
S1 Appendix – Detailed model specification

In this appendix we provide a mathematical specification of our neuromechanical model. We will describe
our mechanical model using the framework of Hamiltonian mechanics, since this is the natural setting for
discussions of deterministic chaos within classical mechanics. To specify our model, we provide descriptions
of the mechanical energy stored in the body and the power flow through the body. First, the total kinetic
energy of the body is given by
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where mi is the mass of the i’th segment boundary and ṙi is its velocity measured relative to the substrate.
We assume that the cuticle stores elastic potential energy in both axial compression/expansion and in

transverse bending. We further assume that there exists some equilibrium state where the potential energy is
at a minimum, and at which point the length of the i’th body segment (bounded by masses mi and mi+1)
is li. Axial deformation can then be conveniently described by a set of axial stretches, which measure the
difference between each segment’s current length and its equilibrium length

qi = ‖ri+1 − ri‖ − li, i ∈ [1, N − 1] (2)

where the double bars indicate the standard Euclidean norm. We assume that the transverse potential
energy is at a minimum when the masses are arranged in a straight line (i.e. when the midline is not curved).
In this case it is convenient to measure transverse deformation by the bending angle made between successive
body segments

φi = cos−1 [ri − ri−1]
T
[ri+1 − ri]

‖ri − ri−1‖‖ri+1 − ri‖
, i ∈ [2, N − 1] (3)

The internal coordinate system qi, φi which we have constructed is shown in S1 Fig. We use these
coordinates to define quadratic approximations to the axial and transverse potential energies around the
equilibrium state. The axial potential is given by
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where ka,i is the axial stiffness of the i’th body segment. The transverse potential may be written similarly
as
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where kt,i is the transverse (bending) stiffness about the i’th segment boundary. We account for dissipation
of mechanical energy due to viscous friction within the tissues of the larva by approximating axial and
transverse power losses by negative definite, quadratic forms in the generalised velocities associated with our
internal coordinate system. The axial power loss is then given by
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where ηa,i is the coefficient of viscosity of the i’th body segment. The transverse power loss is

Pt = −
N−1∑
i=2

ηt,iφ̇
2
i (7)

where ηt,i is the coefficient of viscosity associated with bending about the i’th segment boundary. We
allow the larva to interact with its substrate via Coulomb kinetic friction, which causes negative definite
power losses from the body. During our investigation of small-amplitude dissipative motion, we assume
isotropic (direction independent) substrate interaction, with power loss given by

Pf = −
N∑
i=1

µi‖ṙi‖ (8)

where µi is a parameter characterising the magnitude of sliding friction forces, and is related to the
terrestrial gravitational acceleration g and the coefficient of kinetic friction µkinetic of the i’th mass by
µi = µkineticmig. During our investigation of large-amplitude dissipative motion, we allow anisotropic
substrate interaction. In this case, the i’th mass is acted upon by a force Ffriction,i which is directed opposite
to its velocity vector vi and has a magnitude which depends upon the angle θi between the velocity vector
and the local body axis (see S1 Fig),

Ffriction,i = −F (θi)
vi
‖vi‖

(9)

with

F (θi) = µf,i + (µb,i − µf,i)
[
1− cos θi

2

]µp,i

(10)

where µf,i sets the magnitude of friction opposing motion forward along the body axis (θi = 0), µb,i sets
the magnitude of friction opposing motion backward along the body axis (θi = π), and µp,i > 0 sets the
directional “focus” of the friction force.

We also allow for flow of power due to muscle activation

Pu = −
N−1∑
i=1

biuiq̇i (11)

where bi is a (positive) gain parameter, ui is a dimensionless control variable (identified with muscle
activation MFi in the main text), and the product biui is the total axial tension across the i’th body segment.
As described in the main text, the internal coelomic fluid of the larva gives rise to a constraint on the total
length of the larval midline,

N−1∑
i=1

(li + qi) = L (12)

where the summands on the left are the time-dependent lengths of the individual segments of the midline,
and L is a constant. Noting that in equilibrium (qi = 0) we must have

∑
i li = L, we can rewrite the constraint

as

N−1∑
i=1

qi = 0 (13)

It is easy to enforce the total length constraint directly in the case of small amplitude motion or purely
axial motion, but in the general case of large amplitude axial and transverse motion this constraint can be
difficult to enforce. We therefore attempt to satisfy the constraint only approximately, by introducing an
additional potential energy
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where the constraint stiffness kc is chosen to be very large relative to the other stiffness parameters ka
and kt. Numerically, we satisfy this condition by setting kc = max(ka, kt)× 103.

To derive the dynamics for our system in a form suitable for simulation, we start by using the coordinate
transformations 2 and 3 and the definition of the linear momenta pi = miṙi to write the Hamiltonian function

H(r,p) = T (p) + Ua(r) + Ut(r) + Uc(r) (15)

which corresponds to the total mechanical energy of the body. We then construct the Rayleigh dissipation
function R, which is the sum of the expressions for power transfer into the body, weighted by the inverse
homogeneity of each expression [1]. This must also be expressed in terms of the lab frame coordinates and
momenta by means of the transformations (2) and (3) and their time derivatives, so that we have

R(r,p;u) =
1

2
Pa(r,p) +

1

2
Pt(r,p) + Pf (r,p) + Pu(r,p;u) (16)

From these two functions, the entire body dynamics can be derived as a system of 2NDOF first order
differential equations using the dissipative Hamilton’s equations

ṙi =
∂H

∂pi
(17)

ṗi = −
∂H

∂ri
+
∂R

∂pi

dpi
dṙi

(18)

Where our expression for anistropic friction (9) must be added to the right hand side of (18) where
appropriate. These differential equations can be solved to find the positions ri and momenta pi of the masses
in the lab frame.

For the sake of brevity we will not write out H(r,p), R(r,p), or the dissipative Hamilton’s equations
in full here. We stress, however, that our model is entirely specified by the expressions for the kinetic and
potential energy and the power transfer into the body, along with the transformations between the lab frame
and internal coordinates, and the anistropic friction function. We manipulate these expressions in practise
using a computer algebra system (SymPy). For simulation, we numerically integrate the dissipative Hamilton’s
equations with pre-specified initial conditions and parameters.
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