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Supplementary Note 1. Synthetic U(2) gauge fields in real space for light

In the main text, the materials considered are restricted to anisotropic media without magnetoelectric (ME) cou-

pling. In that case, an incomplete set of synthetic U(2) = SU(2) ⋊U(1) gauge potentials is obtained, while the A3σ̂3

component of SU(2) vector potential and U(1) vector potential are absent. Here, we consider the more general case

of bi-anisotropic media through adding a specific ME coupling term, in order to obtain a complete set of U(2) gauge

potentials. In frequency domain, the constitutive relations of nondissipative and nondispersive bi-anisotropic media

read

Dω = ε↔ ⋅Eω + χ↔em ⋅Hω, Bω = µ↔ ⋅Hω + χ↔me ⋅Eω, (ω > 0) (1)

with the constitutive coefficient tensors

ε↔/ε0 = ( ε
↔

T g1

g†
1 εz

) , µ↔/µ0 = (µ
↔

T g2

g†
2 µz

) , χ↔em = χ↔†
me = χ

↔ = 1

c

⎛
⎝

0 t1

t⊺2 χz

⎞
⎠
. (2)

Here, all parameters are functions of x and y. The only constraint on ε↔, µ↔ is the “in-plane duality” ε↔T = αµ↔T ∈ R (α

is an arbitrary positive constant). In the following derivations, we let α = 1 for convenience, and the results of α ≠ 1

is straightforward via replacing ε0 → ε′0 = αε0 and c → c′ = 1/
√
ε′0µ0 in Eq. (2). The ME coupling tensors χ↔em, χ

↔

me

are assumed to be purely real and do not have in-plane block for convenience.

Derivation of in-plane wave equation

In this section, we derive the 2D wave equations for monochromatic waves in the bi-anisotropic media given by

Eq. (2), where a complete set of synthetic U(2) gauge potentials emerge. For 2D propagating waves, the fields E, H

are only functions of x, y, so all terms associated with ∂/∂z are dropped, and the source-free Maxwell’s equations for

the complex-valued EM fields (analytic signals) can be expressed as

[( ∇T× 0

0 ∇T×
) + ∂

∂t

1

c
( t̃2× g̃2×
−g̃1× −t̃1×

)]( Ez

η0Hz
) = − ∂

∂t

1

c
( 0 µ↔T
−ε↔T 0

)( ET

η0HT
) , (3a)

[( ∇T× 0

0 ∇T×
) − ∂

∂t

1

c
( t̃1× g̃†

2×
−g̃†

1× −t̃2×
)]( ET

η0HT
) = − ∂

∂t

1

c
( χz µz
−εz −χz

)( Ez

η0Hz
) , (3b)

where ∇T = (∂x, ∂y)⊺, η0 =
√
µ0/ε0, g̃i = ez × gi = (−giy, gix)⊺, t̃i = ez × ti = (−tiy, tix)⊺ (i = 1,2). For monochromatic

waves E, H ∝ exp(−iωt), after substituting ∂/∂t→ −iω, Eq. (3) can be rewritten using Pauli matrices as

[σ̂0 (∇T × +ik0t̃−×) + σ̂1(ik0g̃−×) − iσ̂2(ik0g̃+×) − σ̂3(ik0t̃+×)](
Ez

η0Hz
) = σ̂2( − k0 ε

↔

T )(
ET

η0HT
) , (4)

[σ̂0 (∇T × +ik0t̃−×) − σ̂1(ik0g̃
†
−
×) + iσ̂2(ik0g̃

†
+
×) + σ̂3(ik0t̃+×)](

ET

η0HT
) = −k0[i σ̂1 n− + σ̂2 n+ − i σ̂3 χz] (

Ez

η0Hz
) ,

(5)

with g̃± = 1
2
(g̃1 ± g̃2), t̃± = 1

2
(t̃1 ± t̃2), and n± = 1

2
(εz ± µz), where we have already imposed the in-plane duality

condition ε↔T = µ↔T . Substitution of σ̂2(−ε↔−1
T )⋅Eq. (4) into k0σ̂2⋅Eq. (5) yields

[σ̂0(∂i + ik0t̃− i) + ik0 (σ̂1g̃
∗

− i + iσ̂2g̃
∗

+ i − σ̂3t̃+ i) ]εzij(ε−1
T )jkεklz[σ̂0(∂l + ik0t̃− l) + ik0 (σ̂1g̃− l − iσ̂2g̃+ l − σ̂3t̃+ l) ](

Ez

η0Hz
)

=k 2
0 (σ̂0n+ + σ̂1χz + σ̂3n−)(

Ez

η0Hz
) , ( i, j, k, l ∈ {x, y} ).

On account of εzij(ε−1
T )jkεklz = εij(ε−1

T )ijεkl = −εikT /det(ε↔T ) (εijk, εij are 3D and 2D Levi-Civita symbols), we obtain

⎧⎪⎪⎨⎪⎪⎩

1

2
[p̂ − σ̂0A − (Â − iÂI)] ⋅ ↔m−1 ⋅ [p̂ − σ̂0A − (Â + iÂI)] − k 2

0 (σ̂0n+ + σ̂1χz + σ̂3n−)
⎫⎪⎪⎬⎪⎪⎭
( Ez
η0Hz

) = 0, (6)
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where ↔m−1 = 2
det(ε↔T )

ε↔T is the inverse of an effective anisotropic mass, A = −k0 t̃− = k0 t− × ez denotes an emergent

Abelian vector potential, and

Â(c) = Â + iÂI = k0 [σ̂1Re(g−) × ez + σ̂2Im(g−) × ez − σ̂3t+ × ez]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Â = k0 ( −t+ × ez g†
−
× ez

g− × ez t+ × ez
)

+i k0 (σ̂1Im(g+) × ez − σ̂2Re(g+) × ez)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ÂI = k0 ( 0 ig†
+
× ez

−ig+ × ez 0
)

(7)

can be regarded as a complex-valued non-Abelian vector potential with g± = 1
2
(g1 ± g∗2) and t± = 1

2
(t1 ± t2).

The imaginary part, ÂI , of non-Abelian potential can be further taken out from the “kinetic energy part”:

⎧⎪⎪⎨⎪⎪⎩

1

2
(p̂ − Â ) ⋅ ↔m−1 ⋅ (p̂ − Â ) − k 2

0 (σ̂0n+ + σ̂1χz + σ̂3n−)

+ 1

2
[ÂI ⋅ ↔m−1 ⋅ (σ̂0∇T − iÂ ) − (σ̂0∇T − iÂ ) ⋅ ↔m−1 ⋅ ÂI + ÂI ⋅ ↔m−1 ⋅ ÂI]

⎫⎪⎪⎬⎪⎪⎭
( Ez
η0Hz

) = 0,

(8)

where Â = σ̂0A + Â is the complete U(2) real vector potential, and the second line associated with ÂI can be

decomposed as

ÂI ⋅ ↔m−1 ⋅ (σ̂0∇T − iÂ ) − (σ̂0∇T − iÂ ) ⋅ ↔m−1 ⋅ ÂI + ÂI ⋅ ↔m−1 ⋅ ÂI
= −∇T ⋅ (↔m−1 ⋅ ÂI) + i( − ÂI ⋅ ↔m−1 ⋅ Â + Â ⋅ ↔m−1 ⋅ ÂI) + ÂI ⋅ ↔m−1 ⋅ ÂI
= −∇T ⋅ (↔m−1 ⋅ ÂI) + iTr(↔m−1 ⋅ [Â, ÂI]) + ÂI ⋅ ↔m−1 ⋅ ÂI ,

(9)

each term of which can be further expressed with the material parameters:

−∇T ⋅ (↔m−1 ⋅ ÂI)= − k0∇ ⋅ {↔m−1 ⋅ [(Im(g+)σ̂1 −Re(g+)σ̂2) × ez]}

= − k0∂i{(↔m−1)ijεjk(Im(g+)σ̂1 −Re(g+)σ̂2)
k}

= − k0∂i{( − 2εil(ε↔−1
T )lmεmjεjk)(Im(g+)σ̂1 −Re(g+)σ̂2)

k}

= − 2k0ε
il∂i{(ε↔−1

T )lk(Im(g+)σ̂1 −Re(g+)σ̂2)
k}

= − 2k0 ez ⋅ {∇× [ε↔−1
T ⋅ (Im(g+)σ̂1 −Re(g+)σ̂2)]},

(10a)

iTr(↔m−1 ⋅ [Â, ÂI])= i (↔m−1)ijAaiAbI j[σ̂a, σ̂b] = i (
↔m−1)ijAaiAbI j(2iεabcσ̂c)

=4[(Aai εil)(ε
↔−1
I )lm(εmjAbI j)εabc]σ̂c

=4k 2
0 [(t+ ⋅ ε↔−1

T ⋅Re(g+))σ̂1 + (t+ ⋅ ε↔−1
T ⋅ Im(g+))σ̂2 +Re(g− ⋅ ε↔−1

T ⋅ g†
+
)σ̂3]

(10b)

ÂI ⋅ ↔m−1 ⋅ ÂI =k 2
0 [(Im(g+)σ̂1 −Re(g+)σ̂2) × ez] ⋅ ↔m−1 ⋅ [(Im(g+)σ̂1 −Re(g+)σ̂2) × ez]

