 bp deletion	haao-1(tm4627) V	NBPJ
IH25					kynu-1(tm4924)X; Ex[Pkynu-1::kynu- 1::gfp, pRF4]	This study

Primer name	Sequence
kynu-1 FW pPD9577	acgctaacaacttggaaatgaaataccgaattagttttaatggac
kynu-1 RE pPD9577	ctttggccaatcccggggatccttcgctttcgacaatatgagcaac
pPD9577 RE	atttcatttccaagttgttagcgtatccatcg

 TABLE S3. Primers used for kynu-1 reporter construction

					^b TaqMan
Strain	Gene	^a Clone Number	Insert	Source	assay
	kynu-1	DFCIp3320G0510040D	C15H9.7	Source Bioscience	Ce02495988_g1
	coq3	CUUkp3303J037Q	sjj_Y57G11C.11	Source Bioscience	Ce02467843_g1
<i>E. coli</i> htt115	coq5	CUUkp3302K054Q	sjj_ZK652.9	Source Bioscience	Ce02449325_g1
(DE3)	coq6	CUUKp3315A0214Q	sjj2_K07B1.2	Source Bioscience	Ce02479593_g1
	coq7/clk-1	CUUkp3302B242Q	sjj_ZC395.2	°gift	Ce02446729_g1
	unc-22	CUUkp3303K066Q	sjj_ZK617.1	^c gift	Ce02465425_g1

TABLE S4. RNAi clones and TaqMan assays for RT-PCR

^aAll clones were from Ahringer library, L4440 (pPD129.36) except for *kynu-1* was from Vidal library, pL4440_DEST ^bPurchased from ThermoFisher Scientific (Rockford, IL, USA) with FAM-MGB, 20X

°Gift from Dr. Jennifer Watts, School of Molecular Sciences, Washington State University, Pullman, WA

MS parameter	Q 3	RQ9	Q 9
Dwell time (s)	0.1	0.1	0.1
Cone (V)	20	39	35
Collision (V)	20	30	30
Precursor mass $[M+H]^+$ (<i>m</i> / <i>z</i>)	387.2	780.6	795.6
Ion product mass $[M]^+(m/z)$	197.2	182.2	197.2

TABLE S5. LC-MS parameters for each quinone

Figure S1. *kynu-1* is expressed during embryogenesis and the first larval stage in hypodermis and intestinal cells. Confocal images of selected planes show transgenic animals expressing the translational construct *Pkynu-1::kynu-1::gfp*. The stages shown are: (A) E16 dorsal view, (B) Comma lateral view, (C) 2-fold lateral view and (D) L1 lateral view. Scale bar 10 µm.

Figure S2. Quantitation of gene expression from *C. elegans* RNAi strains using RT-qPCR. A standard comparative C_T ($\Delta\Delta C_T$) experiment was performed with the TaqMan gene expression assays (Table S4) on a StepOnePlusTM Real-Time PCR system (Life Technologies, Waltham, MA). ROXTM dye was used as a passive reference and EV cDNA was used as an active reference in each experiment. Each cDNA sample and no RT control was tested in triplicate with each assay, and the average C_T values were generated for each biological sample with each gene target. ΔC_T and $\Delta\Delta C_T$ values were obtained in order to determine the range of fold-change values, comparing RNAi knockdowns to EV control. Relative quantitation (RQ) ranges were determined through standard propagation of error. TaqMan gene assays for *coq-5, coq-6, coq-7, kynu-1* and *unc-22* showed reduction of expression compared to the EV reference, using the *cdc-42* endogenous control. The relative quantitation values were significant for *coq-6* and *coq-7* (more than 2-fold smaller), and weakly significant for *coq-5, kynu-1*, and *unc-22*. The *coq-3* TaqMan assay did not allow for quantitation due to inconsistent amplification of *cdc-42* in the sample and reference.