=2k 2
0 (Im(g+)σ̂1 −Re(g+)σ̂2) ⋅ ε↔−1

T ⋅ (Im(g+)σ̂1 −Re(g+)σ̂2)
=2k 2

0 (Im(g+) ⋅ ε↔−1
T ⋅ Im(g+) +Re(g+) ⋅ ε↔−1

T ⋅Re(g+))
=2k 2

0 (g+ ε↔−1
T ⋅ g†

+
)σ̂0

(10c)
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Supplementary Table 1. The complete set of the components of the synthetic U(2) = SU(2) ⋊ U(1) gauge potential

corresponding to the spinor state ∣ψ⟩ = (Ez, η0Hz)⊺, where the “inner product” ⟪⋅, ⋅⟫ for two 2D vectors a, b is defined as

⟪a,b⟫ = a ⋅ ε↔−1T ⋅ b†.

expression physical origin

SU(2)

vector
potential

Â = Aaσ̂a

A1 = k0Re (g−) × ez
reciprocal anisotropy of ε↔, µ↔ [1, 2]

(deviation of principal axis from z-direction)

A2 = k0Im (g−) × ez
gyroelectric or gyromagnetic effects

induced by in-plane magnetic field [3]

A3 = −k0t+ × ez
real & symmetric part of ME tensors [4]

(anisotropic Tellegen media)

scalar
potential

Â0 = Aa
0 σ̂a

A1
0 = k0ez ⋅ [∇× (ε↔−1T ⋅ Im (g+))] + k 2

0 [χz − 2⟪t+,Re(g+)⟫] ● inhomogeneity of g+ and ε↔T

● coupling between g+ and t+
● χz component of ME tensorA2

0 = −k0ez ⋅ [∇× (ε↔−1T ⋅Re (g+))] + 2k 2
0 ⟪t+, Im(g+)⟫

A3
0 = k 2

0 [εz − µz

2
− 2Re⟪g−,g+⟫]

● difference between εz and µz

● coupling between g+ and g−

U(1)

vector
potential A = k0 t− × ez

real & antisymmetric part of ME tensors

(moving media or static toroidal moment [5–7])

scalar
potential V0 =k 2

0 (⟪g+,g+⟫ −
εz + µz

2
) g+, εz, µz

After substituting Eqs. (9,10) into Eq. (8), we arrive at the final form of the in-plane wave equation 1

Ĥ ∣ψ⟩ = [1

2
(p̂ − Â ) ⋅ ↔m−1 ⋅ (p̂ − Â ) − Â0] ∣ψ⟩ = [1

2
(p̂ −Aσ̂0 − Â) ⋅ ↔m−1 ⋅ (p̂ −Aσ̂0 − Â) − Â0 +V0σ̂0] ∣ψ⟩ = 0. (11)

Here, the effective Hamiltonian Ĥ is precisely like that of a non-relativistic spin-1/2 particle traveling in a U(2) =
SU(2) ⋊ U(1) background gauge potential {Âµ}, where “⋊” denotes the semidirect product of two groups. The

effective U(2) group potential always can be decomposed into two parts {Âµ} = {Aµσ̂0 + Âµ}, where {Aµ} = {−V0,A}
(µ = 0,1,2) denotes an effective Abelian U(1) Maxwell-type gauge potential, while {Âµ} = {Â0, Â} denotes an

effective non-Abelian SU(2) Yang-Mills gauge potential (Âµ = Aaµσ̂a are su(2)-Lie-Algebra-valued, namely they are

2 × 2 traceless Hermitian matrices). Their expressions are listed in Supplementary Table 1. And the results in the

main text correspond to the reduced case with t± = 0 and χz = 0.

As shown in Supplementary Table 1, different σ̂-components of both vector and scalar potentials have dis-

tinct physical origins. For the SU(2) vector potential, A1 is caused by the the deviation of the principal axis

of Re(ε↔), Re(µ↔) from z-direction, which can be realized in reciprocal anisotropic materials [1, 2]. A2 compo-

nent stems from the the imaginary part of the off-block-diagonal term Im(g−) in ε↔, µ↔, which can be excited by

in-plane magnetic field in magneto-optic media [3]. And A3 originates from the symmetric off-diagonal part of

ME coupling t+, which, together with χz, actually denotes an anisotropic Tellegen media with the ME tensor

χ̃em = χ̃⊺me = diag ( 1
2
(χz +

√
4∣t+∣2 + χ2

z), 1
2
(χz −

√
4∣t+∣2 + χ2

z),0) in the principal frame [4].

The U(2) gauge potential can induce an emergent non-Abelian U(2) gauge field acting on the spinor wave function,

in terms of the covariant derivative operator D̂i = ∂µσ̂0 − iÂµ = ∂µσ̂0 − iÂµ −Aµσ̂0:

F̂µν = i[D̂µ, D̂ν] = ∂µÂν − ∂νÂµ − i[Âµ, Âν] = (∂µAν − ∂νAµ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
U(1) field: Fµν

σ̂0 + ∂µÂν − ∂νÂµ − i[Âµ, Âν]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SU(2) field: F̂µν = i[D̂µ, D̂ν]

, (12)

1 For a fixed frequency, Eq. (11) is analogous to the stationary Schrodinger equation: (Ĥ −E)∣ψ⟩ = 0. As the zero point of the U(1) scalar

potential V0 is arbitrary, it can always be selected such that E = 0. The free choice of E will not affect the stationary dynamics, but it

is meaningless to compare the eigen-energy for the effective Hamiltonian at different frequencies.
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where D̂µ = ∂µσ̂0 − iÂµ. As shown, the U(2) gauge field also can be decomposed into a U(1) part and a SU(2)
part. Since the effective SU(2) gauge field is su(2)-Lie-algebra-valued, and also can be expanded by Pauli matrices,

F̂µν = Faµν σ̂a, the SU(2) part of Eq. (12) can be rewritten in a component form:

Faµν = ∂µAaν − ∂νAaµ + 2εabcAbµAcν , (13)

where 2εabc is the structure constant of su(2) Lie algebra, [σ̂a, σ̂b] = 2iεabcσ̂
c.

Analogous to the real EM field, the effective U(1) gauge field Fµν can be alternatively treated as a pair of effective

Abelian magnetic and electric fields B, E (not to be confused with the real EM fields B, E):

B = ∇×A = −ez (∇ ⋅ t−), E = −∇V0, (14)

Similarly, if we express the tensor of the SU(2) non-Abelian field as

(F̂µν) =
⎛
⎜⎜
⎝

0 −Êx −Êy
Êx 0 B̂z
Êy −B̂z 0

⎞
⎟⎟
⎠
, (15)

different components of the SU(2) gauge field also can be classified into an effective non-Abelian magnetic field B̂ and

an effective non-Abelian electric field Ê separately:

B̂ = 1

2
εijF̂ijez = ∇× Â − iÂ × Â, Ê = −F̂0iei = ∇Â0 + i[Â0, Â]. (16)

As the system is z-invariant, the effective magnetic fields B, B̂ are along z direction, while the effective electric fields

E, Ê always lie in xy-plane. We will show that these effective non-Abelian SU(2) magnetic and electric fields can affect

the centroid motion of the spinor wave function ∣ψ⟩ in a similar way as real EM fields acting on charged particles.

According to Supplementary Table 1, the SU(2) vector potential Â only depends on g− and t+. Hence, the SU(2)
magnetic field has a relatively simple expression depending on g− and t+:

B̂ = k2
0[2(t+ × Im(g−))σ̂1 − 2(t+ ×Re(g−))σ̂2 + i (g− × g∗

−
) σ̂3] − k0∇ ⋅ [Re (g−) σ̂1 + Im (g−) σ̂2 − t+σ̂3]ez. (17)

By contrast, the SU(2) electric field Ê , is determined by all the following components: g±, t+, εz, µz, and ε↔T .
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Supplementary Note 2. Gauge transformation between synthetic gauge field systems

Since the choice of the gauge of the wave function can be arbitrary, we can consider a gauge transformation of the

wave function ∣ψ′⟩ = Û(r)∣ψ⟩, where Û(r) = Û(x, y) is now generalized to be a xy-dependent U(2) matrix. The wave

equation is covariant under the gauge transformation: ÛĤ ∣ψ⟩ = (ÛĤÛ †)∣ψ′⟩ = 0 with the transformed Hamiltonian

Ĥ ′ = ÛĤÛ † = −1

2
(ÛD̂iÛ

†) (m−1)ij (ÛD̂jÛ
†) − (ÛÂ0Û

†) = 1

2
D̂ ′

i(m−1)ijD̂ ′

j − Â ′

0 , (18)

and the transformed covariant derivative satisfies

D̂ ′

i = ÛD̂iÛ
† = ∂iσ̂0 − i (ÛÂiÛ

† + iÛ∂iÛ †) = ∂iσ̂0 − iÂ ′

i . (19)

As a result, we obtain the rule of gauge transformation for the gauge potential:

Â ′

i =ÛÂiÛ
† + iÛ∂iÛ †

Â ′

0 =ÛÂ0Û
† = ÛÂ0Û

† + iÛ∂0Û
†

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0

⎫⎪⎪⎬⎪⎪⎭
Â ′

µ = ÛÂµÛ
† + iÛ∂µÛ †.

(20)

In addition, since the 2×2 unitary matrix can be expressed generically as Û = eiϕÛ with a U(1) part eiϕ and a SU(2)
part Û satisfying det(Û) = 1, we have iÛ∂µÛ

† = −∂µϕσ̂0 + iÛ∂µÛ†. And Tr (iÛ∂µÛ†) = idet(Û)∂µ det(Û†) ≡ 0, hence

iÛ∂µÛ† ∈ su(2), the gauge transformation of U(1) and SU(2) parts of the gauge potential obeys

A′µ = Aµ − ∂µϕ, Â′µ = ÛÂµÛ† + iÛ∂µÛ†. (21)

Meanwhile, the gauge transformation of gauge fields reads

F̂ ′

µν = i[D̂ ′

µ, D̂
′

ν] = ÛF̂µνÛ
†

⎧⎪⎪⎨⎪⎪⎩

U(1) ∶ F̂′µν = F̂µν ⇔ B̂′ = B̂, Ê′ = Ê

SU(2) ∶ F̂ ′µν = ÛF̂µν Û† ⇔ B̂′ = Û B̂Û†, Ê ′ = Û ÊÛ†
(22)

Unlike the U(1) field which is independent of the gauge choice, the SU(2) part of the gauge field is gauge-dependent.

It should be noted that the meaning of gauge covariance in the synthetic gauge system is subtly different from

that in real gauge systems. For real gauge fields, the choice of gauge refers to the process of regulating the excess

unphysical degrees of freedom, hence the gauge transformation leaves all observables unaffected, while all of the

gauge-dependent quantities cannot be directly observed. However, in the synthetic gauge system, different gauges

correspond to different materials, and the gauge dependence of the effective wave function ∣ψ⟩ = (Ez, η0Hz)⊺ can be

directly detected, since the EM fields, including their phases, are measurable. According to the discussions in the

Methods of the main text, the gauge transformation acting on the wave function ∣ψ′⟩ = Û(r)∣ψ⟩ gives rise to the

transformation of the total EM fields as

Ψ′ = Ũ(r)Ψ = (σ̂2Û(r)σ̂2 0

0 Û(r))Ψ, (23)

with Ψ = (ET , η0HT ,Ez, η0Hz)⊺. Considering the 2D Maxwell’s equations expressed in terms of Ψ:

( 0 iσ̂2(i∇T×)ez
iσ̂2 ez ⋅ (i∇T×) 0

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M

Ψ = k0

⎛
⎜⎜⎜⎜
⎝

ε↔T 0 g1 t1/c
0 ε↔T t2/c g2

g†
1 t⊺2/c εz χz

t⊺1/c g†
2 χz µz

⎞
⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

Ψ, (24)

the gauge transformation of Maxwell’s equations shows that

(ŨMŨ †)Ψ′ = (M +∆M)Ψ′ = k0(ŨN Ũ †)Ψ′, (25)
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where

∆M = ( 0 iσ̂2(iÛ∇T Û †) × ez
−i(iÛ∇T Û †) × ezσ̂2 0

) . (26)

Then we find that Ψ′ satisfies the Maxwell’s equations MΨ′ = k0N ′Ψ′ in the transformed material:

N ′ = ŨN Ũ † −∆M/k0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε↔′T = ε↔T

(ε
′

z χ′z
χ′z µ′z

) = Û (εz χz
χz µz

) Û †

(t′2/c g′2
−g′1 −t′1/c

) = Û (t2/c g2

−g1 −t1/c
) Û † + 1

k0
(iÛ∇T Û †) × ez,

(27)

moreover, the synthetic U(2) gauge potential in this transformed material is consistent with the result given by the

gauge transformation Eqs. (20,21).

To be precise, the gauge covariance of the synthetic gauge system means that if the material parameters in two

systems can be related according to the gauge transformation Eq. (27), the solutions of EM fields in the two systems

have a one-to-one correspondence in terms of the mapping Eq. (23), and the forms of synthetic gauge potentials and

fields in the two systems are transformed in exactly the same way as the real non-Abelian gauge potentials and fields

expressed in different gauges. Moreover, all of the gauge-independent quantities in real gauge systems, such as the

effective probability density ∣ψ(r)∣2, the quadratic forms of gauge fields Tr (F̂αβF̂µν), and the Wilson loop, are also

identical in the two synthetic gauge systems which are related by the material and field transformations. Especially,

the time-averaged in-plane Poynting vectors for the field Ψ′ in the transformed medium is also identical with that in

the original medium:

S̄′T = 1

2
Re [(E′∗

z , H′∗

z )(iσ̂2 ⊗ (I
↔

× I
↔

))(E′

T

H′

T

)]

= 1

2
Re [(E∗

z , H∗

z)(Û † ⊗ I
↔

)(iσ̂2 ⊗ (I
↔

× I
↔

))((σ̂2Û σ̂2)⊗ I
↔

)(ET

HT
)]

= 1

2
Re [(E∗

z , H∗

z)(iσ̂2 ⊗ (I
↔

× I
↔

))(ET

HT
)] = S̄T .

(28)

This result indicates that we can design material parameters using non-Abelian gauge transformation to manipulate

the spin (polarization) of light without changing its flow.
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Supplementary Note 3. Analogy with Zitterbewegung effect arising from Dirac cone

The original ZB effect for Dirac electrons stems from the superposition of positive and negative energy states [8].

And a majority of previous photonic realizations of ZB are based on a Dirac cone dispersion. By contrast, the

appearance of ZB effect in our system does not rely on a Dirac cone dispersion. In this section, we show that, in some

limiting situations, the ZB effect in our system can also be understood from a Dirac cone structure.

Consider the transition from a reduced Abelian medium (Â = A2
y eyσ̂2,= k0Ã2

y eyσ̂2, Â0 = 0 ) to a non-Abelian

medium ( Â = k0Ã2
y eyσ̂2 + k0Ã1

x exσ̂1, Â0 = 0, i.e. example I in the main text):

Abelian medium non-Abelian medium

ε↔/ε0 = µ↔/µ0 =
⎛
⎜⎜
⎝

εT 0 −iÃ2
y

0 εT 0

iÃ2
y 0 εz

⎞
⎟⎟
⎠
, ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε↔/ε0 =
⎛
⎜⎜
⎝

εT 0 −iÃ2
y

0 εT Ã1
x

iÃ2
y Ã1

x εz

⎞
⎟⎟
⎠
,

µ↔/µ0 =
⎛
⎜⎜
⎝

εT 0 −iÃ2
y

0 εT −Ã1
x

iÃ2
y −Ã1

x εz

⎞
⎟⎟
⎠
.

(29)

In the Abelian medium, the sole nonzero component of the SU(2) gauge potential is A2 = k0Ã2
yey, the effective

Hamiltonian has U(1) spin rotation symmetry about the σ̂2-axis, thus the two eigenmodes are ψ± = (1,±i)⊺ (i.e.

Ez ± iηoHz) whose pseudo-spins are uniformly polarized along the σ̂2-axis for an arbitrary direction of the wave

vector. The two branches of isofrequency contours are degenerate at k = k ex =
√
εT εz − (Ã2

y)2 k0. In the vicinity of

Supplementary Figure 1. Transition from a Abelian medium to a non-Abelian medium corresponding to Eq. (29). (a)

Reduced Abelian gauge field medium withA2
y = 0.15k0; (b) Non-Abelian perturbed medium withA2

y = 0.15k0 and a perturbation

A1
x = 0.006k0; (c) Non-Abelian medium with A2

y = 0.15k0 and A1
x = 0.04k0. Other parameters of the three media are identical:

εT = εz = 1.
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Supplementary Figure 2. Spatial ZB of monochromatic beam arising from eigenmode superposition. (a,b) Beams with

eigen-polarizations travel in straight lines. (c) A beam superposed by the two eigenfields shown in (a,b) experiences a wavy

centroid trajectory (white curve). The parameters of the background non-Abelian medium are given by εT = 1, εz = 1.2,

µz = 0.8, g1 = −g2 = 0.3ex.

the degenerate point, the two isofrequency contours intersect linearly, and thus can be regarded as a 1D Dirac cone

as shown in Supplementary Figure 1(a), provided that the x axis is treated as the pseudo-time dimension.

When the component A1 = A1
xex emerges, the medium turns into non-Abelian characterized by the nonzero non-

Abelian magnetic field B̂ = 2A1 × A2σ̂3 = A1
xA2

yezσ̂3. Meanwhile, the previous intersected isofrequency contours

become fully gapped. As long as A1
x ≪ A2

y, the isofrequency contours nearby k = k ex can be regarded as a 1D gapped

Dirac cone as shown in Supplementary Figure 1(b). And the width of the gap, i.e. the beat wave number corresponds

to twice the effective mass of the 1D Dirac electron Me:

∆k = ∣k+ − k−∣ = 2∣A1
x∣ = 2Me. (30)

According to the standard ZB effect of realistic electrons [8], the superposition of two eigenmodes at k (positive and

negative energy states) will give rise to a trembling motion whose frequency is exactly determined by effective Dirac

mass 2Me = ∆k. This intuitive explanation is consistent with our analytical result in Eq. (15) of the main text.

For broader scenarios, the non-Abelian media cannot be treated as the perturbation of an Abelian system, and the

dispersion does not correspond to a gapped Dirac cone either, as illustrated in Supplementary Figure 1(c). However,

the ZB effect, arising from the beating of two eigenmodes, still can be observed and is quantitatively in agreement with

our analytical result, as we have been demonstrated with examples in the main text. In Supplementary Figure 2, we

visualize the ZB effect as the consequence of beating between the two eigenmodes. In Supplementary Figure 2(a,b),

two beams incident from x-direction are polarized along the two eigen-polarizations on the ky = 0 cross section

respectively, and they propagate in straight lines. However, when we superpose the fields of the two eigen-polarized

beams, the obtained beam undergoes an obvious trembling motion as shown in Supplementary Figure 2(c).

Comparison with k-space Lorentz force induced by Berry curvature

It is worthwhile to mention that an optical wave packet propagating in inhomogeneous and weakly anisotropic

media will also experience a virtual non-Abelian Lorentz force (Ω̂k × d
dτ

k̂) in the momentum k-space induced by the

non-Abelian Berry curvature Ω̂(k) [9–11]. However, the existence of k-space Lorentz force relies on the inhomogeneity

of the media, while our non-Abelian Lorentz force in the real space can be generated purely from the anisotropy of

the media, they are accordingly distinct from each other. In homogeneous media, the wave vector of a wave packet is

conserved, i.e. d
dτ

k̂ = 0, hence the k-space Lorentz force vanishes (Ω̂k× d
dτ

k̂) ≡ 0; whereas the SU(2) non-Abelian gauge

fields in real space can still exist F̂µν = −i[Âµ, Âν] ≠ 0 and so does the real-space Lorentz force, 1
2
(v̂ × B̂ − B̂ × v̂)+ Ê .

Another difference between the real-space and the k-space schemes is that the real-space scheme is applicable

for any monochromatic full-wave phenomena, as the wave equation (2) shown in the main text duplicates exactly

the stationary Schrödinger equation for spin-1/2 particles interacting with background SU(2) gauge fields, while the

k-space scheme is limited to geometric optics approximation [9–11].
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Supplementary Note 4. ZB effect of 3D beams with finite width in z direction

In our theory, the EM fields are supposed to be translationally invariant along the z-axis. In realistic systems,

optical beams should have a finite width in the z-direction. In this section, we test whether our theory can be applied

to describing real 3D beams.

If the field of a 3D beam has a Gaussian-like distribution in the z-direction: E ∼ exp (− (z −z0)2/w 2
z ), its derivative

∂zE ∼ − 2
w 2

z
(z − z0) exp ( − (z − z0)2/w 2

z ) tends to zero in the middle section z = z0. Thus we expect that the middle

section z = z0 would be a feasible 2D domain where the 2D theory of non-Abelian gauge field optics proves a good

description. To substantiate our analysis, we examined the two types of non-Abelian media studied in the main text.

As for the gyrotropic material with ε↔T = µ↔T , εz = µz, g1 = −g∗2 , it can exert a synthetic non-Abelian magnetic field

on the light beams propagating in x-direction. As shown in Supplementary Figure 3, we numerically simulated the

propagation a 3D Gaussian type beam in this medium. According to Supplementary Figure 3(c), the beam propagates

strictly along the horizontal plane since the isofrequency contours are symmetric with respect to the kz = 0 plane (see

Supplementary Figure 3(d)). Therefore, the vertical center of the beam is fixed at z = 0 and the ansatz ∂zE(z = 0) ≈ 0

is always satisfied. Consequently, the 2D centroid trajectory extracted from the fields falling on the middle plane z = 0

perfectly matches the analytical result predicted by the 2D theory as shown in Supplementary Figure 3(e).

For the biaxial dielectric material with misaligned principal axes, it performs as a background non-Abelian electric

field acting on beams propagating in the xy-plane. We simulated three 3D beams with different waists in the z-

direction, namely wz = 3λ0, 6λ0, 8λ0, traveling in the biaxial medium. The simulation results reveal that the beams

will split into two branches in the z-direction after propagating a distance as shown in Supplementary Figure 4(c,f,i).

The splitting effect originates from the unparallelism of the group velocities of the two eigenmodes. According to the

isofrequency contours of the medium in the ky = 0 plane in Supplementary Figure 4(j), the group velocity of eigenmode

∣↑⟩ is always along the x-axis, while the group velocity of eigenmode ∣↓⟩ has a nonzero z-component. Accordingly, the

vertical center of ∣↓⟩ branch moves along the z-axis. Nevertheless, the numerical centroid trajectories extracted from

the z = z0 section shown in Supplementary Figure 4(k) are still fairly consistent with the 2D theory in the superposed

region of the two eigenmodes, they deviate from the analytical curve only when the two eigenmodes split away in the

z-direction. In particular, it shows that the superposed region increases with wider beam waist wz. Therefore, the 2D

theory is even applicable for beams whose centers are not confined on the z = z0 plane in a considerable large region,

if the beam width wz is wide enough.

Supplementary Figure 3. ZB effect of a 3D beam with finite widths in both y and z directions in a gyrotropic medium

with the parameters ε↔T = µ↔T = I
↔

2×2, εz = µz = 1, g1 = −g∗2 = (i0.1, 0.04)⊺. The beam waists in y and z directions are

identical wy = wz = 5λ0. (a) Slice view and (b,c) section views of full-wave simulated intensity distribution of the 3D beam.

(d) Isofrequency contours of the medium in the xz-plane. (e) Centroid trajectories of the 2D theory (red curve) and of the

numerical fields on z = 0 section (black circles) shown in (b).
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Supplementary Figure 4. ZB effect of 3D beams in a biaxial dielectric medium with the parameters ε↔T = I
↔

2×2, εz = 1.6,

g1 = (0.3,0)⊺, and µ/µ0 = 1. The beam waists in the z directions are respectively (a-c) wz = 3λ0, (d-f) wz = 6λ0, (g-i) wz = 8λ0.

(a,d,g) Slice view, (b,e,h) z = z0 section view, and (c,f,i) y = y0 section view of full-wave simulated intensity distributions of the

3D beams, where (y0, z0) denotes the center of beam on the initial plane x = x0. (j) Isofrequency contours of the medium in the

xz-plane, where the red and blue arrows denote the group velocity directions of the two eigenmodes with k along the positive

kx-axis. (k) Centroid trajectories of the 2D theory (red curve) and of the numerical fields on z = z0 section (black circles) for

the three simulated 3D beams shown in (b,e,h).
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Supplementary Note 5. Theory for genuine non-Abelian Aharonov-Bohm system

In this section, we supply a self-content introduction of genuine non-Abelian AB system in a more rigorous manner.

We will give its precise definition, prove the core property of AB effect, namely the AB phase factors for two homotopic

closed paths are identical, and finally deduce the necessary conditions for constructing a genuine non-Abelian AB

system.

1. Definition of Genuine non-Abelian AB system

Consider a simply connected space M endowed with a gauge structure. Mathematically, this system is described

by a G-principal fiber bundle, E →M , where E denotes the total bundle space, M denotes the base manifold, and G

denotes the gauge group (the fiber fx is homeomorphic to G at each x ∈M). If the gauge field (G-curvature) is zero

F̂µν = 0 (i.e. G- connection is flat) in the whole space, the gauge potential can be globally written as a pure gauge

Âµ = i Û∂µÛ−1, ( Û ∈ G ) (31)

and can be gauged away via global gauge transformation Û−1:

Â′µ = Û−1ÂµÛ + i Û−1∂µÛ = 0. (32)

Therefore, the pure gauge should have no measurable effect in a simply connected space. However, if the region of

zero curvature F̂µν = 0 is only a multiply connected subspace of the whole spacetime, the situation turns to be very

interesting. In this case, although the gauge potential still can be written as Âµ = i Û∂µÛ
−1 locally, it cannot be

gauged away globally via gauge transformation in the whole multiply connected space, and therefore implies nontrivial

physical effect. Such a field-free system with irremovable gauge potential is referred to as an Aharonov-Bohm

system [12].

Consider a particle (wave packet) characterized by a spinor state ∣ψ⟩ propagating in the zero-field region. From a

semi-classical picture, the particle will trace the same trajectory as the case of Â = 0 due to the vanishing non-Abelian

Lorentz force. Nevertheless, the evolution of the state vector ∣ψ⟩ along a curve γ ∶ [0,1]→M is affected by the gauge

potential as follows:

∣ψ⟩ = P exp [i∫
γ
Âµdxµ] ∣ψ⟩0 = Ûγ ∣ψ⟩0 . (33)

Here, ∣ψ⟩0 denotes the state vector along the same path when Â = 0, where the dynamic phase is included in it.

As shown in Eq. (33), the nonzero gauge potential Â generates an addition geometric phase factor, namely the

non-Abelian AB phase factor, expressed by a path-ordering integration along the curve γ stating at point γ(0) = x0:

Ûγ = P exp [i∫
γ
Âµdxµ] ∈ G. (34)

From a geometric point of view, this AB phase factor corresponds to the parallel transport Tγ(p0) = p0 ⋅ Ûγ = γ̃(1)
along the horizontally lifted path γ̃ ∶ [0,1] → E in the bundle space E, where p0 = γ̃(0) ∈ fx0 denotes the starting

point of the lifted curve, and fx0 denotes the fiber at x0. For a certain reference point p0, the horizontal lift γ̃ of

γ is unique. Physically, the choice of p0 determines the local gauge Â(x0) at x0. And according to the property of

parallel transport, the non-Abelian AB phase factor of a concatenate path γ1 ○ γ2 such that γ1(0) = γ2(1) satisfies

Ûγ1○γ2 = Ûγ1 ○ Ûγ2 .

For a closed path (loop) c starting and ending at the same basepoint x0, a local gauge fixes the starting point

p0 = c̃(0) ∈ fx0 of the lifted path c̃. However, c̃ need not to be closed, i.e. the end point of c̃ can be different from p0,

as shown in Supplementary Figure 5(c). The non-Abelian phase factor for the closed loop c,

Ûc(Â) = P exp [i∮
c
Âµdxµ] , (35)

is called the holonomy of the horizontally lifted loop c̃ with respect to the gauge Â. The holonomies corresponding

to all those closed loops based at x0 constitute a subgroup of the gauge group G:

Holp0(Â) = {Ûc(Â) ∣ c(0) = c(1) = x0, c̃(0) = p0} ⊆ G, (36)
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which is the holonomy group of Â with the reference point p0. Ûc(Â) = I if and only if c̃ is also closed, corresponding

to the unit element of Holp0(Â) [13]. In flat bundles with zero curvature F̂µν = 0, the holonomy group of the flat

connection Â is primarily determined by the topology of the base manifold M . The illustration of the holonomies in

a flat bundle in shown in Supplementary Figure 5(c).

The Aharonov-Bohm system with non-Abelian gauge potential was first introduced by Wu and Yang in their paper

connecting gauge theory with fiber bundle [14], where they predicted intriguing phenomena for the scattering of

nucleon carrying weak isospin by a SU(2) flux tube, such as the spatial fluctuation of proton-neutron mixing ratio.

Later on, Aharonov and Casher proposed an electric counterpart of the original AB effect, namely the scattering of

neutral magnetic dipoles by a charged line [15]. Indeed, both the Wu-Yang scheme and the Aharonov-Casher effect

are mathematically equivalent to an AB system with a SU(2) non-Abelian vortex [16, 17]. And the optical realization

with anisotropic media has been proposed in Ref. 1. However, it can be shown that this kind of systems with a single

SU(2) vortex always can be decomposed into two decoupled Abelian subsystems under a proper gauge [18], and the

holonomy for a closed path cn winding around the vortex n times takes the form [13]

Ûcn = P exp [∮
cn
Âµdxµ] = exp (i nΦ σ̂3) = (exp(i nΦ) 0

0 exp(−i nΦ)) , (37)

where Φσ̂3 is the non-Abelian flux of the vortex. Accordingly, the holonomices of arbitrary two loops commute with

each other, thus the holonomy group is still Abelian. In this sense, such systems can be still treated as Abelian or

apparently non-Abelian, as specified in the main text [19, 20]. In a more rigorous manner, a genuine non-Abelian AB

system can be defined as follows [19]:

Definition 1. An Aharonov-Bohm system is called genuinely non-Abelian if and only if the corresponding

Holonomy group Hol(Â) of the flat connection (gauge potential) Â is a non-Abelian group.

It is noteworthy that a different route of generalizing AB effect is the non-Abelian vortex-vortex scattering [21–

24]. In contrast to the non-Abelian vortices in this route being dynamic quasi-particles and respecting non-Abelian

statistics, the non-Abelian vortices in our AB systems are merely non-dynamic background.

2. Necessary conditions of genuine non-Abelian AB system

In order to characterize the holonomy group of a flat bundle, we first introduce the concept of path homotopy.

Path homotopy refers to a topological equivalence relation “≃” for paths sharing the fixed endpoints. Intuitively,

if a path γ1 can deform continuously into another path γ2 while keeping the endpoints fixed, γ1 and γ2 are said to

be homotopic to each other, γ1 ≃ γ2 (see Supplementary Figure 5(a)). Strictly speaking, path homotopy denotes

precisely the mapping of the continuous deformation from γ1 to γ2 [25]. All the paths that are homotopic to each

other form the homotopy equivalence class [γ] = {γ′ ∣γ′(0) = x0, γ
′(1) = x1, γ

′ ≃ γ}, where any element γ of the

class can be chosen as the class representative.

For closed paths through the same basepoint x0 in the base manifold, their homotopy classes constitute the quotient

set with respect to the homotopy equivalence relation “≃”:

π1(M,x0) = {[c] ∣ c(0) = c(1) = x0} = {c ∣ c(0) = c(1) = x0}/ ≃ . (38)

By introducing the multiplication between classes, [c1] ○ [c2] = [c1 ○ c2] (c1 ○ c2 denotes the concatenation of the

two loops c1, c2), π1(M,x0) also forms a group, known as the first fundamental group of the base manifold M .

Though the definition of fundamental group relies on the basepoint x0, it can be proved that π1(M,x0) and π1(M,x′0)
are isomorphic for arbitrary x0,x

′

0 ∈ M as long as M is path-connected. The fundamental group is an important

topological invariant for characterizing the properties of a manifold. Moreover, we will prove that the first fundamental

group of the base manifold is homomorphic to the holonomy group of the corresponding flat bundle in the following

part of this section.

In AB systems with Abelian gauge potentials, it is well-known that the AB phase factors along two homotopic

loops c1, c2 are identical due to the null magnetic flux passing through the enclosed area of the combined loop c1 − c2.

Indeed, this result can be generalized to a theorem for generic AB systems with non-Abelian gauge potentials as

follows.
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Supplementary Figure 5. (a) Illustration of homotopic paths with fixed endpoints x0, x1 in a punctured plane. The curves

in a same color can deform continuously into each other and thus are path-homotopic, namely γ1 ≃ γ2, γ4 ≃ γ5, whereas the

curves in different colors are not homotopic. (b) Two homotopic loops based at x0 form the boundary of a 2D orientable region

Ω (mathematically, a 2-chain). The purple (green) color indicates the orientation of the region is outward (inward) the paper

plane. (c) Holonomies in a flat bundle with a twice-punctured base manifold M . For the three closed paths based at x0 in

different homotopy classes, their horizontally lifted paths in the bundle space start from p0 to different terminals on the fiber

fx0 . All of the terminals of such lifted paths compose the holonomy group Holp0(Â). The light blue surface illustrates a leaf

of horizontal foliations through the point p0 embedding in the bundle space, which covers the base manifold M . Note: the

surface is merely a cartoon schematic but not an actual universal covering space of M . Thus the lifted paths on this surface

cannot differentiate all of different homotopy classes.

Theorem 1. In a flat bundle, the holonomies of two path-homotopic loops c1 and c2, i.e. they belong to the same

homotopy class c1, c2 ∈ [c], are identical

Ûc1(Â) = Ûc2(Â) ≡ Û[c](Â). (39)

Proof. The proof of this theorem can be found in the textbooks of differential geometry [26] and in the literature [19,

27]. For completeness, we give a concise but accessible proof imitating the derivation of the Abelian case. Let us

examine the following product

Ûc1(Â) Ûc2(Â)−1 = Ûc1(Â) Ûc−12 (Â) = Ûc1○c−12 (Â) = P exp [i∮
c1○c

−1
2

Âµdxµ] .

The Hurewicz’s theorem implies that the two homotopic loops c1, c2 are necessarily homologous when treated as

1-cycles [25]. According to the definition of homology, c1 ○ c−1
2 ∼ c1 − c2 = ∂Ω must be the boundary of a 2-chainΩ

(the 2D orientable region enclosed by c1 − c2 as shown in Supplementary Figure 5(b)). In terms of the non-Abelian

Stokes theorem [28–30] and F̂µν = 0, the path-ordered exponential along the loop c1○c−1
2 equals the identity element

of G:

Ûc1(Â) Ûc2(Â)−1 = P exp [i∮
∂Ω
Âµdxµ] = Ps exp

⎡⎢⎢⎢⎢⎣

i

2
∫

Ω
Û(x,x0)−1 F̂µν(x)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=0

Û(x0,x)dxµ ∧ dxν
⎤⎥⎥⎥⎥⎦
= I, (40)

where Ps denotes the “surface ordering”, and Û(x0,x) = P exp [i ∫
x0

x Âµdxµ] is the non-Abelian phase factor along a
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path connecting the field point x and the basepoint x0. As such, the homotopic invariance of the holonomies in flat

bundle has been proved.

Physically, the theorem manifests the quantization of the AB phase factors along paths with fixed endpoints, namely

they can only take discrete values (in general, they are matrices) for different homotopic paths, while the AB phase

factor is invariant against the continuous deformation of the path in the field-free region. This is the key signature

of AB systems associated with either Abelian or non-Abelian gauge potentials. In a simply connected space, the

fundamental group is trivial, namely all loops belong to [x0]. Hence, any state will return to itself as it travels along a

closed loop. Therefore, an AB system requires the fundamental group of the base manifold is nontrivial.

According to Theorem 1, the holonomy group of a flat bundle and the fundamental group of the corresponding base

manifold are naturally connected.

Corollary 1. For a flat bundle E →M , there is a surjective group homomorphism from the first fundamental

group π1(M,x0) of the base manifold M to the holonomy group Holp0(Â) of the bundle:

π1(M,x0) ∋ [c] Ð→ Û[c](Â) ∈ Holp0(Â) = {Û[c] ∣ [c] ∈ π1(M,x0), c̃(0) = p0}. (41)

In other words, the holomony group Holp0(Â) of the flat bundle is just a representation of the fundamental group

π1(M,x0) of the base manifold.

As the holonomy group Hol(Â) is a subgroup of the gauge group G, an Abelian gauge group indicates all of the

holonomies commute with each other. Meanwhile, in terms of Corollary 1, for an AB system with a non-Abelian

holonomy group, there should exit two loops c1, c2 such that Û[c1]Û[c2] ≠ Û[c2]Û[c1]. Thus [c1 ○ c2] ≠ [c2 ○ c1], in other

words, π1(M) must also be non-Abelian. To summarize, we obtain

Necessary conditions for genuine non-Abelian AB systems:

1. The gauge group G is non-Abelian;

2. The first fundamental group π1(M) of the base manifold is non-Abelian.
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Supplementary Note 6. Material construction of non-Abelian AB system

Inspired by the scheme of two noncommutative SU(3) vortices proposed in Ref. 19, we will proceed to construct a

SU(2) genuine non-Abelian AB system. We assume the synthetic SU(2) gauge potential only carrying two nonzero

components: Â = A1σ̂1 + A2σ̂2. Besides, a nontrivial gauge potential with vanishing field F̂ij = 0 can be locally

expressed in the pure gauge form Â = iÛ∇Û−1. If we demand A2 = 0 when y > 0, and A1 = 0 when y < 0, the unitary

transformation matrix can be simply expressed as follows in upper and lower semi-space respectively:

Û = exp (i ζ1(r) σ̂1) (y > 0), Û = exp (i ζ2(r) σ̂2) (y < 0). (42)

Here, ζ1(r), ζ2(r), referred to as pre-potentials, are some multivalued functions of x, y that smoothly tend to zero at

y = 0, and the corresponding components of the vector potential take the form Ai = ∇ζi(r) (i = 1,2).
The pre-potentials with nontrivial topology can be constructed in the following way:

ζ1(r) =
Φ1

2π
S(r)φ(r − r0), ζ2(r) =

Φ2

2π
S(−r)φ(r + r0), (43)

with the corresponding synthetic gauge potential

Â =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A1σ̂1 =
Φ1

2π
∇(S(r)φ(r − r0))σ̂1 = Φ1

2π
(S(r) ∇φ(r − r0) + φ(r − r0)∇S(r))σ̂1, (y > 0)

A2σ̂2 =
Φ2

2π
∇(S(−r)φ(r + r0))σ̂2 =

Φ2

2π
(S(−r)∇φ(r + r0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vortex

+ φ(r + r0)∇S(−r))σ̂2, (y < 0) (44)

where φ(r ∓ r0) is the polar angle (see Supplementary Figure 6(a)) with respect to ±r0 = ±r0 ey whose gradient

represents an irrotational free vortex located at ±r0:

∇φ(r ∓ r0) =
eφ

∣r ∓ r0∣
= −(y ∓ r0)ex + xey

∣r ∓ r0∣2
, (45)

and S(±r) is a smooth cutoff function such that (i) the two components A1,A2 are gradually compressed in the upper

and lower half-space without overlap, and (ii) A1,2 tends to a free vortex nearby ±r0 respectively, i.e.

(i) Ai → 0 ⇔ S(±r)→ 0, as y → 0;

(ii) Ai = Φi
2π

∇φ(r ∓ r0) ⇔ S(±r) = 1, as ∣r ∓ r0∣ < δr.

Supplementary Figure 6. (a) Spatial distributions of the pre-potentials ζ1 (in the upper half-plane y > 0) and ζ2 (in the lower

half-plane y < 0), whose gradients give the corresponding components of the synthetic SU(2) gauge potential Ai = ∇ζi (i = 1,2).
(b) The profile of the sigmoid function s(x, d0, κ) for constructing the cutoff function S(r) in Eq. (47).
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Supplementary Figure 7. (a) Spatial distribution of g1 = −g∗2 (the off-diagonal term of ε↔, µ↔). (b) Distribution of ∣g1∣, which

determines the principal components of ε↔, µ↔ (see Eq. (51)), for the reciprocal anisotropic medium in the upper half-plane. (c)

The orientation of the principal frames of ε↔, µ↔ for the medium in the upper half-plane.

Meanwhile, since φ(r∓r0) is multivalued, the branch cut of φ(r∓r0) is selected along r = ±(r0+yey) (y > 0) as shown

in Supplementary Figure 6(a). To ensure the monodromy of Ai, we should also require S(±r) = 1 in a neighborhood

of the branch cut of φ(r ∓ r0). The form of S(r) is not unique, here we adopt an approximate but rather simple

expression:

S(r) = s(y cos θ0 + x sin θ0, κ, d0) ⋅ s(y cos θ0 − x sin θ0, κ, d0) (46)

with the sigmoid function

s(x, k, d0) =
1

exp[κ(d0 − x)] + 1
, (47)

and the values of the parameters θ0, κ, d0 do not affect the AB phase factors as long as the asymptotic conditions of

S(±r) are met. The obtained pre-potentials ζ1, ζ2 and the gauge potential Â are plotted in Supplementary Figure 7(a)

and in Fig. 2a of the main text respectively.

Notably, the non-Abelian holonomy of a loop encircling a vortex depends on the choice of basepoint. Nevertheless,

in our system, the gauge potential is commutative in either upper or lower half-space. For an arbitary loop c1 (c2)

lying entirely in the upper (lower) half-space and encircling the upper (lower) vortex anticlockwise once, its holonomy,

Û[ci] (i = 1,2), is uniquely determined as

Ûci = P exp [i∮
ci
Âi ⋅ dr σ̂i] = exp [i∮

ci
dζi σ̂i] = exp [iΦi

2π
∮
∣r∓r0∣<δr

dφ σ̂i] = exp [iΦiσ̂i] , (i = 1,2) (48)

where the integral in the second-to-last step is along a sufficiently small circle enclosing the vortex, and Φ1, Φ2 can be

regarded as the flux of the two vortices respectively. For loops through a basepoint on the x-axis (y = 0), Eq. (48) is

still valid. Therefore, Ûc1 , Ûc2 can be used as the two generators to obtain the holonomy group (being homomorphic to

the free group Z∗Z) of this AB system. As shown in Supplementary Figure 6(a) as well as Fig. 2a of the main text, the

cutoff function S(r) in Eq. (46) renders the gauge potential Â vanishing in the whole conic region of ∣arctan(y/x)∣ < θ0.

As such, each point on the cross section of an optical beam with a finite width can undergo a unique non-Abelian AB

phase factor when arriving at the screen.

From the synthetic gauge potential in Eq. (44) and Table. 1 in the main text, we can inversely construct the desired

material parameters. To guarantee Â0 ≡ 0 and V0 = const., we demand that the diagonal components of ε↔, µ↔ obey

εT = µT , εz = µz and are homogeneous in the whole space, meanwhile, their off-diagonal parts satisfy g1 = −g∗2 . As

such, the synthetic σ̂1-vortex in the upper half-space (y > 0) can be made using reciprocal anisotropic metamaterials [1]

with g1 = −g2 = ez ×A1/k0. The constitutive tensors take the following forms:

ε↔/ε0 =
⎛
⎜
⎝

εT 0 −A1
y/k0

0 εT A1
x/k0

−A1
y/k0 A1

x/k0 εz

⎞
⎟
⎠
, µ↔/µ0 =

⎛
⎜
⎝

εT 0 A1
y/k0

0 εT −A1
x/k0

A1
y/k0 −A1

x/k0 εz

⎞
⎟
⎠
. (49)
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Whereas the synthetic σ̂2-vortex in the lower half-space (y < 0) need to be constructed out of gyrotropic materials

with g1 = g2 = iez ×A2/k0, so the relative permittivity and permeability are of entirely equal form

ε↔/ε0 = µ↔/µ0 =

⎛
⎜⎜⎜⎜⎜
⎝

εT 0 −iA2
y/k0

0 εT iA2
x/k0

iA2
y/k0 −iA2

x/k0 εz

⎞
⎟⎟⎟⎟⎟
⎠

. (50)

The orientation of the off-diagonal vector g1 = −g∗2 is plotted in Supplementary Figure 7(a).

We further analyze the property of the reciprocal anisotropic medium used in the upper half-plane. By diagonalizing

ε↔ and µ↔ given by Eq. (49) into ε̃/ε0 = diag(ε1, ε2, ε3) and µ̃/µ0 = diag(µ1, µ2, µ3), we obtain their principal components:

ε1 = µ1 =
1

2
(εT + εz −

√
(εT − εz)2 + 4∣g1∣2) ,

ε2 = µ2 = εT ,

ε3 = µ3 =
1

2
(εT + εz +

√
(εT − εz)2 + 4∣g1∣2) .

(51)

The distribution of ∣g1∣ is plotted in Supplementary Figure 7(b). Despite the identical principal components of ε↔ and

µ↔ , their principal frames do not coincide as shown in Supplementary Figure 7(c). For a certain g1 = −g2, we have

eε1 = cos θ eg1 − sin θ ez, eε2 = ez × eg1 , eε3 = sin θ eg1 + cos θ ez,

eµ1 = cos θ eg1 + sin θ ez, eµ2 = ez × eg1 , eµ3 = − sin θ eg1 + cos θ ez,
(52)

where θ = arctan [
√

(εT−εz)2+4∣g1∣
2+(εT−εz)

2∣g1∣
] is the angle between ε1-axis and xy-plane. In particular, if εz = εT , the

parameters are reduced to ε1 = µ1 = εT − ∣g1∣, ε2 = µ2 = εT , ε3 = µ3 = εT + ∣g1∣, and θ = π/4.
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Supplementary Note 7. Non-Abelian AB interference

1. Spin density interference

In the main text, we have shown that the genuine non-Abelian nature of the AB system is characterized by the

nontrivial interference of the two beams γI, γII. In what follows, we will prove that the interfering spin density is

always perpendicular to ∆s⃗ = s⃗I − s⃗II on the screen. The final normalized spinor states of the two beams are given by

∣si⟩ = Ûγi ∣s0⟩ (i = I, II), thus the orientation of the spin density satisfies

s⃗(y)∝ (⟨sI∣e−iθI(y) + ⟨sII∣e−iθII(y)) ⃗̂σ (eiθI(y)∣sI⟩ + eiθII(y)∣sII⟩)
∝ s⃗I + s⃗II + 2Re (ei∆θ(y)⟨sI∣⃗̂σ∣sII⟩) .

(53)

It is obvious that (s⃗I + s⃗II) ⋅∆s⃗ = 0, so we only need to prove ⟨sI∣⃗̂σ∣sII⟩ ⋅∆s⃗ = 0. Assuming ∣sI⟩ = (a, b)⊺, ∣sII⟩ = (c, d)⊺,

we can obtain

⟨sI∣⃗̂σ∣sII⟩ = (a∗d + b∗c)e⃗1 + i(−a∗d + b∗c)e⃗2 + (a∗c − b∗d)e⃗3,

s⃗I =2 Re(ab∗)e⃗1 + 2i Im(ab∗)e⃗2 + (∣a∣2 − ∣b∣2)e⃗3,

s⃗II =2 Re(cd∗)e⃗1 + 2i Im(cd∗)e⃗2 + (∣c∣2 − ∣d∣2)e⃗3.

Then, we have

⟨sI∣⃗̂σ∣sII⟩ ⋅ (s⃗I − s⃗II) = (a∗b + b∗d) (∣a∣2 + ∣b∣2 − ∣c∣2 − ∣d∣2) = 0.

Consequently, the interfering pseudo-spins s⃗(y) lie on the great circle perpendicular to the axis ∆s⃗ = s⃗I − s⃗II on the

Bloch sphere. In addition, the SU(2) phase factor exp [iΦiσi] of winding around a vortex corresponds to a SO(3)
rotation of the pseudo-spin about the e⃗i-axis clockwise through an angle 2Φi, i.e. Ri = exp [−2Φie⃗i × I]. As a result,

the final spins of the two beams can be expressed as

s⃗I =RγI s⃗0 = Rγ0R2R
−1
1 s⃗0, (54a)

s⃗II =RγII s⃗0 = Rγ0R−1
1 R2 s⃗0. (54b)

Therefore, the axis ∆s⃗ perpendicular to the spin density on screen is determined by the commutator of the two

rotation matrices:

∆s⃗ =Rγ0 [R2,R
−1
1 ] s⃗0 = 4 sin Φ1 sin Φ2 ⋅ (u⃗(Φ1,Φ2) × s⃗0 − 2u⃗(Φ1,Φ2) ⋅ (s⃗0 × e⃗3)e⃗3), (55)

where Rγ0 = I in our case, and u⃗(Φ1,Φ2) is a vector defined in the spin space:

u⃗ = cos Φ1 sin Φ2 e⃗1 + sin Φ1 cos Φ2 e⃗2 + cos Φ1 cos Φ2 e⃗3, (56)

whose norm ∣u⃗∣2 = 1 − sin2 Φ1 sin2 Φ2 ≤ 1. If the initial spin satisfies u⃗(Φ1,Φ2) × s⃗0 − 2u⃗(Φ1,Φ2) ⋅ (s⃗0 × e⃗3)e⃗3 = 0, the

spins of the two beams will finally evolve into the same direction s⃗I = s⃗II, and hence the orientation of the spin density

will not fluctuate on the screen. Nevertheless, the nontrivial AB effect can still be detected from the phase shift δθ

and the contracted amplitude b < 1 in intensity interference pattern in this situation.

As for the intensity interference part ∣ψ∣2, the phase shift δθ and the relative amplitude b of the interference pattern

can be explicitly written as functions of the vortex fluxes Φ1, Φ2 and the initial spin s⃗0:

δθ(Φ1,Φ2, s⃗0) = arctan [ 2 sin Φ1 sin Φ2

1 − 2 sin2 Φ1 sin2 Φ2

s⃗0 ⋅ u⃗(Φ1,Φ2)] , (57)

b(Φ1,Φ2, s⃗0) =[(1 − 2 sin2 Φ1 sin2 Φ2)
2 + 4 sin2 Φ1 sin2 Φ2(s⃗0 ⋅ u⃗(Φ1,Φ2))

2]
1/2

. (58)

They are, obviously, periodic with respect to Φ1 and Φ2. In general, the relative amplitude b ≤ 1 with equality if and

only if s⃗0 is parallel to u⃗. Therefore, a contracted amplitude (b < 1) is a signature of the genuine non-Abelian AB

interference. At the same time, the Wilson loop of c0 is given by

W (c0) = Tr Ûc0 = 2b cos δθ = 2 − 4 sin2 Φ1 sin2 Φ2. (59)
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Supplementary Figure 8. Phase shift δθ and relative amplitude b of the intensity interference fringes varying with the

vortex fluxes Φ1, Φ2 for two incident spinors: (a,b) ∣s0⟩ = (1,1)⊺, and (c,d) ∣s0⟩ = (1, i/5)⊺. On the white dashed circle, the

Wilson loop of the closed path c0 = γI ○ γ−1II equals zero, W (c0) = 0. For a fixed ∣s0⟩, there exist singularities of the phase shift

δθ lying on the white circle, and the relative amplitude is reduced to zero, i.e. b = 0, at such singularities.

In particular, when sin2 Φ1 sin2 Φ2 = 1/2, the phase shift converges to two discrete numbers: δθ = ±π/2, and the relative

amplitude is reduced to b(Φ1,Φ2) =
√

2 ∣s⃗0 ⋅ u⃗(Φ1,Φ2)∣, and the Wilson loop is reduced to zero: W (c0) = b cos δθ = 0.

Furthermore, if sin2 Φ1 sin2 Φ2 = 1/2 and s⃗0 ⋅ u⃗ = 0 are achieved simultaneously, the relative amplitude is reduced to

zero b = 0, as a result, the spatial fluctuation of the quasi-intensity ∣ψ∣2 vanishes. According to Eq. (25) in the main

text, b = 0 implies that the finial spinors of the two beams are orthogonal: ⟨ψI(y)∣ψII(y)⟩ = a(y)2⟨sI∣sII⟩ = 0, and hence

their superposition leads to no intensity fluctuation but a pure spin rotation around the axis ∆s⃗ = 2s⃗I on the screen.

Supplementary Figure 8 shows the non-Abelian-honolomy induced phase shift δθ and relative amplitude b as func-

tions of Φ1 and Φ2 for two fixed incident spinors. With the initial spinor ∣s0⟩ = (1,1)⊺, we observe, in Supplementary

Figure 8(a), two singularities at {Φ1,Φ2} = {π/2, π/4} and {Φ1,Φ2} = {π/2,3π/4}, where the phase shift δθ(Φ1,Φ2)
is ill-defined. Meanwhile, the interference amplitude b drops to zero at the singularities, as shown in Supplementary

Figure 8(b). This result is supported by examining the spinors of the two beams, which evolve eventually into the pair

of orthogonal states ∣↑⟩ = (1,0)⊺, ∣↓⟩ = (0,1)⊺ for both singularities. Similarly, with the incident spinor ∣s0⟩ = (1, i/5)⊺,

there are four singularities of δθ(Φ1,Φ2) corresponding to the zero points of b(Φ1,Φ2) as shown in Supplementary

Figure 8 (c,d). All of such singularities of δθ(Φ1,Φ2) lie on the curve of sin2 Φ1 sin2 Φ2 = 1/2 for any initial spin s⃗0.

2. Spin projected interference

Apart from directly observing the total intensity ∣ψ∣2(y) on the screen discussed in the main text, the nontrivial

interference effect can alternatively be detected via measuring the projected intensity onto a certain spin direction

with a spin filter. For a certain spin direction n⃗, the corresponding projection operator reads ∣n⟩⟨n∣ = 1
2
(I+ n⃗ ⋅ ⃗̂σ). The
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Supplementary Figure 9. Spin projected interference patterns for the non-Abelian AB system shown in Fig.2 of the main

text with the vortex fluxes (a) {Φ1,Φ2} = {π/4,0}, (b) {Φ1,Φ2} = {0, π/2}, and (c) {Φ1,Φ2} = {π/4, π/2}. In the three cases,

the incident spinor is given by ∣s0⟩ = (1,1)⊺, the spin-filter states ∣n⟩ for the projection are selected as (1,0)⊺, (1, i)⊺, (1,1)⊺

and (1,−1)⊺. The red dotes and the blue lines correspond to the full-wave simulation and the theoretical results using Eq. (60)

respectively. The grey reference planes located at y=0 marks the original position of the central peak without phase shift. In

(a,b), the central peak is coincident with the grey plane, thus there is no phase shift δθ = 0, while in (c) the phase shift is

δθ = π/2.

projected intensity on this spin direction is given by

∣⟨n ∣ψ(y)⟩∣2 = ⟨ψ(y) ∣n⟩⟨n∣ψ(y)⟩ = ⟨ψ(y) ∣1
2
(I + n⃗ ⋅ ⃗̂σ)∣ψ(y)⟩

= 1

2
∣ψ∣2(y)(1 + n⃗ ⋅ s⃗(y)),

(60)

where ∣ψ⟩ = ∣ψI⟩ + ∣ψII⟩, and s⃗ = ⟨ψ∣⃗̂σ∣ψ⟩/∣ψ∣2. In general, a projected interference pattern can exhibit the nontrivial

information of the intensity fringes ∣ψ∣2(y) and the spin fluctuation s⃗(y) simultaneously. If n⃗ is parallel to ∆s⃗ (see

Eq. (55), we have n⃗ ⋅ s⃗(y) ≡ 0, and hence the projected interference pattern would be in the same shape as the total

intensity ∣ψ∣2(y).
We carry out the numerical simulation of the interference in our designed non-Abelian AB system where the finial

states of the two beams γI, γII are projected onto certain spin directions on the detection plane. First, we study the

situation of a single vortex by setting either Φ1 = 0 or Φ2 = 0. In this case, the system is reduced to being essentially

Abelian. Because of the same AB phase factor for the two beams, the superposed spin density ∣ψ∣2(y)s⃗ are uniformly

oriented on the screen, and there is no phase shift (δθ = 0) and amplitude contraction (b = 1). Thus, the projected

interference onto any direction n⃗ is consistent with the total intensity up to a scaling parameter (1 + n⃗ ⋅ s⃗)/2. In

Supplementary Figure 9(a), the projected interference patterns onto 4 different directions are plotted, where only

the σ̂1 vortex exists with the flux Φ1 = π/4 and the incident spinor reads ∣s0⟩ = (1,1)⊺. As ∣s0⟩ is an eigenstate

of σ̂1, the spin is conserved during propagation. Accordingly, the projection onto (1,1)⊺ are identical to the total

intensity ∣ψ∣2(y), while the projection onto (1,−1)⊺ vanishes as shown in Supplementary Figure 9(a), and the projected

intensities onto (1,0)⊺ and (1, i)⊺ are exactly halved. Supplementary Figure 9(b) shows the projected interference

patterns for a single σ̂2 vortex carrying the flux Φ2 = π/2. As the incident spinor ∣s0⟩ = (1,1)⊺ is not an eigenstate of

σ̂2, the spins of the two beams rotate along the trajectories and finally convert to ∣sI⟩ = ∣sII⟩ = (1,−1)⊺, evidenced by

the vanishing projection onto (1,1)⊺.

In Supplementary Figure 9(c), we illustrate the projected interference patterns in a genuine non-Abelian AB

system with two noncommutative vortices. And the specific fluxes {Φ1,Φ2} = {π/4, π/2} indicate a zero Wilson loop

W (c0) = 0. And since u⃗ =
√

2/2e⃗1, s⃗0 = e⃗1 satisfy u⃗× s⃗0−2u⃗ ⋅(s⃗0× e⃗3)e⃗3 = 0, the finial spins of the two beams fall into a

uniform direction s⃗I = s⃗II = −e⃗1, leading to the vanishing projection onto (1,1)⊺. Therefore, the projected intensity on

any direction n⃗ is always proportional to the total intensity: ∣⟨n∣ψ(y)⟩∣2 = 1
2
∣ψ(y)∣2(1 − n⃗ ⋅ e⃗1). Meanwhile, the phase

shift and relative amplitude for all the projected interference patterns are fixed as δθ = π/2, b =
√

2 ∣s⃗0 ⋅ u⃗∣ = 1, which

are confirmed by the numerical results in Supplementary Figure 9(c).



23

Supplementary Note 8. Designing non-Abelian AB system with gyroelectric materials

Although the genuine non-Abelian AB system designed in the main text has a rather simple geometry, the back-

ground materials is required to support both gyroelectric and gyromagnetic responses, meanwhile, their electric and

magnetic gyrotation vectors should obey a rigorous relation. In this section, we offer an alternative design of the non-

Abelian AB system using gyroelectric materials without gyromagnetic response which would be more easily realized

in practice.

γI

γII

beam
splitter

σ

1-vortex

σ

2-vortex

Supplementary Figure 10. Alternative design of the non-Abelian AB system with two interfering optical paths γI, γII, where

the background light blue (red) arrows denote the σ̂1 (σ̂2) component A1 (A2) of the synthetic non-Abelian vector potential.

The media used to imitate σ̂1-vortex and σ̂1-vortex in the upper and lower half-spaces are, respectively, an inhomogeneous

reciprocal anisotropic material and an inhomogeneous gyroelectric material.

As shown in Supplementary Figure 10, the lower half-plane contains a synthetic non-Abelian vortices made up of

gyroelectric materials:

ε↔/ε0 = ( εT I
↔

2×2 ig1

−ig1 εz
) , µ↔/µ0 = ( µT I

↔

2×2 0

0 µz
) , (61)

where εT = αµT (α > 0) is supposed to be homogeneous, while g1, εz, and µz are real-valued functions of coordinates

x, y. By rescaling the vacuum permittivity ε′0 = αε0, we obtain the synthetic vector and scalar gauge potentials:

Â = k0
g1 × ez
2
√
α

σ̂2, Â0 =
k0

2
√
α

ez ⋅ (∇× g1) σ̂1 +
k0

2

2
(εz − αµz −

∣g1∣2
α

) σ̂3, V0 =
k 2

0

2
[ ∣g1∣2

2α
− εz − αµz] . (62)

Since g = g1 × ez is precisely the gyration vector of the gyroelectric materials, A2 is parallel to the gyration vector

everywhere. In order to eliminate the synthetic non-Abelian magnetic fields B̂ = ∇ × Â2σ̂2 = 0 in the whole medium

(except for a small domain which is simplified as a singularity), we let A2 be an irrotational vortex with the center

at −r0 = −r0ey:

A2 =
Φ2

2π
∇arctan( x

y + r0
) = Φ2

2π∣r + r0∣2
[−(y + r0)ex + xey] . (63)

As such, the off-diagonal term of ε↔ is given by

g1 =
2
√
α

k0
ez × Â2 = −

Φ2
√
α

πk0∣r + r0∣2
[xex + (y + r0)ey] . (64)
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In order to extinguish non-Abelian and Abelian electric fields Ê = ∇Â0 + i[Â0, Â] and E = −∇V0, the scalar potentials

should satisfy Â0 = 0 and V0 = const.. The benefit of adopting the irrotational vortex to form A2 is that A1
0 ∝

ez ⋅ (∇× g1) = 0 can be simultaneously satisfied. Therefore, the requirements to the scalar potentials can be met

providing that the z-components of permittivity and permeability satisfy

εz =
1

2
( ∣g1∣2

α
+ const.) = 1

2
( Φ2

2

π2k 2
0

∣r + r0∣−2 + const.) , (65a)

µz =
1

2α
(− ∣g1∣2

α
+ const.) = 1

2α
(− Φ2

2

π2k 2
0

∣r + r0∣−2 + const.) . (65b)

To realize this kind of gyroelectric materials, a promising approach is to design suitable gyroelectric metamaterials with

either passive magneto-optic composites [31] or active structures [32] which have the advantages of strong gyrotropic

response and turnable anisotropy. In particular, if the gyroelectricity is induced by magneto-optic effect, the gyration

vector g should be parallel and proportional to the external magnetic field. For the present case, if a line current

alone z-axis is placed at the −r0, the generated magnetic field forms an irrotational vortex, and the induced gyration

vector gives exactly the σ̂2-vortex.

In the upper half-plane, the synthetic σ̂1-vortex with the center at r0 = r0ey can be constructed by reciprocal

anisotropic materials

ε↔/ε0 = ( εT I
↔

2×2 g′1
g′1 εz

) , µ↔/µ0 = ( µT I
↔

2×2 0

0 µz
) , (66)

with εT = αµT (α > 0) being homogeneous and g′1, εz, µz being real-valued functions of x, y. Similarly to the lower

half-space, we let Â = A1σ̂1 form an irrotational vortex in the anisotropic material:

A1 =
Φ1

2π
∇arctan( x

y − r0
) = Φ1

2π∣r − r0∣2
[−(y − r0)ex + xey] , (67)

and let Â0 = 0 and V0 = const.. Then the material parameters are obtained as follows

g′1 = −
Φ1

√
α

πk0∣r − r0∣2
[xex + (y − r0)ey] , (68a)

εz =
1

2
( Φ2

1

π2k 2
0

∣r − r0∣−2 + const.) , (68b)

µz =
1

2α
(− Φ2

1

π2k 2
0

∣r − r0∣−2 + const.) . (68c)

In comparison with the design in the main text, a disadvantage of the reduced non-Abelian AB system is that the

sudden change of the synthetic gauge potentials will induce nonzero non-Abelian gauge flux at the boundaries of the

materials. In order to prevent the boundary flux from affecting the total flux enclosed by the optical paths, the optical

paths encircling the non-Abelian vortices should form closed loops before traversing the boundaries of the upper or

lower pieces of materials. Thus we designed a new optical path diagram shown in Supplementary Figure 10. The new

AB system can give rise to the identical interfering results as the original non-Abelian system in the main text, namely

the optical beams passing through the two paths γI and γII can gain the non-Abelian phase factors ÛγI = Û−1
2 Û1 and

ÛγII = Û1Û
−1
2 respectively, where Ûi = exp [iΦiσ̂i] (i = 1,2). Since Û1 and Û2 do not commute with each other, the

opposite sequences of winding around the two vortices lead to different non-Abelian phase factors ÛγI ≠ ÛγII .
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